0.2 C
United States of America
Wednesday, March 19, 2025

Harnessing the facility of traceable system C-GAP: homologous-targeting to fireside up T-cell immune responses with low-dose irradiation | Journal of Nanobiotechnology


  • Liu J, Jiang X, Zou A, Mai Z, Huang Z, Solar L, et al. circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma development through miR-142-5p/IGF2BP3 signaling. Most cancers Res. 2021;81:344–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. International most cancers statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2018;68:394–424.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang Z. The historical past and advances in most cancers immunotherapy: understanding the traits of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Le Meitour Y, Foy J-P, Guinand M, Michon L, Karabajakian A, Fayette J, et al. Uncovering immune checkpoint heterogeneity in oral squamous cell carcinoma utilizing single cell RNA-sequencing knowledge highlights three subgroups of sufferers with distinct immune phenotypes. Oral Oncol. 2024;149: 106680.

    Article 
    PubMed 

    Google Scholar
     

  • Diao P, Jiang Y, Li Y, Wu X, Li J, Zhou C, et al. Immune panorama and subtypes in major resectable oral squamous cell carcinoma: prognostic significance and predictive of therapeutic response. J Immunother Most cancers. 2021;9: e002434.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Xie T, Wang B, Wang R, Cai Y, Yuan B, et al. Mutant p53 drives an immune chilly tumor immune microenvironment in oral squamous cell carcinoma. Commun Biol. 2022;5:757.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Y-T, Solar Z-J. Turning chilly tumors into scorching tumors by bettering T-cell infiltration. Theranostics. 2021;11:5365–86.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang SH, Hahn E, Chiosea SI, Xu Z-Y, Li J-S, Shen L, et al. The function of adjuvant (chemo-)radiotherapy in oral cancers within the modern period. Oral Oncol. 2020;102: 104563.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Falcke SE, Rühle PF, Deloch L, Fietkau R, Frey B, Gaipl US. Clinically related radiation publicity differentially impacts types of cell dying in human cells of the innate and adaptive immune system. Int J Mol Sci. 2018;19:3574.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen G, Li Y, He Y, Zeng B, Yi C, Wang C, et al. Upregulation of round RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids. 2020;19:961–73.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu T, Pei P, Shen W, Hu L, Yang Ok. Radiation-induced immunogenic cell dying for most cancers radioimmunotherapy. Small Strategies. 2023;7: e2201401.

    Article 
    PubMed 

    Google Scholar
     

  • Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Concentrating on immunogenic cell stress and dying for most cancers remedy. Nat Rev Drug Discov. 2024;23:445–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor microenvironment as a “recreation changer” in most cancers radiotherapy. Int J Mol Sci. 2019;20:3212.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J, Ma J, Xie F, Miao F, Iv L, Huang Y, et al. Immunogenic cell death-based most cancers vaccines: promising prospect in most cancers remedy. Entrance Immunol. 2024;15:1389173.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Rising proof for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol. 2023;20:543–57.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic radioresistance: can ROS be the important thing to beat it? Cancers. 2019;11:112.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the significance of dose and fractionation. Entrance Oncol. 2014;4:1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochoa de Olza M, Bourhis J, Irving M, Coukos G, Herrera FG. Excessive versus low dose irradiation for tumor immune reprogramming. Curr Opin Biotechnol. 2020;65:268–83.

  • Herrera FG, Romero P, Coukos G. Lighting up the tumor fireplace with low-dose irradiation. Traits Immunol. 2022;43(3):173–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo Ok, Guo W, Yu Y, Xu S, Zhou M, Xiang Ok, et al. Discount-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for environment friendly chemo-radiotherapy of Pt-resistant cervical most cancers in vivo. J Managed Launch. 2020;326:25–37.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, et al. Novel methods for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci. 2023;11:1116–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, et al. Enhancing X-ray sensitization with multifunctional nanoparticles. Small. 2024;20:2400954.

    Article 
    CAS 

    Google Scholar
     

  • Qi H, Li Y, Geng Y, Wan X, Cai X. Nanoparticle-mediated immunogenic cell dying for most cancers immunotherapy. Int J Pharm. 2024;656: 124045.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng J, Li S, Ti H. Sensitize tumor immunotherapy: immunogenic cell dying inducing nanosystems. Int J Nanomedicine. 2024;19:5895–930.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henna TK, Pramod Ok. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C. 2020;110: 110651.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Wei C, Li Y, Yu D. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical purposes. TrAC Traits Anal Chem. 2019;116:109–21.

    Article 
    CAS 

    Google Scholar
     

  • Qin X, Zhan Z, Zhang R, Chu Ok, Whitworth Z, Ding Z. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence. Nanoscale. 2023;15:3864–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iannazzo D, Pistone A, Salamò M, Galvagno S, Romeo R, Giofré SV, et al. Graphene quantum dots for most cancers focused drug supply. Int J Pharm. 2017;518:185–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kuo W-S, Chen H-H, Chen S-Y, Chang C-Y, Chen P-C, Hou Y-I, et al. Graphene quantum dots with nitrogen-doped content material dependence for extremely environment friendly dual-modality photodynamic antimicrobial remedy and bioimaging. Biomaterials. 2017;120:185–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu T, Wang X, Cheng J, Liang X, Li Y, Chen M, et al. Nitrogen-doped graphene quantum dots induce ferroptosis via disrupting calcium homeostasis in microglia. Half Fibre Toxicol. 2022;19:22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L, et al. Induction of ferroptosis in response to graphene quantum dots via mitochondrial oxidative stress in microglia. Half Fibre Toxicol. 2020;17:30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang H, Mu X, He H, Zhang X-D. Most cancers radiosensitizers. Traits Pharmacol Sci. 2018;39:24–48.

    Article 
    PubMed 

    Google Scholar
     

  • Wang W, Liu J, Feng W, Du S, Ge R, Li J, et al. Concentrating on mitochondria with Au-Ag@Polydopamine nanoparticles for papillary thyroid most cancers remedy. Biomater Sci. 2019;7:1052–63.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang R, Xie J, Li J, Wang Ok, Liu L, Gao Y, et al. Liposomes-coated gold nanocages with antigens and adjuvants focused supply to dendritic cells for enhancing antitumor immune response. Biomaterials. 2017;149:41–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin X, Yang C, Xu H, Zhang R, Zhang D, Tu J, et al. Cell-derived biogenetic gold nanoparticles for sensitizing radiotherapy and boosting immune response in opposition to most cancers. Small. 2021;17:2103984.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as radiosensitizers in most cancers radiotherapy. Int J Nanomedicine. 2020;15:9407–30.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in most cancers remedy. Sign Transduct Goal Ther. 2023. https://doi.org/10.1038/s41392-023-01536-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for most cancers immunotherapy. Acta Pharm Sin B. 2022;12:3233–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14:2181–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The function of adhesions between homologous most cancers cells in tumor development and focused remedy. Knowledgeable Rev Anticancer Ther. 2017;17:517–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gong L, Zhang Y, Zhao J, Zhang Y, Tu Ok, Jiao L, et al. All-in-one biomimetic nanoplatform primarily based on hole polydopamine nanoparticles for synergistically enhanced radiotherapy of colon most cancers. Small. 2022;18:2107656.

    Article 
    CAS 

    Google Scholar
     

  • Pereira-Silva M, Santos AC, Conde J, Hoskins C, Concheiro A, Alvarez-Lorenzo C, et al. Biomimetic most cancers cell membrane-coated nanosystems as next-generation most cancers therapies. Knowledgeable Opin Drug Deliv. 2020;17:1515–8.

    Article 
    PubMed 

    Google Scholar
     

  • Pan W-L, Tan Y, Meng W, Huang N-H, Zhao Y-B, Yu Z-Q, et al. Microenvironment-driven sequential ferroptosis, photodynamic remedy, and chemotherapy for focused breast most cancers remedy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials. 2022;283: 121449.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu Q, Tong L, Zou Z, Li Y, An J, Shen W, et al. Herceptin-functionalized SK-BR-3 cell membrane-wrapped paclitaxel nanocrystals for enhancing the focused remedy impact of HER2-positive breast most cancers. Mater Des. 2022;219: 110818.

    Article 
    CAS 

    Google Scholar
     

  • Gan J, Du G, He C, Jiang M, Mou X, Xue J, et al. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced most cancers vaccination. J Management Launch Off J Management Launch Soc. 2020;326:297–309.

    Article 
    CAS 

    Google Scholar
     

  • Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, et al. Engineered cell-membrane-coated nanoparticles instantly current tumor antigens to advertise anticancer immunity. Adv Mater Deerfield Seaside Fla. 2020;32: e2001808.

    Article 

    Google Scholar
     

  • Ran P, Tune J, Mo F, Wu J, Liu P, Fu Y. Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection utilizing enzymatically generated hydrogen peroxide as a quencher. Mikrochim Acta. 2019;186:276.

    Article 
    PubMed 

    Google Scholar
     

  • Kaur M, Kaur M, Sharma VK. Nitrogen-doped graphene and graphene quantum dots: a evaluate onsynthesis and purposes in power, sensors and surroundings. Adv Colloid Interface Sci. 2018;259:44–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu Z, Xia W, Ou L, Zheng L, Hou B, Pan T, et al. Utilization of nitrogen-doped graphene quantum dots to neutralize ROS and modulate intracellular antioxidant pathways to enhance dry eye illness remedy. Int J Nanomedicine. 2024;19:2691–708.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mahmoud AM, Mahnashi MH, Alkahtani SA, El-Wekil MM. Nitrogen and sulfur co-doped graphene quantum dots/nanocellulose nanohybrid for electrochemical sensing of anti-schizophrenic drug olanzapine in prescription drugs and human organic fluids. Int J Biol Macromol. 2020;165:2030–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ju J, Chen W. In situ progress of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in organic environments. Anal Chem. 2015;87:1903–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10:484–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ferrari AC, Basko DM. Raman spectroscopy as a flexible software for finding out the properties of graphene. Nat Nanotechnol. 2013;8:235–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK. Raman spectroscopy of bottom-up synthesized graphene quantum dots: measurement and construction dependence. Nanoscale. 2019;11:16571–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pathak PK, Kumar A, Prasad BB. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell embellished imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron. 2019;127:10–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Özönder Ş, Ünlü C, Güleryüz C, Trabzon L. Doped graphene quantum dots UV-vis absorption spectrum: a high-throughput TDDFT examine. ACS Omega. 2023;8:2112–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu A, Wang G, Li Y, Dong H, Yang S, He P, et al. Carbon-based quantum dots with solid-state photoluminescent: mechanism, implementation, and software. Small Weinh Bergstr Ger. 2020;16: e2004621.

    Article 

    Google Scholar
     

  • Chung S, Revia RA, Zhang M. Graphene quantum dots and their purposes in bioimaging, biosensing, and remedy. Adv Mater Deerfield Seaside Fla. 2021;33: e1904362.

    Article 

    Google Scholar
     

  • Lu H, Li W, Dong H, Wei M. Graphene quantum dots for optical bioimaging. Small Weinh Bergstr Ger. 2019;15: e1902136.

    Article 

    Google Scholar
     

  • Khodadadei F, Safarian S, Ghanbari N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an environment friendly anticancer drug supply system. Mater Sci Eng C. 2017;79:280–5.

    Article 
    CAS 

    Google Scholar
     

  • Tabaraki R, Nateghi A. Nitrogen-doped graphene quantum dots: “Flip-off” fluorescent probe for detection of Ag(+) ions. J Fluoresc. 2016;26:297–305.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Algarra M, Moreno V, Lázaro-Martínez JM, Rodríguez-Castellón E, Soto J, Morales J, et al. Insights into the formation of N doped 3D-graphene quantum dots. Spectroscopic and computational method. J Colloid Interface Sci. 2020;561:678–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, et al. One-step preparation of nitrogen-doped graphene quantum dots from oxidized particles of graphene oxide. J Mater Chem B. 2012;1:39–42.

    Article 
    PubMed 

    Google Scholar
     

  • Liang J, Liu Y, Si Z, Wei G, Weng D, Kang F. Graphene quantum dots piecing collectively into graphene on nano Au for total water splitting. Carbon. 2021;178:265–72.

    Article 
    CAS 

    Google Scholar
     

  • Ţucureanu V, Matei A, Avram AM. FTIR spectroscopy for carbon household examine. Crit Rev Anal Chem. 2016;46:502–20.

    Article 
    PubMed 

    Google Scholar
     

  • Fang RH, Gao W, Zhang L. Concentrating on medicine to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Q, Wang S, Xu R, Tang Y, Xia X. Most cancers cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv. 2024;14:10608–37.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Y, Wang Y, Solar S, Chen Z, Xiang S, Ding Z, et al. Understanding the versatile roles and purposes of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol. 2022;11:97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel RB, Hernandez R, Carlson P, Grudinski J, Bates AM, Jagodinsky JC, et al. Low-dose focused radionuclide remedy renders immunologically “chilly” tumors conscious of immune checkpoint blockade. Sci Transl Med. 2021;13:eabb3631.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Y, Chen J, Duan R, Gu R, Wang W, Wu J, et al. Excessive-Z-sensitized radiotherapy synergizes with the intervention of the pentose phosphate pathway for in situ tumor vaccination. Adv Mater Deerfield Seaside Fla. 2022;34: e2109726.

    Article 

    Google Scholar
     

  • Xu P, Ma J, Zhou Y, Gu Y, Cheng X, Wang Y, et al. Radiotherapy-triggered in situ tumor vaccination boosts checkpoint blockaded immune response through antigen-capturing nanoadjuvants. ACS Nano. 2024;18:1022–40.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao C, Tune X, Liu Y, Fu Y, Ye L, Wang N, et al. Synthesis of graphene quantum dots and their purposes in drug supply. J Nanobiotechnology. 2020;18:142.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8+ T cell-based most cancers immunotherapy. J Transl Med. 2024;22:394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8+ T Cell exhaustion in most cancers. Entrance Immunol. 2021. https://doi.org/10.3389/fimmu.2021.715234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Yao Z, Kang Ok, Zhou L, Xiu W, Solar J, et al. Preclinical examine and section II trial of adapting low-dose radiotherapy to immunotherapy in small cell lung most cancers. Med N Y N. 2024;5:1237-1254.e9.

    CAS 

    Google Scholar
     

  • Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017;545:98.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mempel TR, Lill JK, Altenburger LM. How chemokines set up the tumour microenvironment. Nat Rev Most cancers. 2024;24:28–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jacobs C, Shah S, Lu W-C, Ray H, Wang J, Hockaden N, et al. HSF1 inhibits antitumor immune exercise in breast most cancers by suppressing CCL5 to dam CD8+ T-cell recruitment. Most cancers Res. 2024;84:276–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shi Z, Yu P, Lin W-J, Chen S, Hu X, Chen S, et al. Microglia drive transient insult-induced mind harm by chemotactic recruitment of CD8+ T lymphocytes. Neuron. 2023;111:696-710.e9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and inducible chemokines permits T cell engraftment and immune assault in stable tumors. Most cancers Cell. 2019;35:885-900.e10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hoekstra ME, Slagter M, Urbanus J, Toebes M, Slingerland N, de Rink I, et al. Distinct spatiotemporal dynamics of CD8+ T cell-derived cytokines within the tumor microenvironment. Most cancers Cell. 2024;42:157-167.e9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang R, Solar L, Li C-F, Wang Y-H, Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to manage T cell dying and is a goal for most cancers immunotherapy. Nat Commun. 2021;12:832.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bar-Shavit R, Maoz M, Kancharla A, Jaber M, Agranovich D, Grisaru-Granovsky S, et al. Chapter 16 – Protease-activated receptors (PARs) in most cancers: Novel biased signaling and targets for remedy. In: Ok. Shukla A, editor. Strategies Cell Biol 2016, p. 341–58.

  • Tieken C, Versteeg HH. Anticoagulants versus most cancers. Thromb Res. 2016;140(Suppl 1):S148-153.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles