8.1 C
United States of America
Sunday, November 24, 2024

Intestinal nanoparticle supply and mobile response: a evaluation of the bidirectional nanoparticle-cell interaction in mucosa primarily based on physiochemical properties | Journal of Nanobiotechnology


  • Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport throughout the gastrointestinal limitations: the contribution to oral bioavailability through blood circulation and lymphatic pathway. Adv Drug Deliv Rev. 2023;203:115130.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller MK, Chapa-Villarreal FA, Oldenkamp HF, Elder MG, Venkataraman AK, Peppas NA. Stimuli-responsive self-assembled polymer nanoparticles for the oral supply of antibodies. J Management Launch. 2023;361:246–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu M, Qi Y, Liu G, Tune Y, Jiang X, Du B. Measurement-dependent in vivo transport of nanoparticles: implications for supply, concentrating on, and Clearance. ACS Nano. 2023;17(21):20825–49.

    Article 
    PubMed 

    Google Scholar
     

  • Zhuo Y, Luo Z, Zhu Z, Wang J, Li X, Zhang Z, Guo C, Wang B, Nie D, Gan Y, Hu G, Yu M. Direct cytosolic supply of siRNA through cell membrane fusion utilizing cholesterol-enriched exosomes. Nat Nanotechnol 2024. https://doi.org/10.1038/s41565-024-01785-0

  • Hunt NJ, Lockwood GP, Heffernan SJ, Daymond J, Ngu M, Narayanan RK, Westwood LJ, Mohanty B, Esser L, Williams CC, Kuncic Z, McCourt PAG, Le Couteur DG, Cogger VC. Oral nanotherapeutic formulation of insulin with decreased episodes of hypoglycaemia. Nat Nanotechnol. 2024;19(4):534–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug supply: challenges and alternatives of present platforms. Drug Deliv. 2017;24(1):569–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral supply: design, analysis and state-of-the-art. J Management Launch. 2016;240:504–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelaseyed T, Hansson GC. Membrane mucins of the gut at a look. J Cell Sci. 2020;133(5):jcs240929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benoit DSW, Sims KR Jr, Fraser D. Nanoparticles for oral biofilm therapies. ACS Nano. 2019;13(5):4869–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug supply (Nano)platforms for oral and Dental Purposes: tissue regeneration, an infection management, and Most cancers Administration. Adv Sci (Weinh). 2021;8(8):2004014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Luo Y. Organic destiny of ingested lipid-based nanoparticles: present understanding and future instructions. Nanoscale. 2019;11(23):11048–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Analysis Progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane. Pharmaceutics. 2023;15(7):1816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak hyperlink. Adv Drug Deliv Rev. 2022;188:114403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for concentrating on the small gut. AAPS PharmSciTech. 2020;22(1):3.

    Article 
    PubMed 

    Google Scholar
     

  • Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Exact subcellular organelle concentrating on for enhancing endogenous-stimuli-mediated Tumor Remedy. Adv Mater. 2021;33(51):e2101572.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Xia D, Tao J, Shen A, He Y, Gan Y, et al. Self-assembled core-shell-type lipid-polymer hybrid nanoparticles: intracellular trafficking and relevance for oral absorption. J Pharm Sci. 2017;106(10):3120–30.

  • Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran Ok, Nibert ML, Kirchhausen T. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell. 2004;118(5):591–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Tiruppathi C, Cho J, Minshall RD, Malik AB. Supply of nanoparticle: complexed medication throughout the vascular endothelial barrier through caveolae. IUBMB Life. 2011;63(8):659–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rennick JJ, Johnston APR, Parton RG. Key ideas and strategies for learning the endocytosis of organic and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis utilizing nanoparticles. Mol Features Med. 2022;83:100993.

    Article 
    PubMed 

    Google Scholar
     

  • Donahue ND, Acar H, Wilhelm S. Ideas of nanoparticle mobile uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Floor design of nanocarriers: key to extra environment friendly oral drug supply programs. Adv Colloid Interface Sci. 2023;313:102848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ejazi SA, Louisthelmy R, Maisel Ok. Mechanisms of Nanoparticle Transport throughout intestinal tissue: an oral supply perspective. ACS Nano. 2023;17(14):13044–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang M, Zhang Y, Niu X, Liu Z, Yue T, Zhang W. A computational examine of the affect of nanoparticle form on clathrin-mediated endocytosis. J Mater Chem B. 2023;11(27):6319–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurnani P, Sanchez-Cano C, Xandri-Monje H, Zhang J, Ellacott SH, Mansfield EDH, Hartlieb M, Dallmann R, Perrier S. Probing the Impact of Rigidity on the Mobile Uptake of Core-Shell nanoparticles: Stiffness results are dimension dependent. Small. 2022;18(38):e2203070.

    Article 
    PubMed 

    Google Scholar
     

  • Guo S, Liang Y, Liu L, Yin M, Wang A, Solar Ok, Li Y, Shi Y. Analysis on the destiny of polymeric nanoparticles within the technique of the intestinal absorption primarily based on mannequin nanoparticles with varied traits: dimension, floor cost and pro-hydrophobics. J Nanobiotechnol. 2021;19(1):32.

    Article 
    CAS 

    Google Scholar
     

  • Popov LD. Deciphering the connection between caveolae-mediated intracellular transport and signalling occasions. Cell Sign. 2022;97:110399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sayed A, Harashima H. Endocytosis of gene supply vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Ke J, Guo X, Gou Ok, Sang Z, Wang Y, Bian Y, Li S, Li H. Chiral mesoporous silica nano-screws as an environment friendly biomimetic oral drug supply platform via a number of topological mechanisms. Acta Pharm Sin B. 2022;12(3):1432–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou T, Wang J, Han C, Shao X, Zhang J, Lu W. Mobile uptake and transport traits of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol. 2019;138:791–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Chiang CS, Wang JT, Lin KJ, Sung HW. A noninvasive gut-to-brain oral drug supply system for treating mind tumors. Adv Mater. 2021;33(34):e2100701.

    Article 
    PubMed 

    Google Scholar
     

  • Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide nanoparticles for environment friendly Mobile internalization and endosomal escape. Nanomaterials (Basel). 2020;10(9):1816.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng F, Zhang H, Wang X, Zhang Y, Hu H, Tune S, Dai W, He B, Zheng Y, Wang X, Zhang Q. Transmembrane pathways and mechanisms of rod-like Paclitaxel nanocrystals via MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Gao W, Jin H, Mao C, Zhang Y, Wang X, Mei D, Zhao L. Mobile Uptake and Transport mechanism of 6-Mercaptopurine nanomedicines for enhanced oral bioavailability. Int J Nanomed. 2023;18:79–94.

    Article 
    CAS 

    Google Scholar
     

  • Mellman I, Nelson WJ. Coordinated protein sorting, concentrating on and distribution in polarized cells. Nat Rev Mol Cell Bio. 2008;9(11):833–45.

    Article 
    CAS 

    Google Scholar
     

  • Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv. 2020;3(1):10–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Superior Methods for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Supply. Res (Wash D C). 2023;6:0148.

    CAS 

    Google Scholar
     

  • Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular destiny and transport mechanism of form, dimension and rigidity diverse nanocarriers for understanding their oral supply effectivity. Biomaterials. 2023;294:121995.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Deng H, Lin Y, Wang X, He B, Dai W, Zhang H, Zheng Y, Zhang Q, Wang X. A typical technique to enhance transmembrane transport in polarized epithelial cells primarily based on sorting indicators: guiding nanocarriers to TGN fairly than to the basolateral plasma membrane instantly. J Management Launch. 2021;339:430–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joris F, De Backer L, Van de Vyver T, Bastiancich C, De Smedt SC, Raemdonck Ok. Repurposing cationic amphiphilic medication as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. J Management Launch. 2018;269:266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y. Novel stable lipid nanoparticle with endosomal escape operate for oral supply of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malik S, Saltzman WM, Bahal R. Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids. Mol Ther Nucleic Acids. 2021;25:302–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sipos A, Kim KJ, Chow RH, Flodby P, Borok Z, Crandall ED. Alveolar epithelial cell processing of nanoparticles prompts autophagy and lysosomal exocytosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L286–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang D, Feng Y, Yuan Y, Zhang L, Zhou Y, Midgley AC, Wang Y, Liu N, Li G, Yao X, Liu D. Protein coronas derived from mucus act as each Spear and Protect to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. ACS Nano. 2024;18(10):7455–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen LQ, Liu CD, Xiang YC, Lyu JY, Zhou Z, Gong T, Gao HL, Li L, Huang Y. Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano At present. 2022;42:101356.

    Article 
    CAS 

    Google Scholar
     

  • Xing L, Zheng Y, Yu Y, Wu R, Liu X, Zhou R, Huang Y. Complying with the physiological features of Golgi equipment for secretory exocytosis facilitated oral absorption of protein medication. J Mater Chem B. 2021;9(6):1707–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013;34(25):6082–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin Y, Yang J, Pan Y, Guo Z, Gao Y, Huang L, Zhou D, Ge Y, Guo F, Zhu W, Tune Y, Li Y. Chylomicrons-simulating sustained drug launch in Mesenteric Lymphatics for the therapy of Crohn’s-Like Colitis. J Crohns Colitis. 2021;15(4):631–46.

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida T, Kojima H, Sako Ok, Kondo H. Drug supply to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng F, Kim KS, Moon J, Bae YH. Bile acid conjugation on stable nanoparticles enhances ASBT-Mediated endocytosis and chylomicron pathway however weakens the transcytosis by Inducing Transport Movement in a Mobile damaging suggestions Loop. Adv Sci (Weinh). 2022;9(21):e2201414.

    Article 
    PubMed 

    Google Scholar
     

  • Yang D, Liu D, Qin M, Chen B, Tune S, Dai W, Zhang H, Wang X, Wang Y, He B, Tang X, Zhang Q. Intestinal mucin induces extra endocytosis however much less transcytosis of nanoparticles throughout enterocytes by triggering Nanoclustering and strengthening the Retrograde Pathway. ACS Appl Mater Interfaces. 2018;10(14):11443–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Bai Y, Liu M, Li L, Shan W, Zhang Z, Huang Y. Transport mechanisms of Butyrate Modified nanoparticles: perception into Straightforward Entry, laborious transcytosis of energetic concentrating on system in oral administration. Mol Pharm. 2018;15(9):4273–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asad S, Jacobsen A-C, Teleki A. Inorganic nanoparticles for oral drug supply: alternatives, limitations, and future views. Curr Opin Chem Eng. 2022;38:100869.

    Article 

    Google Scholar
     

  • García-Díaz M, Birch D, Wan F, Nielsen HM. The position of mucus as an invisible cloak to transepithelial drug supply by nanoparticles. Adv Drug Deliv Rev. 2018;124:107–24.

    Article 
    PubMed 

    Google Scholar
     

  • McCright J, Sinha A, Maisel Ok. Producing an in vitro intestine mannequin with physiologically related Biophysical mucus Properties. Cell Mol Bioeng. 2022;15(5):479–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araújo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as technique to cut back interactions with mucus. Adv Drug Deliv Rev. 2018;124:98–106.

    Article 
    PubMed 

    Google Scholar
     

  • Xie Y, Jin Z, Ma D, Yin TH, Zhao Ok. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral supply of drug. Bioeng Transl Med. 2023;8(3):e10510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Twin charged folate labelled Chitosan nanogels with enhanced mucoadhesion capability for focused drug supply. Eur Polym J. 2020;134:109847.

    Article 
    CAS 

    Google Scholar
     

  • Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral supply of insulin. Mol Pharm. 2020;17(1):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Z, Cui S, Qin L, An Y, Zhang X, Guan J, Wong TW, Mao S. Comparability of virus-capsid mimicking biologic-shell primarily based versus polymeric-shell nanoparticles for enhanced oral insulin supply. Asian J Pharm Sci. 2023;18(5):100848.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Z, He Z, Liu H, Liu L, Liu Z, Chen Y. Antioxidant enzymes sequestered inside lipid-polymer hybrid nanoparticles for the native therapy of inflammatory bowel illness. ACS Appl Mater Interfaces. 2021;13(47):55966–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang JH, Wang S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal limitations. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efiana NA, Phan TNQ, Wicaksono AJ, Bernkop-Schnürch A. Mucus permeating self-emulsifying drug supply programs (SEDDS): in regards to the influence of mucolytic enzymes. Colloids Surf B Biointerfaces. 2018;161:228–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Razzaq S, Rauf A, Raza A, Akhtar S, Tabish TA, Sandhu MA, Zaman M, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. A multifunctional polymeric micelle for focused supply of Paclitaxel by the inhibition of the P-Glycoprotein transporters. Nanomaterials (Basel). 2021;11(11):2858.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Y, Qiu L. Efficient oral supply of gp100 plasmid vaccine towards metastatic melanoma via multi-faceted blending-by-blending nanogels. Nanomedicine. 2019;22:102114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira de Sousa I, Cattoz B, Wilcox MD, Griffiths PC, Dalgliesh R, Rogers S, Bernkop-Schnürch A. Nanoparticles adorned with proteolytic enzymes, a promising technique to beat the mucus barrier. Eur J Pharm Biopharm. 2015;97(Pt A):257–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery programs for transbuccal drug supply. Nanomed (Lond). 2023;18(21):1495–514.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for focused supply and remedy in Digestive System. ACS Nano. 2023;17(1):27–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian DA, Langer R, Traverso G. Mucus interplay to enhance gastrointestinal retention and pharmacokinetics of orally administered nano-drug supply programs. J Nanobiotechnol. 2022;20(1):362.

    Article 

    Google Scholar
     

  • Amin MK, Boateng JS. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Floor modification with Sodium Alginate and Polyethylene Glycol for potential oral mucosa vaccine supply. Mar Medicine. 2022;20(3):156.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao P, Wang J, Solar B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced mucosal transport of polysaccharide-calcium phosphate nanocomposites for oral vaccination. ACS Appl Bio Mater. 2021;4(11):7865–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-powered nanobots for overcoming the mucus barrier. ACS Nano. 2024;18:16701–14.

  • Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for enhancing oral bioavailability of medication: intestinal transport mechanisms and influencing components. AAPS PharmSciTech. 2021;22(5):179.

    Article 
    PubMed 

    Google Scholar
     

  • Yu SH, Tang DW, Hsieh HY, Wu WS, Lin BX, Chuang EY, Sung HW, Mi FL. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide throughout Caco-2 cell monolayers. Acta Biomater. 2013;9(7):7449–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How nanoparticles open the Paracellular Route of Organic limitations: mechanisms, purposes, and prospects. ACS Nano. 2022;16(10):15627–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabu C, Raghav D, Jijith US, Mufeedha P, Naseef PP, Rathinasamy Ok, Pramod Ok. Bioinspired oral insulin supply system utilizing yeast microcapsules. Mater Sci Eng C Mater Biol Appl. 2019;103:109753.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surwase SS, Shahriar SMS, An JM, Ha J, Mirzaaghasi A, Bagheri B, Park JH, Lee YK, Kim YC. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl Mater Interfaces. 2022;14(9):11124–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune JG, Lee SH, Han HK. Improvement of an M cell focused nanocomposite system for efficient oral protein supply: preparation, in vitro and in vivo characterization. J Nanobiotechnol. 2021;19(1):15.

    Article 

    Google Scholar
     

  • He Y, Huang Y, Xu H, Yang X, Liu N, Xu Y, Ma R, Zhai J, Ma Y, Guan S. Aptamer-modified M cell concentrating on liposomes for oral supply of macromolecules. Colloids Surf B Biointerfaces. 2023;222:113109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu RG, Fei SY, Zhang XM, Zheng H, Tan MQ. Layer-by-layer oral-deliverable nanoparticles focused microfold cells to advertise lutein absorption in assuaging dry eye illness. Chem Eng J. 2024;479:147590.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, He H, Xia F, Li Y, Lu Y, Chen D, Qi J, Lu Y, Zhang W, Wu W. In vivo destiny of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 2017;13(8):2643–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanaya T, Williams IR, Ohno H. Intestinal M cells: tireless samplers of enteric microbiota. Site visitors. 2020;21(1):34–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim KS, Na Ok, Bae YH. Nanoparticle oral absorption and its medical translational potential. J Management Launch. 2023;360:149–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durán-Lobato M, Niu Z, Alonso MJ. Oral supply of Biologics for Precision Medication. Adv Mater. 2020;32(13):e1901935.

    Article 
    PubMed 

    Google Scholar
     

  • Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2(11):1004–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lengthy P, Zhang Q, Xue M, Cao G, Li C, Chen W, et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complicated protein vaccine: concentrating on intestinal M cells following peroral administration. Biomed Pharmacother. 2019;115:108886.

  • France MM, Turner JR. The mucosal barrier at a look. J Cell Sci. 2017;130(2):307–14.

  • Ma L, Ma Y, Gao Q, Liu S, Zhu Z, Shi X, Dai F, Reis RL, Kundu SC, Cai Ok, Xiao B. Mulberry Leaf lipid nanoparticles: a naturally focused CRISPR/Cas9 oral supply platform for alleviation of Colon ailments. Small. 2024;20(25):e2307247.

    Article 
    PubMed 

    Google Scholar
     

  • Schoultz I, Keita ÅV. Mobile and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier operate. Cells. 2019;8(2):193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating Redox Stability, Immune responses, and the intestine Microbiome. Adv Mater. 2023;35(3):e2207890.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wu Y, Yan Y, Ma Y, Tu L, Shao J, Tang X, Chen L, Liang G, Yin L. Twin-targeted nanoparticle-in-Microparticle System for Ulcerative Colitis Remedy. Adv Healthc Mater. 2023;12(31):e2301518.

    Article 
    PubMed 

    Google Scholar
     

  • Zu M, Ma Y, Zhang J, Solar J, Shahbazi MA, Pan G, Reis RL, Kundu SC, Liu J, Xiao B. An oral nanomedicine elicits in situ Vaccination Impact towards Colorectal Most cancers. ACS Nano. 2024;18(4):3651–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Lengthy C, Tang W, Mo X, Liu J. Evaluation of variations in intestinal flora related to totally different BMI standing in colorectal most cancers sufferers. J Transl Med. 2024;22(1):142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu YJ, Zhao X, Wang LY, Li Ok, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A gasoline remedy technique for intestinal Flora Regulation and Colitis Therapy by Nanogel-based multistage NO supply microcapsules. Adv Mater. 2024;36(19):e2309972.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH, Moon J, Park G, Choi SS, Kim SJ, Jung YJ, Tune KY, Cho ML. Intestine microbiome-derived butyrate inhibits the immunosuppressive components PD-L1 and IL-10 in tumor-associated macrophages in gastric most cancers. Intestine Microbes. 2024;16(1):2300846.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong SB, Park OH, Cho SC. Microbiome-derived lipid nanoparticles for Improved Immunogenicity of mRNA vaccines. ACS Mater Lett. 2024;6(4):1557–63.

    Article 
    CAS 

    Google Scholar
     

  • Huang Y, Xu J, Solar G, Cheng X, An Y, Yao X, et al. Enteric-coated cerium dioxide nanoparticles for efficient inflammatory bowel illness therapy by regulating the redox steadiness and intestine microbiome. Biomaterials. 2024;314:122822.

  • Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I. Multilayer engineered nanoliposomes as a novel device for oral supply of lipopeptide-based vaccines towards group a Streptococcus. Nanomed (Lond). 2016;11(10):1223–36.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Kaminskas LM, Marasini N. Current advances in nano/microparticle-based oral vaccines. J Pharm Investig. 2021;51(4):425–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Q, Ma J, Li X, Meng Q, Wu S, Xie Y, Qi Y, Liu S, Chen R. Intestinal toxicity of metallic nanoparticles: silver nanoparticles dysfunction the intestinal Immune Microenvironment. ACS Appl Mater Interfaces. 2023;15(23):27774–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao X, Nguyen TH, Lin M, Mustapha A. Engineered nanoparticles as potential meals contaminants and their toxicity to Caco-2 cells. J Meals Sci. 2016;81(8):T2107–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pogribna M, Phrase B, Lyn-Prepare dinner B, Hammons G. Impact of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell traces. Nanotoxicology. 2022;16(4):409–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Mao H, Kawazoe N, Chen G. Perception into the interactions between nanoparticles and cells. Biomater Sci-uk. 2017;5(2):173–89.

    Article 
    CAS 

    Google Scholar
     

  • Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, Migheli R, Dalpiaz A, Ferraro L, Rassu G, Gavini E, Giunchedi P. Strong lipid nanoparticles as Formulative Technique to extend oral permeation of a molecule energetic in Multidrug-Resistant Tuberculosis Administration. Pharmaceutics. 2020;12(12):1132.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Z, Cao X, DeLoid GM, Sampathkumar Ok, Ng KW, Lavatory SCJ, Demokritou P. Physicochemical and morphological transformations of Chitosan nanoparticles throughout the gastrointestinal Tract and Mobile Toxicity in an in vitro mannequin of the small intestinal epithelium. J Agric Meals Chem. 2020;68(1):358–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Hu Q, Solar Z, Yu Y, Li X, Tian T, et al. Colon concentrating on pH-responsive coacervate microdroplets for therapy of ulcerative colitis. Small. 2024;20(33):2311890.

  • Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, et al. Mulberry biomass-derived nanomedicines mitigate colitis via improved infected mucosa accumulation and intestinal microenvironment modulation. Analysis. 2023;6:188.

  • Xu Y, Carradori D, Alhouayek M, Muccioli GG, Cani PD, Préat V, Beloqui A. Measurement impact on lipid nanocapsule-mediated GLP-1 secretion from Enteroendocrine L cells. Mol Pharm. 2018;15(1):108–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Gou S, Zhu Z, Solar J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient delicate photothermia improves therapeutic efficiency of oral nanomedicines with enhanced Accumulation within the Colitis Mucosa. Adv Mater. 2024;36(14):e2309516.

    Article 
    PubMed 

    Google Scholar
     

  • Wei X, Yu S, Zhang T, Liu L, Wang X, Wang X, Chan YS, Wang Y, Meng S, Chen YG. MicroRNA-200 loaded lipid nanoparticles promote intestinal epithelium regeneration in Canonical MicroRNA-Poor mice. ACS Nano. 2023;17(22):22901–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel illness remedy. Sci Adv. 2022;8(37):eabp9882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic pure lipid nanoparticles for oral therapy of colorectal most cancers via potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials. 2024;307:122530.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang M, Niu X, Yue T. Selective membrane wrapping on in a different way sized nanoparticles regulated by clathrin meeting: a computational mannequin. Colloids Surf B Biointerfaces. 2022;214:112467.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Y, Chen H, Li YX, He Ok, Yang Ok, Pang HB. Synergistic entry of particular person nanoparticles into mammalian cells pushed by Free Power decline and controlled by their sizes. ACS Nano. 2022;16(4):5885–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory ailments: prevention and therapy. Sign Transduct Goal Ther. 2024;9(1):34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaiter T, Cornu R, Millot N, Herbst M, Pellequer Y, Moarbess G, Martin H, Diab-Assaf M, Béduneau A. Measurement impact and mucus position on the intestinal toxicity of the E551 meals additive and engineered silica nanoparticles. Nanotoxicology. 2022;16(2):165–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Ding R, Wang H, Liu L, He J, Tao Y, Zhao Z, Zhang J, Wang A, Solar Ok, Li Y, Shi Y. Orally administered clever self-ablating nanoparticles: a brand new strategy to enhance drug mobile uptake and intestinal absorption. Drug Deliv. 2022;29(1):305–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Guo H, Liu L, Liu Y, Xie L. Measurement-dependent mobile uptake and localization profiles of silver nanoparticles. Int J Nanomed. 2019;14:4247–59.

    Article 
    CAS 

    Google Scholar
     

  • Billah MM, Deng H, Dutta P, Liu J. Results of receptor properties on particle internalization via receptor-mediated endocytosis. Delicate Matter. 2023;19(31):5907–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Z, Ye H, Yi X, Li Y. Membrane wrapping effectivity of Elastic nanoparticles throughout endocytosis: dimension and form matter. ACS Nano. 2019;13(1):215–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102(27):9469–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding HM, Ma YQ. Theoretical and computational investigations of nanoparticle-biomembrane interactions in mobile supply. Small. 2015;11(9–10):1055–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albanese A, Tang PS, Chan WC. The impact of nanoparticle dimension, form, and floor chemistry on organic programs. Annu Rev Biomed Eng. 2012;14:1–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa T, Okumura R, Nagano Ok, Minemura T, Izumi M, Motooka D, Nakamura S, Iida T, Maeda Y, Kumanogoh A, Tsutsumi Y, Takeda Ok. Oral consumption of silica nanoparticles exacerbates intestinal irritation. Biochem Biophys Res Commun. 2021;534:540–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The affect of Nanoparticle properties on oral bioavailability of medication. Int J Nanomed. 2020;15:6295–310.

    Article 
    CAS 

    Google Scholar
     

  • Gardey E, Cseresnyes Z, Sobotta FH, Eberhardt J, Haziri D, Grunert PC, Kuchenbrod MT, Gruschwitz FV, Hoeppener S, Schumann M, Gaßler N, Figge MT, Stallmach A, Brendel JC. Selective Uptake Into Infected Human Intestinal Tissue and Immune Cell Concentrating on by Wormlike Polymer Micelles. Small. 2024;20(21):e2306482.

  • Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral floor for sequential drug supply and improved oral insulin remedy. Nat Commun. 2022;13(1):6649.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Built-in System towards Radiation-Induced Damage. ACS Nano. 2023;17(11):10560–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong D, Zhang D, Chen W, He J, Ren C, Zhang X, Kong N, Tao W, Zhou M. Orally deliverable technique primarily based on microalgal biomass for intestinal illness therapy. Sci Adv. 2021;7(48):eabi9265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iriarte-Mesa C, Jobst M, Bergen J, Kiss E, Ryoo R, Kim JC, Crudo F, Marko D, Kleitz F, Del Favero G. Morphology-Dependent Interplay of silica nanoparticles with intestinal cells: connecting form to barrier operate. Nano Lett. 2023;23(16):7758–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren F, Shi X, Li Y. Enhanced transport of form and rigidity-tuned α-Lactalbumin nanotubes throughout intestinal mucus and Mobile limitations. Nano Lett. 2020;20(2):1352–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Li B, Min R, Zhang Z, Huang G, Chen Y, Shen B, Zheng Q, Yue P. Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to reinforce permeation and intestinal absorption. Biomater Sci. 2023;11(3):1013–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christfort JF, Guillot AJ, Melero A, Thamdrup LHE, Garrigues TM, Boisen A, Zór Ok, Nielsen LH. Cubic microcontainers enhance in situ colonic mucoadhesion and absorption of Amoxicillin in rats. Pharmaceutics. 2020;12(4):355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang Z, Xu L, Ding R, Wang M, Yang X, Li X, Zhou B, Gou Ok, Han Y, Liu T, Chen X, Cheng Y, Yang H, Li H. Nanoparticles exhibiting virus-mimic floor topology for enhanced oral supply. Nat Commun. 2023;14(1):7694.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Function of nanoparticle dimension, form and floor chemistry in oral drug supply. J Management Launch. 2016;238:176–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Zhuang J, He H, Jiang S, Banerjee A, Lu Y, Wu W, Mitragotri S, Gan L, Qi J. Affect of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl Mater Interfaces. 2017;9(49):42492–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Guo J, Wang L, Tang S, Wang AF, Zheng S, Guo Z, Zan X. Transformation of the form and shrinking the dimensions of acid-resistant metal-organic frameworks (MOFs) to be used because the car of oral proteins. Biomater Sci. 2023;11(10):3726–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Janjua TI, Qu Z, Draphoen B, Bai Y, Linden M, Moniruzzaman M, Hasnain SZ, Kumeria T, Popat A. Virus-like silica nanoparticles improve macromolecule permeation in vivo. Biomater Sci. 2023;11(13):4508–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu N, Becton M, Zhang L, Wang X. Mechanism of coupling nanoparticle stiffness with form for endocytosis: from Rodlike Penetration to Wormlike Wriggling. J Phys Chem B. 2020;124(49):11145–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA, Pinkhassik E, Yan B. Permission to enter cell by form: nanodisk vs nanosphere. ACS Appl Mater Interfaces. 2012;4(8):4099–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Rodríguez A, Vila L, Cortés C, Hernández A, Marcos R. Results of in a different way formed TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro mannequin (Caco-2/HT29) of the intestinal barrier. Half Fibre Toxicol. 2018;15(1):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Zhang H, Millán Cotto HA, Boyer TL, Warren MR, Wang CM, Luchan J, Dhal PK, Service RL, Bajpayee AG. Milk exosomes anchored with hydrophilic and zwitterionic motifs improve mucus permeability for purposes in oral gene supply. Biomater Sci. 2024;12(3):634–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Chen X, Gu N. Computational investigation of interplay between nanoparticles and membranes: hydrophobic/hydrophilic impact. J Phys Chem B. 2008;112(51):16647–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanjula B, Shah FM, Javed A, Alka A. Impact of poloxamer 188 on lymphatic uptake of carvedilol-loaded stable lipid nanoparticles for bioavailability enhancement. J Drug Goal. 2009;17(3):249–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein medication. Adv Drug Deliv Rev. 2016;106(Pt B):367–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Shen L, Zhang Y, Li H, Wang Y, Quan D. Oil-soluble reversed lipid nanoparticles for oral insulin supply. J Nanobiotechnol. 2020;18(1):98.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Qiang H, Yang W, Xu Y, Feng T, Cai H, Wang S, Liu Z, Zhang Z, Zhang J. Oral insulin supply by epithelium microenvironment-adaptive nanoparticles. J Management Launch. 2022;341:31–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attar ES, Jayakumar S, Devarajan PV. Oral In-Situ nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport throughout Gastrointestinal Mucosa. AAPS PharmSciTech. 2024;25(5):113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Wen L, Zhang F, Lin W, Zhang L. Self-assembly of cyclic grafted copolymers with inflexible rings and their potential as drug nanocarriers. J Colloid Interface Sci. 2021;597:114–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Xing L, Chen L, Zhou R, Wu J, Zhu X, Li L, Xiang Y, Wu R, Zhang L, Huang Y. Tailor-made elasticity mixed with biomimetic floor promotes nanoparticle transcytosis to beat mucosal epithelial barrier. Biomaterials. 2020;262:120323.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as customized medicines. Adv Drug Deliv Rev. 2019;148:252–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efiana NA, Fürst A, Saleh A, Shahzadi I, Bernkop-Schnürch A. Phosphate adorned lipid-based nanocarriers offering a chronic mucosal residence time. Int J Pharm. 2022;625:122096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-López AL, González-Navarro CJ, Aranaz P, Vizmanos JL, Irache JM. In vivo testing of mucus-permeating nanoparticles for oral insulin supply utilizing Caenorhabditis elegans as a mannequin below hyperglycemic situations. Acta Pharm Sin B. 2021;11(4):989–1002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du XJ, Wang JL, Iqbal S, Li HJ, Cao ZT, Wang YC, Du JZ, Wang J. The impact of floor cost on oral absorption of polymeric nanoparticles. Biomater Sci. 2018;6(3):642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren T, Wang Q, Xu Y, Cong L, Gou J, Tao X, Zhang Y, He H, Yin T, Zhang H, Zhang Y, Tang X. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium limitations utilizing floor polyethylene oxide (PEO) adorned positively charged polymer-lipid hybrid nanoparticles. J Management Launch. 2018;269:423–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Ok, Gong F, Wu J, Tang W, Liao F, Han Z, Pei Z, Lei H, Wang L, Shao M, Liu Z, Cheng L. Orally administered Silicon Hydrogen Nanomaterials as Goal Remedy to deal with Intestinal ailments. ACS Nano. 2023;17(21):21539–52.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Cost-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for environment friendly oral insulin supply. Theranostics. 2021;11(9):4452–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll P, Hörmann N, Nguyen Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Cost changing nanostructured lipid carriers containing a cell-penetrating peptide for enhanced mobile uptake. J Colloid Interface Sci. 2022;628(Pt A):463–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akbari A, Lavasanifar A, Wu J. Interplay of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater. 2017;64:249–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Yin N, Liu Z, Solar R, Gou J, Yin T, Zhang Y, He H, Tang X. Hydrophilic and Electroneutral nanoparticles to beat mucus trapping and improve oral supply of insulin. Mol Pharm. 2020;17(9):3177–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu S, Yang Q, Wang R, Tian C, Ji Y, Tan H, Zhao P, Kaplan DL, Wang F, Xia Q. Genetically engineered pH-responsive silk sericin nanospheres with environment friendly therapeutic impact on ulcerative colitis. Acta Biomater. 2022;144:81–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tada-Oikawa S, Eguchi M, Yasuda M, Izuoka Ok, Ikegami A, Vranic S, Boland S, Tran L, Ichihara G, Ichihara S. Functionalized surface-charged SiO2 nanoparticles induce pro-inflammatory responses, however should not Deadly to Caco-2 cells. Chem Res Toxicol. 2020;33(5):1226–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Yi S, Cao Y, Zu M, Li B, Yang W, Shahbazi MA, Wan Y, Reis RL, Kundu SC, Shi X, Xiao B. Twin-driven nanomotors allow tumor penetration and hypoxia alleviation for calcium overload-photo-immunotherapy towards colorectal most cancers. Biomaterials. 2023;302:122332.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wade J, Salerno F, Kilbride RC, Kim DK, Schmidt JA, Smith JA, LeBlanc LM, Wolpert EH, Adeleke AA, Johnson ER, Nelson J, Mori T, Jelfs KE, Heutz S, Fuchter MJ. Controlling anisotropic properties by manipulating the orientation of chiral small molecules. Nat Chem. 2022;14(12):1383–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Liu R, Wang L, Wang X, Zhang M, Lin S, Cao Z, Wu F, Liu Y, Liu J. Chiral-selective Antigen-Presentation by Supramolecular Chiral Polymer Micelles. Adv Mater. 2023;35(5):e2208157.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Cheng Y, Pan Q, Wu L, Hao X, Bao Z, Li X, Yang M, Luo Q, Li H. Chiral Nanosilica Drug Supply programs Stereoselectively interacted with the intestinal mucosa to enhance the oral adsorption of insoluble medication. ACS Nano. 2023;17(4):3705–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhao L, Dai Y, Xu M, Zhou R, Zhou B, Gou Ok, Zeng R, Xu L, Li H. Enantioselective oral absorption of Molecular Chiral Mesoporous silica nanoparticles. Adv Mater. 2023;35(49):e2307900.

    Article 
    PubMed 

    Google Scholar
     

  • Xin W, Wang L, Lin J, Wang Y, Pan Q, Han Y, Bao Z, Zong S, Cheng Y, Chen X, Zhao L, Li H. Mesoporous silica nanoparticles with chiral sample topological construction operate as antiskid tires on the intestinal mucosa to facilitate oral medication supply. Asian J Pharm Sci. 2023;18(2):100795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles