Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).
Shin, H., Hansen, Okay. U. & Jiao, F. Techno-economic evaluation of low-temperature carbon dioxide electrolysis. Nat. Maintain. 4, 911–919 (2021).
Wang, H. et al. CO2 electrolysis in the direction of acetate: a assessment. Curr. Opin. Electrochem. 39, 101253 (2023).
Qian, Q., Zhang, J., Cui, M. & Han, B. Synthesis of acetic acid through methanol hydrocarboxylation with CO2 and H2. Nat. Commun. 7, 11481 (2016).
Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an rising platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).
Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds through electrochemical and metabolic engineering. Nat. Catal. 5, 288–396 (2022).
Rong, Y. et al. Directing the selectivity of CO electrolysis to acetate by developing metal-organic interfaces. Angew. Chem. Int. Ed. 62, e202309893 (2023).
Wang, X. et al. Web site-selective protonation allows environment friendly carbon monoxide electroreduction to acetate. Nat. Commun. 15, 616 (2024).
Yang, T. et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano 17, 8521–8529 (2023).
Yan, X. et al. Synergy of Cu/C3N4 interface and Cu nanoparticles twin catalytic areas in electrolysis of CO to acetic acid. Angew. Chem. Int. Ed. 62, e202301507 (2023).
Hendrik, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) discount on Cu: selectivity with potential, pH, and nanostructuring. Vitality Environ. Sci. 15, 3978 (2022).
Kim, J. Y. T., Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Completely different distributions of multi-carbon merchandise in CO2 and CO electroreduction underneath sensible response situations. Nat. Catal. 6, 1115–1124 (2023).
Wei, P. et al. Protection-driven selectivity change from ethylene to acetate in high-rate CO2/CO electrolysis. Nat. Nanotechnol. 18, 299–306 (2023).
Chang, B. et al. Electrochemical discount of carbon dioxide to multicarbon (C2+) merchandise: challenges and views. Vitality Environ. Sci. 16, 4714 (2023).
Li, J. et al. Constraining CO protection on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).
Niu, W. et al. Pb-rich Cu grain boundary websites for selective CO-to-n-propanol electroconversion. Nat. Commun. 14, 4882 (2023).
Music, Y., Zhang, X., Xie, Okay., Wang, G. & Bao, X. Excessive-temperature CO2 electrolysis in stable oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).
Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing energetic machine studying. Nature 581, 178–183 (2020).
Choi, C. et al. Extremely energetic and steady stepped Cu floor for enhanced electrochemical CO2 discount to C2H4. Nat. Catal. 3, 804–812 (2020).
Wu, Z. Z. et al. Gerhardtite as a precursor to an environment friendly CO-to-acetate electroreduction catalyst. J. Am. Chem. Soc. 145, 24338–24348 (2023).
Ji, Y. et al. Selective CO-to-acetate electroreduction through intermediate adsorption tuning on ordered Cu–Pd websites. Nat. Catal. 5, 251–258 (2022).
Jin, J. et al. Constrained C2 adsorbate orientation allows CO-to-acetate electroreduction. Nature 617, 724–729 (2023).
Ma, G. et al. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nat. Commun. 14, 501 (2023).
Fang, M. et al. Hydrophobic, ultrastable Cuδ+ for sturdy CO2 electroreduction to C2 merchandise at ampere-current ranges. J. Am. Chem. Soc. 145, 11323–11332 (2023).
Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).
Yang, T. et al. Coordination tailoring of Cu single websites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 12, 6022 (2021).
Zheng, T. et al. Copper-catalysed unique CO2 to pure formic acid conversion through single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).
Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical discount on copper. Nat. Commun. 12, 3264 (2021).
Chen, N. et al. Excessive-performance anion trade membrane water electrolyzers with a present density of seven.68 A cm−2 and a sturdiness of 1000 hours. Vitality Environ. Sci. 14, 6338–6348 (2021).
Delmo, E. P. et al. In situ infrared spectroscopic proof of enhanced electrochemical CO2 discount and C–C coupling on oxide-derived copper. J. Am. Chem. Soc. 46, 1935–1945 (2024).
Li, J. et al. Selective CO2 electrolysis to CO utilizing remoted antimony alloyed copper. Nat. Commun. 14, 340 (2023).
Wen, Y. et al. Cu7S4 nanosheets enriched with Cu–S bond for extremely energetic and selective CO2 electroreduction to formate. J. Mater. Chem. A 11, 10823–10827 (2023).
Jiang, H. et al. Gentle-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with actions approaching the thermodynamic restrict. Nat. Catal. 6, 519–530 (2023).
Cai, J. et al. Extremely selective electrochemical discount of CO2 into methane on nanotwinned Cu. J. Am. Chem. Soc. 145, 9136–9143 (2023).
Zhuansun, M. et al. Selling CO2 electroreduction to multi-carbon merchandise by hydrophobicity-induced electro-kinetic retardation. Angew. Chem. Int. Ed. 62, e202309875 (2023).
Qi, G. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH utilizing O2. Nat. Catal. 5, 45–54 (2022).
Wang, P. et al. Section and construction engineering of copper tin heterostructures for environment friendly electrochemical carbon dioxide discount. Nat. Commun. 9, 4933 (2018).
Ren, W., Ma, W. & Hu, X. Tailor-made water and hydroxide transport at a quasi-two-phase interface of membrane electrode meeting electrolyzer for CO electroreduction. Joule 7, 2349–2360 (2023).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).
Kresse, G. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Blochl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953 (1994).
Kresse, G. & Furthmuller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).