-9.4 C
United States of America
Sunday, January 19, 2025

Viscous terahertz photoconductivity of hydrodynamic electrons in graphene


  • Aamir, M. A. et al. Ultrasensitive calorimetric measurements of the digital warmth capability of graphene. Nano Lett. 21, 5330 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fong, Okay. C. et al. Measurement of the digital thermal conductance channels and warmth capability of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).

    CAS 

    Google Scholar
     

  • Betz, A. C. et al. Scorching electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viljas, J. Okay. & Heikkilä, T. T. Electron–phonon warmth switch in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article 

    Google Scholar
     

  • Kubakaddi, S. S. Interplay of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79, 075417 (2009).

    Article 

    Google Scholar
     

  • Massicotte, M., Soavi, G., Principi, A. & Tielrooij, Okay.-J. Interplay of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Nanoscale 13, 8376 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppens, F. H. L. et al. Photodetectors primarily based on graphene, different two-dimensional supplies and hybrid programs. Nat. Nanotechnol. 9, 780 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonaccorso, F., Solar, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mittendorff, M., Winnerl, S. & Murphy, T. E. 2D THz optoelectronics. Adv. Choose. Mater. 9, 2001500 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wallbank, J. R. et al. Extra resistivity in graphene superlattices brought on by umklapp electron–electron scattering. Nat. Phys. 15, 32 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shilov, A. L. et al. Excessive-mobility compensated semimetals, orbital magnetization, and umklapp scattering in bilayer graphene moire superlattices. ACS Nano 18, 11769–11777 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efetov, D. Okay. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh service densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kumaravadivel, P. et al. Sturdy magnetophonon oscillations in extra-large graphene. Nat. Commun. 10, 3334 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M., Rickhaus, P., Zihlmann, S., Makk, P. & Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p–n junction. Nano Lett. 16, 6988 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandurin, D. A. et al. Twin origin of room temperature sub-terahertz photoresponse in graphene discipline impact transistors. Appl. Phys. Lett. 112, 141101 (2018).

    Article 

    Google Scholar
     

  • Castilla, S. et al. Quick and delicate terahertz detection utilizing an antenna-integrated graphene pn junction. Nano Lett. 19, 2765 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Titova, E. et al. Ultralow-noise terahertz detection by p–n junctions in gapped bilayer graphene. ACS Nano 17, 8223 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Q. et al. Extremely delicate sizzling electron bolometer primarily based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Efetov, D. Okay. et al. Quick thermal rest in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Fatimy, A. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riccardi, E. et al. Ultrasensitive photoresponse of graphene quantum dots within the Coulomb blockade regime to THz radiation. Nano Lett. 20, 5408 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurzhi, R. N. Hydrodynamic results in solids at low temperature. Sov. Phys. Uspekhi 11, 255 (1968).

    Article 

    Google Scholar
     

  • de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron stream in high-mobility wires. Phys. Rev. B 51, 13389 (1995).

    Article 

    Google Scholar
     

  • Lucas, A. & Fong, Okay. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Cost transport and hydrodynamics in supplies. Nat. Rev. Mater. 8, 726 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Crossno, J. et al. Commentary of the Dirac fluid and the breakdown of the Wiedemann–Franz regulation in graphene. Science 351, 1058 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandurin, D. A. et al. Detrimental native resistance brought on by viscous electron backflow in graphene. Science 351, 1055 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levitov, L. & Falkovich, G. Electron viscosity, present vortices and unfavourable nonlocal resistance in graphene. Nat. Phys. 12, 672 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Berdyugin, A. I. et al. Measuring Corridor viscosity of graphene’s electron fluid. Science 364, 162 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulpizio, J. A. et al. Visualizing Poiseuille stream of hydrodynamic electrons. Nature 576, 75 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ku, M. J. H. et al. Imaging viscous stream of the Dirac fluid in graphene. Nature 583, 537 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum essential transport in clear graphene. Phys. Rev. B 78, 085416 (2008).

    Article 

    Google Scholar
     

  • Müller, M., Schmalian, J. & Fritz, L. Graphene: a virtually excellent fluid. Phys. Rev. Lett. 103, 025301 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, Y., Ki, D.-Okay., Soler-Delgado, D. & Morpurgo, A. F. Electron–gap collision restricted transport in charge-neutral bilayer graphene. Nat. Phys. 13, 1207 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tan, C. et al. Dissipation-enabled hydrodynamic conductivity in a tunable bandgap semiconductor. Sci. Adv. 8, eabi8481 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandurin, D. A. et al. Interlayer electron–gap friction in tunable twisted bilayer graphene semimetal. Phys. Rev. Lett. 129, 206802 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Block, A. et al. Commentary of big and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic discipline impact transistor: new mechanism of plasma wave era by dc present. Phys. Rev. Lett. 71, 2465 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Commentary of hydrodynamic plasmons and power waves in graphene. Nature 614, 688 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz, D. B. et al. Experimental signatures of the transition from acoustic plasmon to digital sound in graphene. Sci. Adv. 9, eadi0415 (2023).

    Article 

    Google Scholar
     

  • Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Larger-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna Kumar, R. et al. Superballistic stream of viscous electron fluid by means of graphene constrictions. Nat. Phys. 13, 1182 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Waissman, J. et al. Digital thermal transport measurement in low-dimensional supplies with graphene non-local noise thermometry. Nat. Nanotechnol. 17, 166 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purdie, D. G. et al. Cleansing interfaces in layered supplies heterostructures. Nat. Commun. 9, 5387 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharvin, Y. V. On the doable technique for finding out Fermi surfaces. Zh. Eksperim. i Teor. Fiz. 48, 984 (1965).


    Google Scholar
     

  • Terrés, B. et al. Measurement quantization of Dirac fermions in graphene constrictions. Nat. Commun. 7, 11528 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).

    Article 

    Google Scholar
     

  • Mylnikov, D. A. et al. Terahertz photoconductivity in bilayer graphene transistors: proof for tunneling at gate-induced junctions. Nano Lett. 23, 220 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludwig, F. et al. Terahertz detection with graphene FETs: photothermoelectric and resistive self-mixing contributions to the detector response. ACS Appl. Electron. Mater. 6, 2197 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shein, Okay. et al. Elementary limits of few-layer NbSe2 microbolometers at terahertz frequencies. Nano Lett. 24, 2282 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Messelot, S. et al. Tamm cavity within the terahertz spectral vary. ACS Photon. 7, 2906 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles