Chaudhary, N., Weissman, D. & Whitehead, Ok. A. mRNA vaccines for infectious ailments: rules, supply and scientific translation. Nat. Rev. Drug Discov. 20, 817 (2021).
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a brand new period in vaccinology. Nat. Rev. Drug Discov. 17, 261 (2018).
Sahin, U., Karikó, Ok. & Türeci, O. mRNA-based therapeutics—creating a brand new class of medicine. Nat. Rev. Drug Discov. 13, 759 (2014).
Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Strategies Prim. 2, 24 (2022).
Pastor, F. et al. An RNA toolbox for most cancers immunotherapy. Nat. Rev. Drug Discov. 17, 751 (2018).
Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for most cancers immunotherapy. Mol. Most cancers 20, 41 (2021).
Zhang, H., Zhang, Y. & Yin, H. Genome modifying with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 27, 735 (2019).
Yin, H., Kauffman, Ok. J. & Anderson, D. G. Supply applied sciences for genome modifying. Nat. Rev. Drug Discov. 16, 387 (2017).
Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084 (2019).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078 (2021).
Hajj, Ok. A. & Whitehead, Ok. A. Instruments for translation: non-viral supplies for therapeutic mRNA supply. Nat. Rev. Mater. 2, 17056 (2017).
Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves strong and chronic in vivo genome modifying. Cell Rep. 22, 2227 (2018).
Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene modifying for transthyretin amyloidosis. N. Engl. J. Med. 385, 493 (2021).
Whitehead, Ok. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA supply exercise. Nat. Commun. 5, 4277 (2014).
Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Creating biodegradable lipid nanoparticles for intracellular mRNA supply and genome modifying. Acc. Chem. Res. 54, 4001 (2021).
Hou, X. et al. Vitamin lipid nanoparticles allow adoptive macrophage switch for the therapy of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41 (2020).
Zhao, X. et al. Imidazole-based artificial lipidoids for in vivo mRNA supply into major T lymphocytes. Angew. Chem. Int. Ed. 59, 20083 (2020).
Zhou, Ok. et al. Modular degradable dendrimers allow small RNAs to increase survival in an aggressive liver most cancers mannequin. Proc. Natl Acad. Sci. USA 113, 520 (2016).
Miao, L. et al. Supply of mRNA vaccines with heterocyclic lipids will increase anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174 (2019).
Xue, L. et al. Rational design of bisphosphonate lipid-like supplies for mRNA supply to the bone microenvironment. J. Am. Chem. Soc. 144, 9926 (2022).
Li, W. et al. Biomimetic nanoparticles ship mRNAs encoding costimulatory receptors and improve T cell mediated most cancers immunotherapy. Nat. Commun. 12, 7264 (2021).
Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR-Cas gene modifying. Nat. Nanotechnol. 15, 313 (2020).
Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & van der Meel, R. Lipid nanoparticle know-how for scientific translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435 (2019).
Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene modifying. Nat. Mater. 20, 701 (2021).
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ focusing on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Qiu, M. et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the therapy of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).
Shahbazi, M. A., Herranz, B. & Santos, H. A. Nanostructured porous Si-based nanoparticles for focused drug supply. Biomatter 2, 296 (2012).
Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug supply. Adv. Mater. 24, 1504 (2012).
Frampton, M. B. et al. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug supply autos. RSC Adv. 11, 13014 (2021).
Semple, S. C. et al. Rational design of cationic lipids for siRNA supply. Nat. Biotechnol. 28, 172 (2010).
Zhu, Y. et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to reinforce and extend gene expression. Nat. Commun. 13, 4282 (2022).
Hu, B. et al. Thermostable ionizable lipid-like nanoparticles (iLAND) for RNAi therapy of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).
Ni, X., Kelly, S. S., Xu, S. & Xian, M. The trail to managed supply of reactive sulfur species. Acc. Chem. Res. 54, 3968 (2021).
Behzadi, S. et al. Mobile uptake of nanoparticles: journey contained in the cell. Chem. Soc. Rev. 46, 4218 (2017).
Wei, Y. et al. A cationic lipid with superior membrane fusion efficiency for pDNA and mRNA supply. J. Mater. Chem. B 11, 2095 (2023).
Tokudome, Y. et al. Preparation and characterization of ceramide-based liposomes with excessive fusion exercise and excessive membrane fluidity. Colloids Surf. B 73, 92 (2009).
Akinc, A. et al. A combinatorial library of lipid-like supplies for supply of RNAi therapeutics. Nat. Biotechnol. 26, 561 (2008).
Paunovska, Ok. et al. A direct comparability of in vitro and in vivo nucleic acid supply mediated by a whole bunch of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148 (2018).
Nagy, A. Cre recombinase: the common reagent for genome tailoring. Genesis 26, 99 (2000).
Hajj, Ok. A. et al. A potent branched-tail lipid nanoparticle permits multiplexed mRNA supply and gene modifying in vivo. Nano Lett. 20, 5167 (2020).
Singh, B., Fu, C. & Bhattacharya, J. Vascular expression of the αvβ3-integrin in lung and different organs. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L217 (2000).
Alton, E. et al. Toxicology research assessing efficacy and security of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther. 21, 89 (2014).
Ebos, J. & Kerbel, R. S. Antiangiogenic remedy: impression on invasion, illness development, and metastasis. Nat. Rev. Clin. Oncol. 8, 210 (2011).
Xue, L. et al. Excessive-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like supplies for mRNA supply to the lungs in feminine preclinical fashions. Nat. Commun. 15, 1884 (2024).
Zhao, G. et al. TGF-βR2 signaling coordinates pulmonary vascular restore after viral damage in mice and human tissue. Sci. Trans. Med. 16, eadg6229 (2024).
Jia, T. et al. FGF-2 promotes angiogenesis by a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol. 19, 173 (2021).
Cao, R. et al. Comparative analysis of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664 (2004).
Dahlman, J. E. et al. In vivo endothelial siRNA supply utilizing polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648 (2014).
McDermott, M. R., Brook, M. A. & Bartzoka, V. Adjuvancy impact of various kinds of silicone gel. J. Biomed. Mater. Res. 46, 132 (1999).
Huang, X. et al. Genome modifying abrogates angiogenesis in vivo. Nat. Commun. 8, 112 (2017).
Wei, T. et al. Systemic nanoparticle supply of CRISPR-Cas9 ribonucleoproteins for efficient tissue particular genome modifying. Nat. Commun. 11, 3232 (2020).
Momany, F. & Rone, R. Validation of the final goal QUANTA ®3.2/CHARMm® drive area. J. Comput. Chem. 13, 888 (1992).