Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of sunshine chains. Nature. 1993;363:446–8.
Dooley H, Flajnik MF. Antibody repertoire improvement in cartilaginous fish. Dev Comp Immunol. 2006;30:43–56.
Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal construction of a shark single-domain antibody V area in complicated with lysozyme. Science. 2004;305:1770–3.
Salvador J-P, Vilaplana L, Marco M-P. Nanobody: excellent options for diagnostic and therapeutic functions. Anal Bioanal Chem. 2019;411:1703–13.
Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY® Molecule, a Giga Medical Device in Nanodimensions. Int J Mol Sci. 2023;24:13229.
Muyldermans S, Cambillau C, Wyns L. Recognition of antigens by single-domain antibody fragments: the superfluous luxurious of paired domains. Tendencies Biochem Sci. 2001;26:230–5.
Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. Llama heavy-chain V areas encompass at the very least 4 distinct subfamilies revealing novel sequence options. Mol Immunol. 2000;37:579–90.
De Genst E, Silence Ok, Decanniere Ok, Conrath Ok, Loris R, Kinne J, et al. Molecular foundation for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103:4586–91.
Muyldermans S. A information to: era and design of nanobodies. FEBS J. 2021;288:2084–102.
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies – an ongoing success story of small binders in organic analysis. J Cell Sci. 2023;136:jcs261395.
Wagner TR, Rothbauer U. Nanobodies– Little helpers unravelling intracellular signaling. Free Radic Biol Med. 2021;176:46–61.
Wagner TR, Blaess S, Leske IB, Frecot DI, Gramlich M, Traenkle B, et al. Two birds with one stone: human SIRPα nanobodies for purposeful modulation and in vivo imaging of myeloid cells. Entrance Immunol. 2023;14:1264179.
R C, S G, W C. Nanobody: the magic bullet. Mol Imaging? Theranostics. 2014;4.
Yang Y, Li F, Du L. Therapeutic nanobodies towards SARS-CoV-2 and different pathogenic human coronaviruses. J Nanobiotechnol. 2024;22:304.
Minatel VM, Prudencio CR, Barraviera B, Ferreira RS. Nanobodies: a promising method to remedy of viral ailments. Entrance Immunol. 2023;14:1303353.
Li D, Wang R, Liang T, Ren H, Park C, Tai C-H, et al. Camel nanobody-based B7-H3 CAR-T cells present excessive efficacy towards massive stable tumours. Nat Commun. 2023;14:5920.
Aj ER-L. S. Transportation of single-domain antibodies by the blood-brain barrier. Biomolecules. 2021;11.
Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, et al. Choice, biophysical and structural evaluation of artificial nanobodies that successfully neutralize SARS-CoV-2. Nat Commun. 2020;11:5588.
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, et al. Affinity maturation of antibody fragments: a assessment encompassing the event from random approaches to computational rational optimization. Int J Biol Macromol. 2023;247:125733.
Vincke C, Gutiérrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S. Technology of single area antibody fragments derived from camelids and era of manifold constructs. Strategies Mol Biol Clifton NJ. 2012;907:145–76.
Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, et al. A common protocol for the era of Nanobodies for structural biology. Nat Protoc. 2014;9:674–93.
Zupancic JM, Smith MD, Trzeciakiewicz H, Skinner ME, Ferris SP, Makowski EK, et al. Quantitative circulate cytometric choice of tau conformational nanobodies particular for pathological aggregates. Entrance Immunol. 2023;14:1164080.
Güttler T, Aksu M, Dickmanns A, Stegmann KM, Gregor Ok, Rees R, et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021;40:e107985.
Rw RJSD, van HGPA, Jk R. S, Technology of heavy-chain-only antibodies in mice. Proc Natl Acad Sci U S A. 2006;103(41):15130–5.
Y T, Jl Y. B E, P H, L T, C J, Numerous human VH antibody fragments with bio-therapeutic properties from the Crescendo mouse. New Biotechnol. 2020;55:65–76.
Fan Q, Zhao R, Chen Y, Chi L, Huang Y, Liu M, et al. Affinity purification of mAb from serum-containing hybridoma tradition supernatant by a novel nanobody that discriminates mouse IgG from bovine IgG by recognizing the mouse kappa fixed area (mCK). J Chromatogr A. 2024;1724:464929.
Sabir JSM, Atef A, El-Domyati FM, Edris S, Hajrah N, Alzohairy AM, et al. Building of naïve camelids VHH repertoire in phage display-based library. C R Biol. 2014;337:244–9.
Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, et al. Characterization and functions of nanobodies towards human procalcitonin chosen from a novel naïve Nanobody phage show library. J Nanobiotechnol. 2015;13:33.
Olichon A, de Marco A. Preparation of a naïve library of camelid single area antibodies. Strategies Mol Biol Clifton NJ. 2012;911:65–78.
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T et al. Growth, high-throughput profiling, and Biopanning of a giant phage Show single-domain antibody Library. Int J Mol Sci. 2024;25(9):4791.
Ouyang Q, Wang L, Nasser IDE, Deng G, Zhang XK, You T, et al. [Preparation of interleukin-1β-targeted nanobodies and their effects on apoptosis in hypoxic cardiomyocytes of mice]. Zhonghua Yi Xue Za Zhi. 2024;104:2066–73.
Hoseinpoor R, Mousavi Gargari SL, Rasooli I, Rajabibazl M, Shahi B. Practical mutations in and characterization of VHH towards Helicobacter pylori urease. Appl Biochem Biotechnol. 2014;172:3079–91.
Lu Y, Li Q, Fan H, Liao C, Zhang J, Hu H, et al. A multivalent and thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int J Nanomed. 2023;18:353–67.
Kunz P, Flock T, Soler N, Zaiss M, Vincke C, Sterckx Y, et al. Exploiting sequence and stability data for steering nanobody stability engineering. Biochim Biophys Acta Gen Subj. 2017;1861:2196–205.
Ms V-T, Me V-T, E M-A EM. NbThermo: a brand new thermostability database for nanobodies. Database J Biol Databases Curation. 2023;2023.
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural insights into the design of artificial nanobody libraries. Mol Basel Switz. 2022;27:2198.
Liu B, Yang D. Simply established and multifunctional artificial nanobody libraries as Analysis Instruments. Int J Mol Sci. 2022;23:1482.
Saerens D, Pellis M, Loris R, Pardon E, Dumoulin M, Matagne A, et al. Identification of a common VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol. 2005;352:597–607.
Ju M-S, Min S-W, Lee SM, Kwon HS, Park JC, Lee JC, et al. An artificial library for fast isolation of humanized single-domain antibodies. Biotechnol Bioprocess Eng. 2017;22:239–47.
Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, et al. NaLi-H1: a common artificial library of humanized nanobodies offering extremely purposeful antibodies and intrabodies. eLife. 2016;5:e16228.
Lagoutte P, Bourhis J-M, Mariano N, Gueguen-Chaignon V, Vandroux D, Moali C, et al. Mono- and bi-specific nanobodies concentrating on the CUB domains of PCPE-1 scale back the Proteolytic Processing of Fibrillar Procollagens. J Mol Biol. 2024;436:168667.
Chen X, Gentili M, Hacohen N, Regev A. A cell-free nanobody engineering platform quickly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun. 2021;12:5506.
McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S, Ong JX, et al. Yeast floor show platform for fast discovery of conformationally selective nanobodies. Nat Struct Mol Biol. 2018;25:289–96.
Jang H, Wilson PG, Sau M, Chawla U, Rodgers DW, Galperin E. Single-domain antibodies for purposeful concentrating on of the signaling scaffold Shoc2. Mol Immunol. 2020;118:110–6.
Ferrari D, Garrapa V, Locatelli M, Bolchi A. A Novel Nanobody Scaffold optimized for bacterial expression and appropriate for the development of Ribosome Show libraries. Mol Biotechnol. 2020;62:43–55.
Contreras MA, Serrano-Rivero Y, González-Pose A, Salazar-Uribe J, Rubio-Carrasquilla M, Soares-Alves M, et al. Design and development of an artificial Nanobody Library: testing its potential with a single choice spherical technique. Mol Basel Switz. 2023;28:3708.
Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, et al. Artificial single area antibodies for the conformational trapping of membrane proteins. eLife. 2018;7:e34317.
Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AGL, et al. Speedy discovery of numerous neutralizing SARS-CoV-2 antibodies from large-scale artificial phage libraries. mAbs. 2022;14:2002236.
Kilisch M, Götzke H, Gere-Becker M, Crauel A, Opazo F, Frey S. Discovery and characterization of an ALFA-Tag-Particular Affinity Resin optimized for protein purification at low temperatures in physiological buffer. Biomolecules. 2021;11:269.
Cornish-Bowden A. Nomenclature for incompletely specified bases in nucleic acid sequences: suggestions 1984. Nucleic Acids Res. 1985;13:3021–30.
Zimmermann I, Egloff P, Hutter CAJ, Kuhn BT, Bräuer P, Newstead S, et al. Technology of artificial nanobodies towards delicate proteins. Nat Protoc. 2020;15:1707–41.
Zhao Y, Wang Y, Su W, Li S. Building of Artificial Nanobody Library in mammalian cells by dsDNA-Based mostly Methods*. Chembiochem Eur J Chem Biol. 2021;22:2957–65.
Misson Mindrebo L, Liu H, Ozorowski G, Tran Q, Woehl J, Khalek I, et al. Absolutely artificial platform to quickly generate tetravalent bispecific nanobody-based immunoglobulins. Proc Natl Acad Sci U S A. 2023;120:e2216612120.
Chi X, Zhang X, Pan S, Yu Y, Shi Y, Lin T, et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Sign Transduct Goal Ther. 2022;7:44.
Liu Y, Huang H. Expression of single-domain antibody in several techniques. Appl Microbiol Biotechnol. 2018;102:539–51.
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska Ok, Gaffke L, Węgrzyn G. Phage show and different peptide show applied sciences. FEMS Microbiol Rev. 2022;46:fuab052.
Smith GP. Filamentous Fusion Phage: Novel expression vectors that show cloned antigens on the Virion Floor. Science. 1985;228:1315–7.
Sioud M. Phage show libraries: from binders to focused drug supply and human therapeutics. Mol Biotechnol. 2019;61:286–303.
Jin B-Ok, Odongo S, Radwanska M, Magez S, NANOBODIES®. A assessment of diagnostic and therapeutic functions. Int J Mol Sci. 2023;24:5994.
Castel G, Chtéoui M, Heyd B, Tordo N. Phage Show of combinatorial peptide libraries: software to Antiviral Analysis. Molecules. 2011;16:3499–518.
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, et al. Advances in antibody phage show expertise. Drug Discov At this time. 2022;27:2151–69.
Yeboah M, Papagregoriou C, Jones DC, Chan HTC, Hu G, McPartlan JS, et al. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Perception. 2020;5:e141593.
Even-Desrumeaux Ok, Nevoltris D, Lavaut MN, Alim Ok, Borg J-P, Audebert S, et al. Masked choice: an easy and versatile method for the choice of binders towards particular epitopes and differentially expressed proteins by phage show. Mol Cell Proteom MCP. 2014;13:653–65.
Pasqualini R, Ruoslahti E. Organ concentrating on in vivo utilizing phage show peptide libraries. Nature. 1996;380:364–6.
Hess KL, Jewell CM. Phage show as a device for vaccine and immunotherapy improvement. Bioeng Transl Med. 2020;5:e10142.
Marintcheva B. Harnessing the facility of viruses. London; San Diego, CA: Tutorial Press, an imprint of Elsevier; 2018.
Shim H. Antibody phage Show. In: Lim TS, editor. Recombinant antibodies for infectious ailments. Cham: Springer Worldwide Publishing; 2017. pp. 21–34.
Qasemi M, Behdani M, Shokrgozar MA, Molla-Kazemiha V, Mohseni-Kuchesfahani H, Habibi-Anbouhi M. Building and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell. Protein Expr Purif. 2016;123:19–25.
Malaquias ADM, Marques LEC, Pereira SS, de Freitas Fernandes C, Maranhão AQ, Stabeli RG, et al. A assessment of plant-based expression techniques as a platform for single-domain recombinant antibody manufacturing. Int J Biol Macromol. 2021;193:1130–7. Pt B.
Weng D, Yang L, Xie Y. Engineering and characterization of GFP-targeting nanobody: expression, purification, and post-translational modification evaluation. Protein Expr Purif. 2024;221:106501.
Sheehan J, Marasco WA. Phage and yeast Show. Microbiol Spectr. 2015;3:AID–0028.
Hoogenboom HR. Deciding on and screening recombinant antibody libraries. Nat Biotechnol. 2005;23:1105–16.
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Fundamentals of antibody phage Show Know-how. Toxins. 2018;10:236.
Li Y, Wang X, Zhou N-Y, Ding J. Yeast floor show expertise: mechanisms, functions, and views. Biotechnol Adv. 2024;76:108422.
Gera N, Hussain M, Rao BM. Protein choice utilizing yeast floor show. Strategies San Diego Calif. 2013;60:15–26.
Mustafa MI, Alzebair AA, Mohammed A. Growth of recombinant antibody by yeast floor Show Know-how. Curr Res Pharmacol Drug Discov. 2024;6:100174.
Mei M, Zhou Y, Peng W, Yu C, Ma L, Zhang G, et al. Software of modified yeast floor show applied sciences for non-antibody protein engineering. Microbiol Res. 2017;196:118–28.
Orfao A, Ruiz-Arguelles A. Basic ideas about cell sorting strategies. Clin Biochem. 1996;29:5–9.
De Pourcq Ok, De Schutter Ok, Callewaert N. Engineering of glycosylation in yeast and different fungi: present state and views. Appl Microbiol Biotechnol. 2010;87:1617–31.
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, et al. An summary on show techniques (phage, bacterial, and yeast show) for manufacturing of anticancer antibodies; benefits and drawbacks. Int J Biol Macromol. 2022;208:421–42.
De Meyer T, Laukens B, Nolf J, Van Lerberge E, De Rycke R, De Beuckelaer A, et al. Comparability of VHH-Fc antibody manufacturing in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnol J. 2015;13:938–47.
Holland Ok, Blazeck J. Excessive throughput mutagenesis and screening for yeast engineering. J Biol Eng. 2022;16:37.
Ferrara F, Soluri MF, Sblattero D. Recombinant antibody alternatives by combining phage and yeast Show. Strategies Mol Biol Clifton NJ. 2019;1904:339–52.
Salema V, Fernández LÁ. Escherichia coli floor show for the choice of nanobodies. Microb Biotechnol. 2017;10:1468–84.
Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, et al. Number of single area antibodies from immune libraries displayed on the floor of E. Coli cells with two β-domains of reverse topologies. PLoS ONE. 2013;8:e75126.
Francisco JA, Campbell R, Iverson BL, Georgiou G. Manufacturing and fluorescence-activated cell sorting of Escherichia coli expressing a purposeful antibody fragment on the exterior floor. Proc Natl Acad Sci U S A. 1993;90:10444–8.
Kang TH, Seong BL. Solubility, Stability, and avidity of recombinant antibody fragments expressed in microorganisms. Entrance Microbiol. 2020;11:1927.
Missiakas D, Betton JM, Raina S. New parts of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol. 1996;21:871–84.
Shriver-Lake LC, Goldman ER, Zabetakis D, Anderson GP. Improved manufacturing of single area antibodies with two disulfide bonds by co-expression of chaperone proteins within the Escherichia coli periplasm. J Immunol Strategies. 2017;443:64–7.
Åslund F, Berndt KD, Holmgren A. Redox Potentials of Glutaredoxins and different Thiol-Disulfide oxidoreductases of the Thioredoxin Superfamily decided by Direct Protein-Protein Redox Equilibria. J Biol Chem. 1997;272:30780–6.
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli expression system in producing antibody recombinant fragments. Int J Mol Sci. 2020;21:6324.
Gupta SK, Shukla P. Microbial platform expertise for recombinant antibody fragment manufacturing: a assessment. Crit Rev Microbiol. 2017;43:31–42.
Chen T, Wang Ok, Chi X, Zhou L, Li J, Liu L, et al. Building of a bacterial floor show system based mostly on outer membrane protein F. Microb Cell Factories. 2019;18:70.
Palma JA, Bunyatov MI, Hulbert SW, Jewett MC, DeLisa MP. Bacterial glycoengineering: cell-based and cell-free routes for producing biopharmaceuticals with custom-made glycosylation. Curr Opin Chem Biol. 2024;81:102500.
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, et al. Rising a round economic system with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7:5.
Nevalainen H, Peterson R, Curach N. Overview of Gene expression utilizing filamentous Fungi. Curr Protoc Protein Sci. 2018;92:e55.
Deshpande N, Wilkins MR, Packer N, Nevalainen H. Protein glycosylation pathways in filamentous fungi. Glycobiology. 2008;18:626–37.
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. Adv Appl Microbiol. 2012;81:1–61.
Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and extremely environment friendly methodology for genetic transformation of fungi using shock waves. Fungal Genet Biol FG B. 2013;56:9–16.
Solar Z, Wu Y, Lengthy S, Feng S, Jia X, Hu Y, et al. Aspergillus oryzae as a cell manufacturing facility: analysis and functions in Industrial Manufacturing. J Fungi Basel Switz. 2024;10:248.
Liu D, Garrigues S, de Vries RP. Heterologous protein manufacturing in filamentous fungi. Appl Microbiol Biotechnol. 2023;107:5019–33.
Messer A, Butler DC. Optimizing intracellular antibodies (intrabodies/nanobodies) to deal with neurodegenerative problems. Neurobiol Dis. 2020;134:104619.
Rashid MH. Full-length recombinant antibodies from Escherichia coli: manufacturing, characterization, effector perform (fc) engineering, and scientific analysis. mAbs. 2022;14:2111748.
Li Q, Lu J, Zhang G, Liu S, Zhou J, Du G, et al. Latest advances within the improvement of aspergillus for protein manufacturing. Bioresour Technol. 2022;348:126768.
Van Den Hombergh JPTW, Van De Vondervoort PJI, Fraissinet-Tachet L, Visser J. Aspergillus as a bunch for heterologous protein manufacturing: the issue of proteases. Tendencies Biotechnol. 1997;15:256–63.
Fu H, Liang Y, Zhong X, Pan Z, Huang L, Zhang H, et al. Codon optimization with deep studying to reinforce protein expression. Sci Rep. 2020;10:17617.
Solar X, Su X. Harnessing the data of protein secretion for enhanced protein manufacturing in filamentous fungi. World J Microbiol Biotechnol. 2019;35:54.
Driouch H, Roth A, Dersch P, Wittmann C. Optimized bioprocess for manufacturing of fructofuranosidase by recombinant aspergillus Niger. Appl Microbiol Biotechnol. 2010;87:2011–24.
Aerts D, Hauer EE, Ohm RA, Arentshorst M, Teertstra WR, Phippen C, et al. The FlbA-regulated predicted transcription issue Fum21 of Aspergillus Niger is concerned in fumonisin manufacturing. Antonie Van Leeuwenhoek. 2018;111:311–22.
Sakekar AA, Gaikwad SR, Punekar NS. Protein expression and secretion by filamentous fungi. J Biosci. 2021;46:5.
SECRETERS – European Union’s Horizon 2020 Programme. Digital handle: l.rettenbacher@kent.ac.uk, SECRETERS – European Union’s Horizon 2020 Programme. Microbial protein cell factories struggle again? Tendencies Biotechnol. 2022;40:576–90.
Bandaranayake AD, Almo SC. Latest advances in mammalian protein manufacturing. FEBS Lett. 2014;588:253–60.
Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Developments in mammalian cell transient gene expression (TGE) expertise for accelerated manufacturing of biologics. Crit Rev Biotechnol. 2018;38:918–40.
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, et al. Mammalian cell tradition for manufacturing of recombinant proteins: a assessment of the crucial steps of their biomanufacturing. Biotechnol Adv. 2020;43:107552.
Xu W-J, Lin Y, Mi C-L, Pang J-Y, Wang T-Y. Progress in fed-batch tradition for recombinant protein manufacturing in CHO cells. Appl Microbiol Biotechnol. 2023;107:1063–75.
Ritter A, Voedisch B, Wienberg J, Wilms B, Geisse S, Jostock T, et al. Deletion of a telomeric area on chromosome 8 correlates with larger productiveness and stability of CHO cell traces. Biotechnol Bioeng. 2016;113:1084–93.
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, et al. Manipulating gene expression ranges in mammalian cell factories: a top level view of artificial molecular toolboxes to realize multiplexed management. New Biotechnol. 2024;79:1–19.
Tejwani V, Andersen MR, Nam JH, Sharfstein ST. Glycoengineering in CHO cells: advances in Programs Biology. Biotechnol J. 2018;13:e1700234.
Rattanapisit Ok, Phakham T, Buranapraditkun S, Siriwattananon Ok, Boonkrai C, Pisitkun T, et al. Structural and in Vitro purposeful analyses of Novel Plant-Produced Anti-human PD1 antibody. Sci Rep. 2019;9:15205.
Dobhal S, Chaudhary VK, Singh A, Pandey D, Kumar A, Agrawal S. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum Cv. Xanthi Mol Biol Rep. 2013;40:7027–37.
Satheeshkumar PK. Expression of single chain variable fragment (scFv) molecules in crops: a Complete Replace. Mol Biotechnol. 2020;62:151–67.
Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, et al. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol. 2009;9:79.
Wang D, Ma J, Solar D, Li H, Jiang C, Li X. Expression of bioactive anti-CD20 antibody fragments and induction of ER stress response in Arabidopsis seeds. Appl Microbiol Biotechnol. 2015;99:6753–64.
Rech E, Vianna G, Murad A, Cunha N, Lacorte C, Araujo A, et al. Recombinant proteins in crops. BMC Proc. 2014;8:O1.
De Greve H, Virdi V, Bakshi S, Depicker A. Simplified monomeric VHH-Fc antibodies present new alternatives for passive immunization. Curr Opin Biotechnol. 2020;61:96–101.
Hanania U, Ariel T, Tekoah Y, Fux L, Sheva M, Gubbay Y, et al. Institution of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the manufacturing of biotherapeutic proteins. Plant Biotechnol J. 2017;15:1120–9.
Park SR, Lee J-H, Kim Ok, Kim TM, Lee SH, Choo Y-Ok, et al. Expression and in Vitro perform of Anti-breast Most cancers Llama-based single area antibody VHH expressed in Tobacco crops. Int J Mol Sci. 2020;21:1354.
Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from crops for bionanomaterials. WIREs Nanomed Nanobiotechnol. 2017;9:e1462.
Harrison RL, Jarvis DL. Protein N-glycosylation within the baculovirus-insect cell expression system and engineering of insect cells to provide mammalianized recombinant glycoproteins. Adv Virus Res. 2006;68:159–91.
Geisler C, Jarvis DL. Modern use of a bacterial enzyme concerned in sialic acid degradation to provoke sialic acid biosynthesis in glycoengineered insect cells. Metab Eng. 2012;14:642–52.
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein expression: from darkish horse to mainstream expertise. J Gen Virol. 2015;96:6–23.
Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, et al. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol. 2006;151:1257–66.
Kitts PA, Possee RD. A way for producing recombinant baculovirus expression vectors at excessive frequency. Biotechniques. 1993;14:810–7.
Pijlman GP, van den Born E, Martens DE, Vlak JM. Autographa californica baculoviruses with massive genomic deletions are quickly generated in contaminated insect cells. Virology. 2001;283:132–8.
Pijlman GP, van Schijndel JE, Vlak JM. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol. 2003;84:2669–78.
Possee RD, Hitchman RB, Richards KS, Mann SG, Siaterli E, Nixon CP, et al. Technology of baculovirus vectors for the high-throughput manufacturing of proteins in insect cells. Biotechnol Bioeng. 2008;101:1115–22.
Mundhada H, Seoane JM, Schneider Ok, Koza A, Christensen HB, Klein T, et al. Elevated manufacturing of L-serine in Escherichia coli by Adaptive Laboratory Evolution. Metab Eng. 2017;39:141–50.
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein manufacturing utilizing the baculovirus-insect cell expression system. Biotechnol Prog. 2014;30:1–18.
Aucoin MG, Mena JA, Kamen AA. Bioprocessing of baculovirus vectors: a assessment. Curr Gene Ther. 2010;10:174–86.
Cox MMJ. Improvements within the insect cell expression system for industrial recombinant vaccine Antigen Manufacturing. Vaccines. 2021;9:1504.
Zhao Z, Deng J, Fan D. Inexperienced biomanufacturing in recombinant collagen biosynthesis: tendencies and choice in numerous expression techniques. Biomater Sci. 2023;11:5439–61.
Contreras-Llano LE, Tan C. Excessive-throughput screening of biomolecules utilizing cell-free gene expression techniques. Synth Biol. 2018;3:ysy012.
Kunamneni A, Ogaugwu C, Bradfute S, Durvasula R. Ribosome Show Know-how: functions in Illness prognosis and management. Antibodies Basel Switz. 2020;9:28.
Li R, Kang G, Hu M, Huang H. Ribosome Show: a potent Show Know-how used for choosing and evolving particular binders with Desired Properties. Mol Biotechnol. 2019;61:60–71.
Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome show and mRNA show. J Immunol Strategies. 2004;290:51–67.
Gan R, Jewett MC. Evolution of translation initiation sequences utilizing in vitro yeast ribosome show. Biotechnol Bioeng. 2016;113:1777–86.
Douthwaite JA, Jackson RH, editors. Ribosome Show and Associated applied sciences: strategies and protocols. New York, NY: Springer New York; 2012.
Dreier B, Plückthun A. Speedy Number of Excessive-Affinity antibody scFv fragments utilizing Ribosome Show. In: Nevoltris D, Chames P, editors. Antibody Engineering. New York, NY: Springer New York; 2018. pp. 235–68.
Cong C, Yu X, He Y, Dai Y, Zhang Y, Wang M, et al. Cell-free ribosome show and choice of antibodies on arrayed antigens. Proteomics. 2016;16:1291–6.
Lee Ok, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free biosynthesis of Peptidomimetics. Biotechnol Bioprocess Eng BBE. 2023;28:905–21.
Probability R, Kang AS. Eukaryotic ribosome show for antibody discovery: a assessment. Hum Antibodies. 2024;32:107–20.
Zahnd C, Amstutz P, Plückthun A. Ribosome show: choosing and evolving proteins in vitro that particularly bind to a goal. Nat Strategies. 2007;4:269–79.
Harel Inbar N, Benhar I. Number of antibodies from artificial antibody libraries. Arch Biochem Biophys. 2012;526:87–98.
Sheedy C, MacKenzie CR, Corridor JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv. 2007;25:333–52.
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The manufacturing of the primary purposeful antibody mimetic in larger crops: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res. 2022;55:32.
Hanes J, Schaffitzel C, Knappik A, Plückthun A. Picomolar affinity antibodies from a completely artificial naive library chosen and advanced by ribosome show. Nat Biotechnol. 2000;18:1287–92.
Currin A, Swainston N, Day PJ, Kell DB. Artificial biology for the directed evolution of protein biocatalysts: navigating sequence house intelligently. Chem Soc Rev. 2015;44:1172–239.
Takahashi TT, Austin RJ, Roberts RW. mRNA show: ligand discovery, interplay evaluation and past. Tendencies Biochem Sci. 2003;28:159–65.
Golynskiy MV, Haugner JC, Morelli A, Morrone D, Seelig B. In vitro evolution of enzymes. Strategies Mol Biol Clifton NJ. 2013;978:73–92.
Gold L. mRNA show: variety issues throughout in vitro choice. Proc Natl Acad Sci U S A. 2001;98:4825–6.
Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H. In vitro virus: bonding of mRNA bearing puromycin on the 3’-terminal finish to the C-terminal finish of its encoded protein on the ribosome in vitro. FEBS Lett. 1997;414:405–8.
Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Phage show as a expertise delivering on the promise of peptide drug discovery. Drug Discov At this time. 2013;18:1144–57.
Lee J-H, Tune HS, Park TH, Lee S-G, Kim B-G. Screening of cell-penetrating peptides utilizing mRNA show. Biotechnol J. 2012;7:387–96.
Cotham VC, Horton AP, Lee J, Georgiou G, Brodbelt JS. Center-Down 193-nm Ultraviolet Photodissociation for unambiguous antibody identification and its implications for immunoproteomic evaluation. Anal Chem. 2017;89:6498–504.
Egloff P, Zimmermann I, Arnold FM, Hutter CAJ, Morger D, Opitz L, et al. Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat Strategies. 2019;16:421–8.
Hutter CAJ, Timachi MH, Hürlimann LM, Zimmermann I, Egloff P, Göddeke H, et al. The extracellular gate shapes the power profile of an ABC exporter. Nat Commun. 2019;10:2260.
Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, et al. A strong pipeline for fast manufacturing of versatile nanobody repertoires. Nat Strategies. 2014;11:1253–60.
Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011;333:1633–7.
Jovčevska I, Muyldermans S. The therapeutic potential of Nanobodies. BioDrugs Clin Immunother Biopharm Gene Ther. 2020;34:11–26.
Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal immunization, in Vitro Show Applied sciences, and machine studying for antibody Discovery. Tendencies Biotechnol. 2021;39:1263–73.
LeCun Y, Bengio Y, Hinton G. Deep studying. Nature. 2015;521:436–44.
Zhang Z, Cui P, Zhu W. Deep studying on Graphs: a Survey. IEEE Trans Knowl Information Eng. 2022;34:249–70.
Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A common SNP and small-indel variant caller utilizing deep neural networks. Nat Biotechnol. 2018;36:983–7.
Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep studying in genomics. Nat Genet. 2019;51:12–8.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of pores and skin most cancers with deep neural networks. Nature. 2017;542:115–8.
Wainberg M, Merico D, Delong A, Frey BJ. Deep studying in biomedicine. Nat Biotechnol. 2018;36:829–38.
Tunyasuvunakool Ok, Adler J, Wu Z, Inexperienced T, Zielinski M, Žídek A, et al. Extremely correct protein construction prediction for the human proteome. Nature. 2021;596:590–6.
Jumper J, Evans R, Pritzel A, Inexperienced T, Figurnov M, Ronneberger O, et al. Extremely correct protein construction prediction with AlphaFold. Nature. 2021;596:583–9.
Bagdonas H, Fogarty CA, Fadda E, Agirre J. The case for post-predictional modifications within the AlphaFold protein construction database. Nat Struct Mol Biol. 2021;28:869–70.
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, et al. Rethinking drug design within the synthetic intelligence period. Nat Rev Drug Discov. 2020;19:353–64.
Stokes JM, Yang Ok, Swanson Ok, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep Studying Strategy to Antibiotic Discovery. Cell. 2020;180:688–e70213.
Muyldermans S. Nanobodies: pure single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.
Wu X, Zhang J, Fang L. Subsequent-generation sequencing and Proteomics-Enabled Strategy for Speedy and Excessive-Throughput isolation of Virus-Neutralizing Nanobodies. Strategies Mol Biol Clifton NJ. 2024;2824:135–46.
Cohen T, Halfon M, Schneidman-Duhovny D, NanoNet. Speedy and correct end-to-end nanobody modeling by deep studying. Entrance Immunol. 2022;13:958584.
Alexander E, Leong KW. Discovery of nanobodies: a complete assessment of their functions and potential over the previous 5 years. J Nanobiotechnol. 2024;22:661.
Li S, Meng X, Li R, Huang B, Wang X. NanoBERTa-ASP: predicting nanobody paratope based mostly on a pretrained RoBERTa mannequin. BMC Bioinformatics. 2024;25:122.
Hacisuleyman A, Erman B, ModiBodies:. A computational methodology for modifying nanobodies in nanobody-antigen complexes to enhance binding affinity and specificity. J Biol Phys. 2020;46:189–208.
Sardar U, Ali S, Ayub MS, Shoaib M, Bashir Ok, Khan IU et al. Sequence-based nanobody-antigen binding prediction. 2023.
De Keyser P, Kalichuk V, Zögg T, et al. A biosensor-based phage show choice methodology for automated, high-throughput Nanobody discovery. Biosens Bioelectron. 2025;271:116951.
Gallo E. The rise of massive knowledge: deep sequencing-driven computational strategies are reworking the panorama of artificial antibody design. J Biomed Sci. 2024;31:29.
Zuo J, Li J, Zhang R, Xu L, Chen H, Jia X, et al. Institute assortment and evaluation of Nanobodies (iCAN): a complete database and evaluation platform for nanobodies. BMC Genomics. 2017;18:797.
Deszyński P, Młokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, et al. INDI—built-in nanobody database for immunoinformatics. Nucleic Acids Res. 2022;50:D1273–81.
Xiong S, Liu Z, Yi X, Liu Ok, Huang B, Wang X. NanoLAS: a complete nanobody database with knowledge integration, consolidation and software. Database. 2024;2024:baae003.
Valdés-Tresanco MS, Valdés-Tresanco ME, Molina-Abad E, Moreno E. NbThermo: a brand new thermostability database for nanobodies. Database J Biol Databases Curation. 2023;2023:baad021.
Schneider C, Raybould MIJ, Deane CM. SAbDab within the age of biotherapeutics: updates together with SAbDab-nano, the nanobody construction tracker. Nucleic Acids Res. 2022;50:D1368–72.
Wilton EE, Opyr MP, Kailasam S, Kothe RF, Wieden H-J. sdAb-DB: the one area antibody database. ACS Synth Biol. 2018;7:2480–4.
Gło N. Statistical mechanics of protein folding, unfolding and fluctuation. Adv Biophys. 1976;7:65–113.
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.
Jones DT. GenTHREADER: an environment friendly and dependable protein fold recognition methodology for genomic sequences1. J Mol Biol. 1999;287:797–815.
Ghouzam Y, Postic G, de Brevern AG, Gelly J-C. Enhancing protein fold recognition with hybrid profiles combining sequence and construction evolution. Bioinforma Oxf Engl. 2015;31:3782–9.
Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein construction prediction utilizing Rosetta. Strategies Enzymol. 2004;383:66–93.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein construction and performance prediction. Nat Strategies. 2015;12:7–8.
Bystroff C, Shao Y. Absolutely automated ab initio protein construction prediction utilizing I-SITES, HMMSTR and ROSETTA. Bioinforma Oxf Engl. 2002;18(Suppl 1):S54–61.
Xu J. Distance-based protein folding powered by deep studying. Proc Natl Acad Sci U S A. 2019;116:16856–65.
Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A et al. Transformers: state-of-the-art pure language processing. In: Liu Q, Schlangen D, editors. Proceedings of the 2020 Convention on Empirical Strategies in Pure Language Processing: System Demonstrations. On-line: Affiliation for Computational Linguistics; 2020. pp. 38–45.
Mitchell LS, Colwell LJ. Evaluation of nanobody paratopes reveals better variety than classical antibodies. Protein Eng Des Sel PEDS. 2018;31:267–75.
Zavrtanik U, Lukan J, Loris R, Lah J, Hadži S. Structural foundation of Epitope Recognition by Heavy-Chain Camelid Antibodies. J Mol Biol. 2018;430:4369–86.
Yamamoto Ok, Nagatoishi S, Nakakido M, Kuroda D, Tsumoto Ok. Conformational options and interplay mechanisms of VHH antibodies with β-hairpin-like CDR-H3: a case of Nb8-HigB2 interplay. 2023;32(12):e4827.
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Correct prediction of protein buildings and interactions utilizing a three-track neural community. Science. 2021;373:871–6.
Wu R, Ding F, Wang R, Shen R, Zhang X, Luo S et al. Excessive-resolution de novo construction prediction from main sequence. bioRxiv. 2022:500999.
Lin Z, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein construction with a language mannequin. Science. 2023;379(6637):1123–30.
Ahdritz G, Bouatta N, Floristean C, et al. OpenFold: retraining AlphaFold2 yields new insights into its studying mechanisms and capability for generalization. Nat Strategies. 2024;21(8):1514–24.
Ruffolo JA, Chu L-S, Mahajan SP, Grey JJ. Quick, correct antibody construction prediction from deep studying on large set of pure antibodies. Nat Commun. 2023;14:2389.
Kenlay H, Dreyer FA, Chopping D, Nissley D, Deane CM. ABodyBuilder3: improved and scalable antibody construction predictions. 2024.
Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: deep-learning fashions for predicting the buildings of immune proteins. Commun Biol. 2023;6:575.
Sircar A, Sanni KA, Shi J, Grey JJ. Evaluation and modeling of the Variable Area of Camelid single-domain antibodies. J Immunol. 2011;186:6357–67.
Li B, Qin X, Mi L-Z. Nanobodies: from construction to functions in non-injectable and bispecific biotherapeutic improvement. Nanoscale. 2022;14:7110–22.
Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A brand new antigen receptor gene household that undergoes rearrangement and intensive somatic diversification in sharks. Nature. 1995;374:168–73.
Eshak F, Pion L, Scholler P, Nevoltris D, Chames P, Rondard P, et al. Epitope identification of an mGlu5 receptor Nanobody utilizing physics-based molecular modeling and deep studying strategies. J Chem Inf Mannequin. 2024;64:4436–61.
Valdés-Tresanco MS, Valdés-Tresanco ME, Jiménez-Gutiérrez DE, Moreno E. Structural modeling of nanobodies: a Benchmark of State-of-the-art Synthetic Intelligence Packages. Mol Basel Switz. 2023;28:3991.
Chen H, Fan X, Zhu S, Pei Y, Zhang X, Zhang X, et al. Correct prediction of CDR-H3 loop buildings of antibodies with deep studying. eLife. 2024;12:RP91512.
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody construction and performance: the idea for Engineering therapeutics. Antibodies Basel Switz. 2019;8:55.
Xiang Y, Sang Z, Bitton L, Xu J, Liu Y, Schneidman-Duhovny D, et al. Integrative proteomics identifies hundreds of distinct, multi-epitope, and high-affinity nanobodies. Cell Syst. 2021;12:220–e2349.
Kozakov D, Corridor DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro net server for protein–protein docking. Nat Protoc. 2017;12:255–78.
van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 net server: user-friendly integrative modeling of Biomolecular complexes. J Mol Biol. 2016;428:720–5.
Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Inexperienced T, et al. Protein complicated prediction with AlphaFold-Multimer. bioRxiv. 2021:463034.
Yin R, Pierce BG. Analysis of AlphaFold antibody-antigen modeling with implications for bettering predictive accuracy. Protein Sci Publ Protein Soc. 2024;33:e4865.
Muyldermans S. Single area camel antibodies: present standing. Rev Mol Biotechnol. 2001;74:277–302.
Mitchell LS, Colwell LJ. Comparative evaluation of nanobody sequence and construction knowledge. Proteins. 2018;86:697–706.
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk Ok. Noticed Antibody Area: a useful resource for knowledge mining next-generation sequencing of antibody repertoires. J Immunol Baltim Md. 1950. 2018;201:2502–9.
Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D et al. RoBERTa: a robustly optimized BERT pretraining method. 2019.
Moonens Ok, Gideonsson P, Subedi S, Bugaytsova J, Romaõ E, Mendez M, et al. Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe. 2016;19:55–66.
Sela-Culang I, Kunik V, Ofran Y. The structural foundation of antibody-antigen recognition. Entrance Immunol. 2013;4:302.
Tam C, Kumar A, Zhang KYJ. NbX: machine learning-guided re-ranking of Nanobody-Antigen binding poses. Pharm Basel Switz. 2021;14:968.
Wang X, Terashi G, Christoffer CW, Zhu M, Kihara D. Protein docking mannequin analysis by 3D deep convolutional neural networks. Bioinforma Oxf Engl. 2020;36:2113–8.
Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and polyspecificity in therapeutic antibody improvement: danger elements for failure in preclinical and scientific improvement campaigns. mAbs. 2021;13:1999195.
Sigounas G, Harindranath N, Donadel G, Notkins AL. Half-life of polyreactive antibodies. J Clin Immunol. 1994;14:134–40.
Kelly RL, Solar T, Jain T, Caffry I, Yu Y, Cao Y, et al. Excessive throughput cross-interaction measures for human IgG1 antibodies correlate with clearance charges in mice. mAbs. 2015;7:770–7.
Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA-Ok, et al. A genecentric human protein atlas for expression profiles based mostly on antibodies. Mol Cell Proteom MCP. 2008;7:2019–27.
Harvey EP, Shin J-E, Skiba MA, Nemeth GR, Hurley JD, Wellner A, et al. An in silico methodology to evaluate antibody fragment polyreactivity. Nat Commun. 2022;13:7554.
Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez Ok, Urrutia M, et al. Single area antibodies: promising experimental and therapeutic instruments in an infection and immunity. Med Microbiol Immunol (Berl). 2009;198:157–74.
Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human fixed area domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.
Baca M, Presta LG, O’Connor SJ, Wells JA. Antibody humanization utilizing monovalent phage show. J Biol Chem. 1997;272:10678–84.
Jones PT, Pricey PH, Foote J, Neuberger MS, Winter G. Changing the complementarity-determining areas in a human antibody with these from a mouse. Nature. 1986;321:522–5.
Kashmiri SVS, De Pascalis R, Gonzales NR, Schlom J. SDR grafting–a brand new method to antibody humanization. Strategies San Diego Calif. 2005;36:25–34.
De Pascalis R, Iwahashi M, Tamura M, Padlan EA, Gonzales NR, Santos AD, et al. Grafting of abbreviated complementarity-determining areas containing specificity-determining residues important for ligand contact to engineer a much less immunogenic humanized monoclonal antibody. J Immunol Baltim Md 1950. 2002;169:3076–84.
Dall’Acqua WF, Damschroder MM, Zhang J, Woods RM, Widjaja L, Yu J, et al. Antibody humanization by framework shuffling. Strategies San Diego Calif. 2005;36:43–60.
Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, et al. Humanization of murine monoclonal antibodies by variable area resurfacing. Proc Natl Acad Sci U S A. 1994;91:969–73.
Padlan EA. A attainable process for lowering the immunogenicity of antibody variable domains whereas preserving their ligand-binding properties. Mol Immunol. 1991;28:489–98.
Shi Z, Li X, Wang L, Solar Z, Zhang H, Chen X, et al. Structural foundation of nanobodies neutralizing SARS-CoV-2 variants. Struct Lond Engl 1993. 2022;30:707–e7205.
Zhao L, Meng F, Li Y, Liu S, Xu M, Chu F, et al. Multivalent Nanobody conjugate with inflexible, reactive oxygen species scavenging Scaffold for Multi-target Remedy of Alzheimer’s Illness. Adv Mater Deerfield Seaside Fla. 2023;35:e2210879.
Solar Z, Wang L, Li L, Solar Y, Zhang D, Zhou S, et al. Construction foundation of two nanobodies neutralizing SARS-CoV-2 Omicron variant by concentrating on ultra-conservative epitopes. J Struct Biol. 2023;215:107996.
Wang Y, Chen J, Zhang S, Jiang H, Zhu J, Jiang G, et al. Bispecific Nanobody-Aptamer conjugates for enhanced Most cancers remedy in stable tumors. Small Weinh Bergstr Ger. 2024;20:e2308265.
Liao X, Zhang Y, Liang Y, Zhang L, Wang P, Wei J, et al. Enhanced sandwich immunoassay based mostly on bivalent nanobody as an environment friendly immobilization method for foodborne pathogens detection. Anal Chim Acta. 2024;1289:342209.
Tam C, Kukimoto-Niino M, Miyata-Yabuki Y, Tsuda Ok, Mishima-Tsumagari C, Ihara Ok, et al. Focusing on ras-binding area of ELMO1 by computational nanobody design. Commun Biol. 2023;6:284.
Heidari MM, Shirazi EA, Cheraghi SF, Shahshahani R, Rahnama T, Khatami M. CDR grafting and site-directed mutagenesis method for the era and affinity maturation of Anti-CD20 nanobody. Mol Biol Rep. 2024;51:751.
Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, et al. Novel bispecific nanobody mitigates experimental intestinal irritation in mice by concentrating on TNF-α and IL-23p19 bioactivities. Clin Transl Med. 2024;14:e1636.
Liu H, Wang R, An D, Liu H, Ye F, Li B et al. An engineered IL-21 with half-life extension enhances anti-tumor immunity as a monotherapy or together with PD-1 or TIGIT blockade. Int Immunopharmacol. 2021;101 Pt A:108307.
Dinesen A, Andersen VL, Elkhashab M, Pilati D, Bech P, Fuchs E, et al. An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and extended circulation. Bioconjug Chem. 2024;35:214–22.
Vascon F, Gasparotto M, Giacomello M, Cendron L, Bergantino E, Filippini F, et al. Protein electrostatics: from computational and structural evaluation to discovery of purposeful fingerprints and biotechnological design. Comput Struct Biotechnol J. 2020;18:1774–89.
Mahajan SP, Meksiriporn B, Waraho-Zhmayev D, Weyant KB, Kocer I, Butler DC, et al. Computational affinity maturation of camelid single-domain intrabodies towards the nonamyloid element of alpha-synuclein. Sci Rep. 2018;8:17611.
Cheng X, Wang J, Kang G, Hu M, Yuan B, Zhang Y, et al. Homology modeling-based in Silico Affinity Maturation improves the Affinity of a Nanobody. Int J Mol Sci. 2019;20:4187.
Hadsund JT, Satława T, Janusz B, Shan L, Zhou L, Röttger R, et al. nanoBERT: a deep studying mannequin for gene agnostic navigation of the nanobody mutational house. Bioinforma Adv. 2024;4:vbae033.
Bai Z, Wang J, Li J, Yuan H, Wang P, Zhang M, et al. Design of nanobody-based bispecific constructs by in silico affinity maturation and umbrella sampling simulations. Comput Struct Biotechnol J. 2023;21:601–13.
Alvarez JAE, Dean SN. TEMPRO: nanobody melting temperature estimation mannequin utilizing protein embeddings. Sci Rep. 2024;14:19074.
Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S, et al. Computational approaches to therapeutic antibody design: established strategies and rising tendencies. Transient Bioinform. 2020;21:1549–67.
Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder: automated antibody construction prediction with data-driven accuracy estimation. mAbs. 2016;8:1259–68.
Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding ideas for scientific knowledge administration and stewardship. Sci Information. 2016;3:160018.
Fernández LA. Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol. 2004;15:364–73.