Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, Nanochemistry, and functions in Theranostics. Chem Rev. 2014;114:5161–214. https://doi.org/10.1021/CR400425H.
Chen G, Yang C, Prasad PN. Nanophotonics and Nanochemistry: Controlling the Excitation dynamics for frequency Up- and down-Conversion in Lanthanide-Doped Nanoparticles. Acc Chem Res. 2013;46:1474–86. https://doi.org/10.1021/ar300270y.
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Complete Assessment on Upconversion nanomaterials-based fluorescent sensor for Setting, Biology, Meals and Drugs Functions. Biosens (Basel). 2022;12. https://doi.org/10.3390/bios12111036.
Tang H, Tao W, Zhu B, Wang C, Scarpa F. Enhanced Upconversion luminescence in NaYF 4:Yb, Er nanoparticles by utilizing Graphitic Carbon shells. Mater Res Categorical. 2019;6:045040. https://doi.org/10.1088/2053-1591/aafbf5.
Rabouw FT, Prins PT, Villanueva-Delgado P, Castelijns M, Geitenbeek RG, Meijerink A. Quenching Pathways in NaYF 4:Er 3+, Yb 3 + Upconversion Nanocrystals. 2018, https://doi.org/10.1021/acsnano.8b01545
Anderson RB, Smith SJ, Could PS, Berry MT. Revisiting the NIR-to-visible Upconversion mechanism in β-NaYF 4:Yb3+,Er3+. J Phys Chem Lett. 2014;5:36–42. https://doi.org/10.1021/JZ402366R/SUPPL_FILE/JZ402366R_SI_001.PDF.
Zhu X, Su Q, Feng W, Li F. Anti-stokes shift luminescent supplies for bio-applications. Chem Soc Rev. 2017;46:1025–39. https://doi.org/10.1039/c6cs00415f.
Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50:5808–29. https://doi.org/10.1002/ANIE.201005159.
Arai MS, de Camargo. A.S.S. exploring the Use of Upconversion nanoparticles in Chemical and Organic sensors: from floor modifications to point-of-care gadgets. Nanoscale Adv. 2021;3:5135–65. https://doi.org/10.1039/d1na00327e.
Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F, Vidal X, Zhao J, Liu D, Zhou Z, et al. Amplified stimulated Emission in Upconversion nanoparticles for Tremendous-resolution Nanoscopy. Nature. 2017;543:229–33. https://doi.org/10.1038/nature21366.
Ghazy A, Safdar M, Lastusaari M, Savin H, Karppinen M. Advances in Upconversion enhanced photo voltaic cell efficiency. Sol Vitality Mater Sol Cells. 2021;230:111234. https://doi.org/10.1016/j.solmat.2021.111234.
Krishnan R, Swart HC. Upconversion Luminescence Supplies for Latent Fingerprint Detection Functions in Forensic Science. In Springer Nature Singapor; 2023; pp. 465–489 ISBN 9783030340322.
Matsubara T, Yamashita T. Distant optogenetics utilizing Up/Down-Conversion Phosphors. Entrance Mol Biosci. 2021;8:1–10. https://doi.org/10.3389/fmolb.2021.771717.
Pliss A, Ohulchanskyy TY, Chen G, Damasco J, Bass CE, Prasad PN. Subcellular optogenetics enacted by focused nanotransformers of Close to-Infrared gentle. ACS Photonics. 2017;4:806–14. https://doi.org/10.1021/acsphotonics.6b00475.
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion luminescent nanoparticles—evolving function in Bioimaging, Biosensing, and Drug Supply. Supplies. 2022;15. https://doi.org/10.3390/ma15072374.
Cao C, Xie Y, Li SW, Hong C. Er3+-Ions-Doped Multiscale Nanoprobes for fluorescence imaging in Mobile and residing mice. Nanomaterials (Basel). 2021;11. https://doi.org/10.3390/NANO11102676.
Alexaki Ok, Giust D, Kyriazi ME, El-Sagheer AH, Brown T, Muskens OL, Kanaras AG. A DNA sensor primarily based on Upconversion nanoparticles and two-dimensional dichalcogenide supplies. Entrance Chem Sci Eng. 2021;15:935–43. https://doi.org/10.1007/s11705-020-2023-9.
Wu N, Solar Y, Kong M, Lin X, Cao C, Li Z, Feng W, Li F. Er-Primarily based Luminescent Nanothermometer to discover the real-time temperature of cells underneath Exterior Stimuli. Small. 2022;18. https://doi.org/10.1002/SMLL.202107963.
Tao Ok, Solar Ok, Upconversion Nanoparticles. A toolbox for Biomedical Functions. Photonanotechnology Ther Imaging. 2020;147–76. https://doi.org/10.1016/B978-0-12-817840-9.00006-0.
Ghosh S, Gul AR, Xu P, Lee SY, Rafique R, Kim YH, Park TJ. Goal Supply of Photograph-Triggered Nanocarrier for externally activated chemo-photodynamic remedy of prostate Most cancers. Mater At the moment Chem. 2022;23:100688. https://doi.org/10.1016/J.MTCHEM.2021.100688.
Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G. Inexperienced Synthesis of Steel Nanoparticles Utilizing Microorganisms and their utility within the Agrifood Sector. J Nanobiotechnol. 2021;19:1–26. https://doi.org/10.1186/s12951-021-00834-3.
Vijayakumar S, Chen J, Amarnath M, Tungare Ok, Bhori M, Divya M, González-Sánchez ZI, Durán-Lara EF, Vaseeharan B, Cytotoxicity. Phytotoxicity, and Photocatalytic Evaluation of Biopolymer Cellulose-Mediated Silver Nanoparticles. Colloids Surf Physicochem Eng Asp. 2021;628:127270. https://doi.org/10.1016/J.COLSURFA.2021.127270.
Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran T, Bin; Lam SE, Khandaker MU, Bradley DA. Organic brokers for Synthesis of nanoparticles and their functions. J King Saud Univ Sci. 2022;34:101869. https://doi.org/10.1016/J.JKSUS.2022.101869.
Rajput VD, Minkina T, Kimber RL, Singh VK, Shende S, Behal A, Sushkova S, Mandzhieva S, Lloyd JR. Insights into the biosynthesis of nanoparticles by the Genus Shewanella. Appl Environ Microbiol. 2021;87:e0139021. https://doi.org/10.1128/AEM.01390-21.
Thongthai P, Sivavong P, Osathanon T, Tantilertanant Y, Sakoolnamarka R, Singthong T, Uttasen S, Boonsuth B, Monmaturapoj N, Nantanapiboon DF, Focus. Antibacterial Impact, and cytotoxicity in kids’s toothpaste: in Vitro Research. Authentic Article. 2023;12:199–208. https://doi.org/10.1055/s-0043-1775829.
Marquis RE, Clock SA, Mota-Meira M. Fluoride and Natural weak acids as modulators of Microbial Physiology. FEMS Microbiol Rev. 2003;26:493–510. https://doi.org/10.1111/J.1574-6976.2003.TB00627.X.
Técher D, Grosjean N, Sohm B, Blaudez D, Le Jean M. Not merely noxious? Time-Dependent Hormesis and Differential poisonous results systematically Induced by Uncommon Earth components in Escherichia Coli. Environ Sci Pollut Res Int. 2020;27:5640–9. https://doi.org/10.1007/S11356-019-07002-Z.
MUROMA A. Research within the bactericidal motion of salts of sure Uncommon Earth metals. Ann Med Exp Biol Fenn. 1958;36:1–54.
Zhang H, Feng J, Zhu W, Liu C, Xu S, Shao P, Wu D, Yang W, Gu J. Power toxicity of rare-earth components on human beings: implications of blood biochemical indices in REE-Excessive areas, South Jiangxi. Biol Hint Elem Res. 2000;73:1–17. https://doi.org/10.1385/BTER:73:1:1/METRICS.
Liu G, Ran Z, Wang H, Liu Y, Shen P, Lu Y. Research on eruption of warmth for Escherichia Coli B aroused by Lanthanum Nitrate and its mechanism. Entrance Chem China. 2008;3:70–5. https://doi.org/10.1007/S11458-008-0010-7.
Maleke M, Valverde A, Vermeulen JG, Cason E, Gomez-Arias A, Moloantoa Ok, Coetsee-Hugo L, Swart H, Van Heerden E, Castillo J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Steel Resistant Bacterium. Entrance Microbiol. 2019;10:1–10. https://doi.org/10.3389/fmicb.2019.00081.
Good NM, Lee HD, Hawker ER, Su MZ, Gilad AA, Martinez-Gomez NC. Hyperaccumulation of Gadolinium by Methylorubrum Extorquens AM1 reveals impacts of Lanthanides on Mobile processes past Methylotrophy. Entrance Microbiol. 2022;13:1–15. https://doi.org/10.3389/fmicb.2022.820327.
Dwivedi S, Mondal P, Balomajumder C. Bioremoval of Fluoride from Artificial Water utilizing Gram-negative Micro organism Shewanella Putrefaciens. J Hazard Poisonous Radioact Waste. 2017;21. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000341.
Lucas J, Lucas P, Mercier TL, Rollat A, Davenport W. Uncommon Earths Uncommon Earths Manufacturing and Use; 2014; ISBN 9780444627353.
Bonificio WD, Clarke DR. Uncommon-earth separation utilizing Micro organism. Environ Sci Technol Lett. 2016;3:180–4. https://doi.org/10.1021/acs.estlett.6b00064.
Medin S, Schmitz AM, Pian B, Mini Ok, Reid MC, Holycross M, Gazel E, Wu M, Barstow B. Genomic characterization of Uncommon Earth binding by Shewanella Oneidensis. Sci Rep. 2023;13:1–20. https://doi.org/10.1038/s41598-023-42742-6.
Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM. Organic synthesis of fluorescent nanoparticles by Cadmium and Tellurite Resistant Antarctic Micro organism: exploring Novel Pure nanofactories. Microb Cell Truth. 2016;15:76. https://doi.org/10.1186/s12934-016-0477-8.
Gallardo C, Monrás JP, Plaza DO, Collao B, Saona LA, Durán-Toro V, Venegas FA, Soto C, Ulloa G, Vásquez CC, et al. Low-temperature biosynthesis of fluorescent Semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic Micro organism. J Biotechnol. 2014;187:108–15. https://doi.org/10.1016/j.jbiotec.2014.07.017.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an Open-Supply platform for Organic-Picture evaluation. Nat Strategies. 2012;9:676–82. https://doi.org/10.1038/NMETH.2019.
Mothe T, Umashankar P, Sultanpuram VR. Isolation of Fluoride Resistant Microorganisms from Fluoride Contaminated Floor Water Samples of Nalgonda District and their function in Bioremediation. Biosci Biotechnol Res Asia. 2021;18:107–12. https://doi.org/10.13005/BBRA/2900.
Liao Y, Brandt BW, Li J, Crielaard W, Van Loveren C, Deng DM. Fluoride Resistance in Streptococcus Mutans: a Mini Assessment. J Oral Microbiol. 2017;9. https://doi.org/10.1080/20002297.2017.1344509.
Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and Antibiofilm Properties of Yttrium Fluoride Nanoparticles. Int J Nanomed. 2012;7:5611–24. https://doi.org/10.2147/IJN.S37075.
Chellaiah ER, Ravi P, Uthandakalaipandian R. Isolation and Identification of Excessive Fluoride Resistant Micro organism from Water samples of Dindigul District, Tamil Nadu, South India. Curr Res Microb Sci. 2021;2:100038. https://doi.org/10.1016/J.CRMICR.2021.100038.
Castañeda J. Saturation impact of Up-Conversion luminescence from Erbium-Doped, silica-Titania Sol-Gel powders. J Uncommon Earths. 2011;29:420–5. https://doi.org/10.1016/S1002-0721(10)60472-3.
Wang Z, Meijerink A. Focus quenching in Upconversion Nanocrystals. J Phys Chem C. 2018;122:26298–306. https://doi.org/10.1021/acs.jpcc.8b09371.
Sjöström JK, Bindler R, Granberg T, Kylander ME. Process for Natural Matter removing from Peat Samples for XRD Mineral Evaluation. Wetlands. 2019;39:473–81. https://doi.org/10.1007/s13157-018-1093-7.
Janjua RA, Gao C, Dai R, Sui Z, Ahmad Raja MA, Wang Z, Zhen X, Zhang Z. Na+-Pushed nucleation of NaYF4:Yb,Er nanocrystals and Impact of temperature on their structural transformations and luminescent properties. J Phys Chem C. 2018;122:23242–50. https://doi.org/10.1021/acs.jpcc.8b09327.
Nassar Y, Brizuela M. The Function of Fluoride on Caries Prevention. StatPearls 2023.
SM Brussock, TA Kral. Results of PH on expression of Sodium Fluoride Resistance in Streptococcus Mutans. 1987;66(1594–1596). https://doi.org/10.1177/00220345870660101701.
Michalak I, Chojnacka Ok, Witek-Krowiak A. Cutting-edge for the Biosorption Course of—a assessment. Appl Biochem Biotechnol. 2013;170. https://doi.org/10.1007/S12010-013-0269-0.
Takahashi Y, Châtellier X, Hattori KH, Kato Ok, Fortin D. Adsorption of Uncommon Earth components onto bacterial cell partitions and its implication for REE Sorption onto Pure Microbial mats. Chem Geol. 2005;219:53–67. https://doi.org/10.1016/j.chemgeo.2005.02.009.
Naik AN, Patra S, Sen D, Goswami A. Evaluating the mechanism of Nucleation and Progress of Silver nanoparticles in a polymer membrane underneath steady Precursor Provide: tuning of a number of to single nucleation pathway. Phys Chem Chem Phys. 2019;21:4193–9. https://doi.org/10.1039/C8CP06202A.
Chen G, Ågren H, Ohulchanskyy TY, Prasad PN. Gentle Upconverting Core-Shell nanostructures: Nanophotonic Management for rising functions. 1680 | Chem Soc Rev. 2015;44:1680. https://doi.org/10.1039/c4cs00170b.
Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA. Exploration of microbial factories for synthesis of Nanoparticles – A Sustainable Method for Bioremediation of Environmental contaminants. Entrance Microbiol. 2021;12:658294. https://doi.org/10.3389/FMICB.2021.658294/BIBTEX.
Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of steel nanoparticles through Microbial enzymes: a mechanistic Method. Int J Mol Sci. 2018;19. https://doi.org/10.3390/IJMS19124100.
Valenzuela-Ibaceta F, Torres-Olea N, Ramos-Zúñiga J, Dietz-Vargas C, Navarro CA, Pérez-Donoso JM. Minicells as an Escherichia Coli Mechanism for the Accumulation and Disposal of Fluorescent Cadmium Sulphide Nanoparticles. Journal of Nanobiotechnology 2024 22:1 2024, 22, 1–15, https://doi.org/10.1186/S12951-024-02348-0
Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of Microalgae and Lactobacilli in Biosynthesis of Silver nanoparticles. Bioimpacts. 2011;1:149–52. https://doi.org/10.5681/BI.2011.020.
Myers CR, Myers JM. Cloning and sequence of CymA, a gene encoding a Tetraheme cytochrome c required for discount of Iron(III), Fumarate, and nitrate by Shewanella Putrefaciens MR-1. J Bacteriol. 1997;179:1143–52. https://doi.org/10.1128/JB.179.4.1143-1152.1997.
Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of steel (Hydr)Oxides by Shewanella and Geobacter: a key function for Multihaem c-Kind cytochromes. Mol Microbiol. 2007;65:12–20. https://doi.org/10.1111/J.1365-2958.2007.05783.X.
Voeikova TA, Shebanova AS, Ivanov YD, Kaysheva AL, Novikova LM, Zhuravliova OA, Shumyantseva VV, Shaitan KV, Kirpichnikov MP, Debabov VG. The function of proteins of the outer membrane of Shewanella Oneidensis MR-1 within the formation and stabilization of silver sulfide nanoparticles. Appl Biochem Microbiol. 2016;52:769–75. https://doi.org/10.1134/S0003683816080081.
Lado M, Sayegh J, Gia Gadñay A, Ben-Hur M, Borisover M. Warmth-Induced modifications in Soil Water-Extractable Natural Matter Characterised utilizing fluorescence and FTIR spectroscopies coupled with dimensionality discount strategies. Geoderma. 2023;430:116347. https://doi.org/10.1016/J.GEODERMA.2023.116347.
Could-Crespo J, Martínez-Torres P, Quintana P, Alvarado-Gil JJ, Vilca-Quispe L, Camacho N. Research of the consequences of Heating on Natural Matter and Mineral Phases in limestones. J Spectrosc. 2021;2021(9082863). https://doi.org/10.1155/2021/9082863.