Liu J, Jiang X, Zou A, Mai Z, Huang Z, Solar L, et al. circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma development through miR-142-5p/IGF2BP3 signaling. Most cancers Res. 2021;81:344–55.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2018;68:394–424.
Zhang Y, Zhang Z. The historical past and advances in most cancers immunotherapy: understanding the traits of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21.
Le Meitour Y, Foy J-P, Guinand M, Michon L, Karabajakian A, Fayette J, et al. Uncovering immune checkpoint heterogeneity in oral squamous cell carcinoma utilizing single cell RNA-sequencing knowledge highlights three subgroups of sufferers with distinct immune phenotypes. Oral Oncol. 2024;149: 106680.
Diao P, Jiang Y, Li Y, Wu X, Li J, Zhou C, et al. Immune panorama and subtypes in major resectable oral squamous cell carcinoma: prognostic significance and predictive of therapeutic response. J Immunother Most cancers. 2021;9: e002434.
Shi Y, Xie T, Wang B, Wang R, Cai Y, Yuan B, et al. Mutant p53 drives an immune chilly tumor immune microenvironment in oral squamous cell carcinoma. Commun Biol. 2022;5:757.
Liu Y-T, Solar Z-J. Turning chilly tumors into scorching tumors by bettering T-cell infiltration. Theranostics. 2021;11:5365–86.
Huang SH, Hahn E, Chiosea SI, Xu Z-Y, Li J-S, Shen L, et al. The function of adjuvant (chemo-)radiotherapy in oral cancers within the modern period. Oral Oncol. 2020;102: 104563.
Falcke SE, Rühle PF, Deloch L, Fietkau R, Frey B, Gaipl US. Clinically related radiation publicity differentially impacts types of cell dying in human cells of the innate and adaptive immune system. Int J Mol Sci. 2018;19:3574.
Chen G, Li Y, He Y, Zeng B, Yi C, Wang C, et al. Upregulation of round RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids. 2020;19:961–73.
Liu T, Pei P, Shen W, Hu L, Yang Ok. Radiation-induced immunogenic cell dying for most cancers radioimmunotherapy. Small Strategies. 2023;7: e2201401.
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Concentrating on immunogenic cell stress and dying for most cancers remedy. Nat Rev Drug Discov. 2024;23:445–60.
Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor microenvironment as a “recreation changer” in most cancers radiotherapy. Int J Mol Sci. 2019;20:3212.
Wang J, Ma J, Xie F, Miao F, Iv L, Huang Y, et al. Immunogenic cell death-based most cancers vaccines: promising prospect in most cancers remedy. Entrance Immunol. 2024;15:1389173.
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Rising proof for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol. 2023;20:543–57.
Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic radioresistance: can ROS be the important thing to beat it? Cancers. 2019;11:112.
Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the significance of dose and fractionation. Entrance Oncol. 2014;4:1.
Ochoa de Olza M, Bourhis J, Irving M, Coukos G, Herrera FG. Excessive versus low dose irradiation for tumor immune reprogramming. Curr Opin Biotechnol. 2020;65:268–83.
Herrera FG, Romero P, Coukos G. Lighting up the tumor fireplace with low-dose irradiation. Traits Immunol. 2022;43(3):173–9.
Luo Ok, Guo W, Yu Y, Xu S, Zhou M, Xiang Ok, et al. Discount-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for environment friendly chemo-radiotherapy of Pt-resistant cervical most cancers in vivo. J Managed Launch. 2020;326:25–37.
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, et al. Novel methods for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci. 2023;11:1116–36.
Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, et al. Enhancing X-ray sensitization with multifunctional nanoparticles. Small. 2024;20:2400954.
Qi H, Li Y, Geng Y, Wan X, Cai X. Nanoparticle-mediated immunogenic cell dying for most cancers immunotherapy. Int J Pharm. 2024;656: 124045.
Peng J, Li S, Ti H. Sensitize tumor immunotherapy: immunogenic cell dying inducing nanosystems. Int J Nanomedicine. 2024;19:5895–930.
Henna TK, Pramod Ok. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C. 2020;110: 110651.
Zhang X, Wei C, Li Y, Yu D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical purposes. TrAC Traits Anal Chem. 2019;116:109–21.
Qin X, Zhan Z, Zhang R, Chu Ok, Whitworth Z, Ding Z. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence. Nanoscale. 2023;15:3864–71.
Iannazzo D, Pistone A, Salamò M, Galvagno S, Romeo R, Giofré SV, et al. Graphene quantum dots for most cancers focused drug supply. Int J Pharm. 2017;518:185–92.
Kuo W-S, Chen H-H, Chen S-Y, Chang C-Y, Chen P-C, Hou Y-I, et al. Graphene quantum dots with nitrogen-doped content material dependence for extremely environment friendly dual-modality photodynamic antimicrobial remedy and bioimaging. Biomaterials. 2017;120:185–94.
Wu T, Wang X, Cheng J, Liang X, Li Y, Chen M, et al. Nitrogen-doped graphene quantum dots induce ferroptosis via disrupting calcium homeostasis in microglia. Half Fibre Toxicol. 2022;19:22.
Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L, et al. Induction of ferroptosis in response to graphene quantum dots via mitochondrial oxidative stress in microglia. Half Fibre Toxicol. 2020;17:30.
Wang H, Mu X, He H, Zhang X-D. Most cancers radiosensitizers. Traits Pharmacol Sci. 2018;39:24–48.
Wang W, Liu J, Feng W, Du S, Ge R, Li J, et al. Concentrating on mitochondria with Au-Ag@Polydopamine nanoparticles for papillary thyroid most cancers remedy. Biomater Sci. 2019;7:1052–63.
Liang R, Xie J, Li J, Wang Ok, Liu L, Gao Y, et al. Liposomes-coated gold nanocages with antigens and adjuvants focused supply to dendritic cells for enhancing antitumor immune response. Biomaterials. 2017;149:41–50.
Qin X, Yang C, Xu H, Zhang R, Zhang D, Tu J, et al. Cell-derived biogenetic gold nanoparticles for sensitizing radiotherapy and boosting immune response in opposition to most cancers. Small. 2021;17:2103984.
Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as radiosensitizers in most cancers radiotherapy. Int J Nanomedicine. 2020;15:9407–30.
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in most cancers remedy. Sign Transduct Goal Ther. 2023. https://doi.org/10.1038/s41392-023-01536-y.
Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for most cancers immunotherapy. Acta Pharm Sin B. 2022;12:3233–54.
Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14:2181–8.
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The function of adhesions between homologous most cancers cells in tumor development and focused remedy. Knowledgeable Rev Anticancer Ther. 2017;17:517–26.
Gong L, Zhang Y, Zhao J, Zhang Y, Tu Ok, Jiao L, et al. All-in-one biomimetic nanoplatform primarily based on hole polydopamine nanoparticles for synergistically enhanced radiotherapy of colon most cancers. Small. 2022;18:2107656.
Pereira-Silva M, Santos AC, Conde J, Hoskins C, Concheiro A, Alvarez-Lorenzo C, et al. Biomimetic most cancers cell membrane-coated nanosystems as next-generation most cancers therapies. Knowledgeable Opin Drug Deliv. 2020;17:1515–8.
Pan W-L, Tan Y, Meng W, Huang N-H, Zhao Y-B, Yu Z-Q, et al. Microenvironment-driven sequential ferroptosis, photodynamic remedy, and chemotherapy for focused breast most cancers remedy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials. 2022;283: 121449.
Wu Q, Tong L, Zou Z, Li Y, An J, Shen W, et al. Herceptin-functionalized SK-BR-3 cell membrane-wrapped paclitaxel nanocrystals for enhancing the focused remedy impact of HER2-positive breast most cancers. Mater Des. 2022;219: 110818.
Gan J, Du G, He C, Jiang M, Mou X, Xue J, et al. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced most cancers vaccination. J Management Launch Off J Management Launch Soc. 2020;326:297–309.
Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, et al. Engineered cell-membrane-coated nanoparticles instantly current tumor antigens to advertise anticancer immunity. Adv Mater Deerfield Seaside Fla. 2020;32: e2001808.
Ran P, Tune J, Mo F, Wu J, Liu P, Fu Y. Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection utilizing enzymatically generated hydrogen peroxide as a quencher. Mikrochim Acta. 2019;186:276.
Kaur M, Kaur M, Sharma VK. Nitrogen-doped graphene and graphene quantum dots: a evaluate onsynthesis and purposes in power, sensors and surroundings. Adv Colloid Interface Sci. 2018;259:44–64.
Wu Z, Xia W, Ou L, Zheng L, Hou B, Pan T, et al. Utilization of nitrogen-doped graphene quantum dots to neutralize ROS and modulate intracellular antioxidant pathways to enhance dry eye illness remedy. Int J Nanomedicine. 2024;19:2691–708.
Mahmoud AM, Mahnashi MH, Alkahtani SA, El-Wekil MM. Nitrogen and sulfur co-doped graphene quantum dots/nanocellulose nanohybrid for electrochemical sensing of anti-schizophrenic drug olanzapine in prescription drugs and human organic fluids. Int J Biol Macromol. 2020;165:2030–7.
Ju J, Chen W. In situ progress of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in organic environments. Anal Chem. 2015;87:1903–10.
Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10:484–91.
Ferrari AC, Basko DM. Raman spectroscopy as a flexible software for finding out the properties of graphene. Nat Nanotechnol. 2013;8:235–46.
Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK. Raman spectroscopy of bottom-up synthesized graphene quantum dots: measurement and construction dependence. Nanoscale. 2019;11:16571–81.
Pathak PK, Kumar A, Prasad BB. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell embellished imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron. 2019;127:10–8.
Özönder Ş, Ünlü C, Güleryüz C, Trabzon L. Doped graphene quantum dots UV-vis absorption spectrum: a high-throughput TDDFT examine. ACS Omega. 2023;8:2112–8.
Xu A, Wang G, Li Y, Dong H, Yang S, He P, et al. Carbon-based quantum dots with solid-state photoluminescent: mechanism, implementation, and software. Small Weinh Bergstr Ger. 2020;16: e2004621.
Chung S, Revia RA, Zhang M. Graphene quantum dots and their purposes in bioimaging, biosensing, and remedy. Adv Mater Deerfield Seaside Fla. 2021;33: e1904362.
Lu H, Li W, Dong H, Wei M. Graphene quantum dots for optical bioimaging. Small Weinh Bergstr Ger. 2019;15: e1902136.
Khodadadei F, Safarian S, Ghanbari N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an environment friendly anticancer drug supply system. Mater Sci Eng C. 2017;79:280–5.
Tabaraki R, Nateghi A. Nitrogen-doped graphene quantum dots: “Flip-off” fluorescent probe for detection of Ag(+) ions. J Fluoresc. 2016;26:297–305.
Algarra M, Moreno V, Lázaro-Martínez JM, Rodríguez-Castellón E, Soto J, Morales J, et al. Insights into the formation of N doped 3D-graphene quantum dots. Spectroscopic and computational method. J Colloid Interface Sci. 2020;561:678–86.
Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, et al. One-step preparation of nitrogen-doped graphene quantum dots from oxidized particles of graphene oxide. J Mater Chem B. 2012;1:39–42.
Liang J, Liu Y, Si Z, Wei G, Weng D, Kang F. Graphene quantum dots piecing collectively into graphene on nano Au for total water splitting. Carbon. 2021;178:265–72.
Ţucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon household examine. Crit Rev Anal Chem. 2016;46:502–20.
Fang RH, Gao W, Zhang L. Concentrating on medicine to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.
Guo Q, Wang S, Xu R, Tang Y, Xia X. Most cancers cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv. 2024;14:10608–37.
Liu Y, Wang Y, Solar S, Chen Z, Xiang S, Ding Z, et al. Understanding the versatile roles and purposes of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol. 2022;11:97.
Patel RB, Hernandez R, Carlson P, Grudinski J, Bates AM, Jagodinsky JC, et al. Low-dose focused radionuclide remedy renders immunologically “chilly” tumors conscious of immune checkpoint blockade. Sci Transl Med. 2021;13:eabb3631.
Wang Y, Chen J, Duan R, Gu R, Wang W, Wu J, et al. Excessive-Z-sensitized radiotherapy synergizes with the intervention of the pentose phosphate pathway for in situ tumor vaccination. Adv Mater Deerfield Seaside Fla. 2022;34: e2109726.
Xu P, Ma J, Zhou Y, Gu Y, Cheng X, Wang Y, et al. Radiotherapy-triggered in situ tumor vaccination boosts checkpoint blockaded immune response through antigen-capturing nanoadjuvants. ACS Nano. 2024;18:1022–40.
Zhao C, Tune X, Liu Y, Fu Y, Ye L, Wang N, et al. Synthesis of graphene quantum dots and their purposes in drug supply. J Nanobiotechnology. 2020;18:142.
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8+ T cell-based most cancers immunotherapy. J Transl Med. 2024;22:394.
Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8+ T Cell exhaustion in most cancers. Entrance Immunol. 2021. https://doi.org/10.3389/fimmu.2021.715234.
Wang H, Yao Z, Kang Ok, Zhou L, Xiu W, Solar J, et al. Preclinical examine and section II trial of adapting low-dose radiotherapy to immunotherapy in small cell lung most cancers. Med N Y N. 2024;5:1237-1254.e9.
Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017;545:98.
Mempel TR, Lill JK, Altenburger LM. How chemokines set up the tumour microenvironment. Nat Rev Most cancers. 2024;24:28–50.
Jacobs C, Shah S, Lu W-C, Ray H, Wang J, Hockaden N, et al. HSF1 inhibits antitumor immune exercise in breast most cancers by suppressing CCL5 to dam CD8+ T-cell recruitment. Most cancers Res. 2024;84:276–90.
Shi Z, Yu P, Lin W-J, Chen S, Hu X, Chen S, et al. Microglia drive transient insult-induced mind harm by chemotactic recruitment of CD8+ T lymphocytes. Neuron. 2023;111:696-710.e9.
Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and inducible chemokines permits T cell engraftment and immune assault in stable tumors. Most cancers Cell. 2019;35:885-900.e10.
Hoekstra ME, Slagter M, Urbanus J, Toebes M, Slingerland N, de Rink I, et al. Distinct spatiotemporal dynamics of CD8+ T cell-derived cytokines within the tumor microenvironment. Most cancers Cell. 2024;42:157-167.e9.
Yang R, Solar L, Li C-F, Wang Y-H, Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to manage T cell dying and is a goal for most cancers immunotherapy. Nat Commun. 2021;12:832.
Bar-Shavit R, Maoz M, Kancharla A, Jaber M, Agranovich D, Grisaru-Granovsky S, et al. Chapter 16 – Protease-activated receptors (PARs) in most cancers: Novel biased signaling and targets for remedy. In: Ok. Shukla A, editor. Strategies Cell Biol 2016, p. 341–58.
Tieken C, Versteeg HH. Anticoagulants versus most cancers. Thromb Res. 2016;140(Suppl 1):S148-153.