-3.6 C
United States of America
Thursday, December 12, 2024

Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic supply


  • Chaudhary, N., Weissman, D. & Whitehead, Ok. A. mRNA vaccines for infectious ailments: rules, supply and scientific translation. Nat. Rev. Drug Discov. 20, 817 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a brand new period in vaccinology. Nat. Rev. Drug Discov. 17, 261 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahin, U., Karikó, Ok. & Türeci, O. mRNA-based therapeutics—creating a brand new class of medicine. Nat. Rev. Drug Discov. 13, 759 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Strategies Prim. 2, 24 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pastor, F. et al. An RNA toolbox for most cancers immunotherapy. Nat. Rev. Drug Discov. 17, 751 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for most cancers immunotherapy. Mol. Most cancers 20, 41 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Zhang, Y. & Yin, H. Genome modifying with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 27, 735 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, H., Kauffman, Ok. J. & Anderson, D. G. Supply applied sciences for genome modifying. Nat. Rev. Drug Discov. 16, 387 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajj, Ok. A. & Whitehead, Ok. A. Instruments for translation: non-viral supplies for therapeutic mRNA supply. Nat. Rev. Mater. 2, 17056 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves strong and chronic in vivo genome modifying. Cell Rep. 22, 2227 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene modifying for transthyretin amyloidosis. N. Engl. J. Med. 385, 493 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitehead, Ok. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA supply exercise. Nat. Commun. 5, 4277 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Creating biodegradable lipid nanoparticles for intracellular mRNA supply and genome modifying. Acc. Chem. Res. 54, 4001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X. et al. Vitamin lipid nanoparticles allow adoptive macrophage switch for the therapy of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. et al. Imidazole-based artificial lipidoids for in vivo mRNA supply into major T lymphocytes. Angew. Chem. Int. Ed. 59, 20083 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Ok. et al. Modular degradable dendrimers allow small RNAs to increase survival in an aggressive liver most cancers mannequin. Proc. Natl Acad. Sci. USA 113, 520 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, L. et al. Supply of mRNA vaccines with heterocyclic lipids will increase anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, L. et al. Rational design of bisphosphonate lipid-like supplies for mRNA supply to the bone microenvironment. J. Am. Chem. Soc. 144, 9926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Biomimetic nanoparticles ship mRNAs encoding costimulatory receptors and improve T cell mediated most cancers immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR-Cas gene modifying. Nat. Nanotechnol. 15, 313 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & van der Meel, R. Lipid nanoparticle know-how for scientific translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene modifying. Nat. Mater. 20, 701 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ focusing on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, M. et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the therapy of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahbazi, M. A., Herranz, B. & Santos, H. A. Nanostructured porous Si-based nanoparticles for focused drug supply. Biomatter 2, 296 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug supply. Adv. Mater. 24, 1504 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frampton, M. B. et al. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug supply autos. RSC Adv. 11, 13014 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA supply. Nat. Biotechnol. 28, 172 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to reinforce and extend gene expression. Nat. Commun. 13, 4282 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, B. et al. Thermostable ionizable lipid-like nanoparticles (iLAND) for RNAi therapy of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, X., Kelly, S. S., Xu, S. & Xian, M. The trail to managed supply of reactive sulfur species. Acc. Chem. Res. 54, 3968 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behzadi, S. et al. Mobile uptake of nanoparticles: journey contained in the cell. Chem. Soc. Rev. 46, 4218 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, Y. et al. A cationic lipid with superior membrane fusion efficiency for pDNA and mRNA supply. J. Mater. Chem. B 11, 2095 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokudome, Y. et al. Preparation and characterization of ceramide-based liposomes with excessive fusion exercise and excessive membrane fluidity. Colloids Surf. B 73, 92 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Akinc, A. et al. A combinatorial library of lipid-like supplies for supply of RNAi therapeutics. Nat. Biotechnol. 26, 561 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunovska, Ok. et al. A direct comparability of in vitro and in vivo nucleic acid supply mediated by a whole bunch of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148 (2018).

    CAS 

    Google Scholar
     

  • Nagy, A. Cre recombinase: the common reagent for genome tailoring. Genesis 26, 99 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajj, Ok. A. et al. A potent branched-tail lipid nanoparticle permits multiplexed mRNA supply and gene modifying in vivo. Nano Lett. 20, 5167 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, B., Fu, C. & Bhattacharya, J. Vascular expression of the αvβ3-integrin in lung and different organs. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L217 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alton, E. et al. Toxicology research assessing efficacy and security of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther. 21, 89 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebos, J. & Kerbel, R. S. Antiangiogenic remedy: impression on invasion, illness development, and metastasis. Nat. Rev. Clin. Oncol. 8, 210 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, L. et al. Excessive-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like supplies for mRNA supply to the lungs in feminine preclinical fashions. Nat. Commun. 15, 1884 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, G. et al. TGF-βR2 signaling coordinates pulmonary vascular restore after viral damage in mice and human tissue. Sci. Trans. Med. 16, eadg6229 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jia, T. et al. FGF-2 promotes angiogenesis by a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol. 19, 173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, R. et al. Comparative analysis of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahlman, J. E. et al. In vivo endothelial siRNA supply utilizing polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDermott, M. R., Brook, M. A. & Bartzoka, V. Adjuvancy impact of various kinds of silicone gel. J. Biomed. Mater. Res. 46, 132 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Genome modifying abrogates angiogenesis in vivo. Nat. Commun. 8, 112 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, T. et al. Systemic nanoparticle supply of CRISPR-Cas9 ribonucleoproteins for efficient tissue particular genome modifying. Nat. Commun. 11, 3232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momany, F. & Rone, R. Validation of the final goal QUANTA ®3.2/CHARMm® drive area. J. Comput. Chem. 13, 888 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles