-1.6 C
United States of America
Wednesday, January 22, 2025

Unlocking nature’s brilliance: utilizing Antarctic extremophile Shewanella baltica to biosynthesize lanthanide-containing nanoparticles with optical up-conversion | Journal of Nanobiotechnology


  • Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, Nanochemistry, and functions in Theranostics. Chem Rev. 2014;114:5161–214. https://doi.org/10.1021/CR400425H.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen G, Yang C, Prasad PN. Nanophotonics and Nanochemistry: Controlling the Excitation dynamics for frequency Up- and down-Conversion in Lanthanide-Doped Nanoparticles. Acc Chem Res. 2013;46:1474–86. https://doi.org/10.1021/ar300270y.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Complete Assessment on Upconversion nanomaterials-based fluorescent sensor for Setting, Biology, Meals and Drugs Functions. Biosens (Basel). 2022;12. https://doi.org/10.3390/bios12111036.

  • Tang H, Tao W, Zhu B, Wang C, Scarpa F. Enhanced Upconversion luminescence in NaYF 4:Yb, Er nanoparticles by utilizing Graphitic Carbon shells. Mater Res Categorical. 2019;6:045040. https://doi.org/10.1088/2053-1591/aafbf5.

    Article 
    CAS 

    Google Scholar
     

  • Rabouw FT, Prins PT, Villanueva-Delgado P, Castelijns M, Geitenbeek RG, Meijerink A. Quenching Pathways in NaYF 4:Er 3+, Yb 3 + Upconversion Nanocrystals. 2018, https://doi.org/10.1021/acsnano.8b01545

  • Anderson RB, Smith SJ, Could PS, Berry MT. Revisiting the NIR-to-visible Upconversion mechanism in β-NaYF 4:Yb3+,Er3+. J Phys Chem Lett. 2014;5:36–42. https://doi.org/10.1021/JZ402366R/SUPPL_FILE/JZ402366R_SI_001.PDF.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu X, Su Q, Feng W, Li F. Anti-stokes shift luminescent supplies for bio-applications. Chem Soc Rev. 2017;46:1025–39. https://doi.org/10.1039/c6cs00415f.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50:5808–29. https://doi.org/10.1002/ANIE.201005159.

    Article 
    CAS 

    Google Scholar
     

  • Arai MS, de Camargo. A.S.S. exploring the Use of Upconversion nanoparticles in Chemical and Organic sensors: from floor modifications to point-of-care gadgets. Nanoscale Adv. 2021;3:5135–65. https://doi.org/10.1039/d1na00327e.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Y, Lu Y, Yang X, Zheng X, Wen S, Wang F, Vidal X, Zhao J, Liu D, Zhou Z, et al. Amplified stimulated Emission in Upconversion nanoparticles for Tremendous-resolution Nanoscopy. Nature. 2017;543:229–33. https://doi.org/10.1038/nature21366.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghazy A, Safdar M, Lastusaari M, Savin H, Karppinen M. Advances in Upconversion enhanced photo voltaic cell efficiency. Sol Vitality Mater Sol Cells. 2021;230:111234. https://doi.org/10.1016/j.solmat.2021.111234.

    Article 
    CAS 

    Google Scholar
     

  • Krishnan R, Swart HC. Upconversion Luminescence Supplies for Latent Fingerprint Detection Functions in Forensic Science. In Springer Nature Singapor; 2023; pp. 465–489 ISBN 9783030340322.

  • Matsubara T, Yamashita T. Distant optogenetics utilizing Up/Down-Conversion Phosphors. Entrance Mol Biosci. 2021;8:1–10. https://doi.org/10.3389/fmolb.2021.771717.

    Article 
    CAS 

    Google Scholar
     

  • Pliss A, Ohulchanskyy TY, Chen G, Damasco J, Bass CE, Prasad PN. Subcellular optogenetics enacted by focused nanotransformers of Close to-Infrared gentle. ACS Photonics. 2017;4:806–14. https://doi.org/10.1021/acsphotonics.6b00475.

    Article 
    CAS 

    Google Scholar
     

  • Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion luminescent nanoparticles—evolving function in Bioimaging, Biosensing, and Drug Supply. Supplies. 2022;15. https://doi.org/10.3390/ma15072374.

  • Cao C, Xie Y, Li SW, Hong C. Er3+-Ions-Doped Multiscale Nanoprobes for fluorescence imaging in Mobile and residing mice. Nanomaterials (Basel). 2021;11. https://doi.org/10.3390/NANO11102676.

  • Alexaki Ok, Giust D, Kyriazi ME, El-Sagheer AH, Brown T, Muskens OL, Kanaras AG. A DNA sensor primarily based on Upconversion nanoparticles and two-dimensional dichalcogenide supplies. Entrance Chem Sci Eng. 2021;15:935–43. https://doi.org/10.1007/s11705-020-2023-9.

    Article 
    CAS 

    Google Scholar
     

  • Wu N, Solar Y, Kong M, Lin X, Cao C, Li Z, Feng W, Li F. Er-Primarily based Luminescent Nanothermometer to discover the real-time temperature of cells underneath Exterior Stimuli. Small. 2022;18. https://doi.org/10.1002/SMLL.202107963.

  • Tao Ok, Solar Ok, Upconversion Nanoparticles. A toolbox for Biomedical Functions. Photonanotechnology Ther Imaging. 2020;147–76. https://doi.org/10.1016/B978-0-12-817840-9.00006-0.

  • Ghosh S, Gul AR, Xu P, Lee SY, Rafique R, Kim YH, Park TJ. Goal Supply of Photograph-Triggered Nanocarrier for externally activated chemo-photodynamic remedy of prostate Most cancers. Mater At the moment Chem. 2022;23:100688. https://doi.org/10.1016/J.MTCHEM.2021.100688.

    Article 
    CAS 

    Google Scholar
     

  • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G. Inexperienced Synthesis of Steel Nanoparticles Utilizing Microorganisms and their utility within the Agrifood Sector. J Nanobiotechnol. 2021;19:1–26. https://doi.org/10.1186/s12951-021-00834-3.

    Article 

    Google Scholar
     

  • Vijayakumar S, Chen J, Amarnath M, Tungare Ok, Bhori M, Divya M, González-Sánchez ZI, Durán-Lara EF, Vaseeharan B, Cytotoxicity. Phytotoxicity, and Photocatalytic Evaluation of Biopolymer Cellulose-Mediated Silver Nanoparticles. Colloids Surf Physicochem Eng Asp. 2021;628:127270. https://doi.org/10.1016/J.COLSURFA.2021.127270.

    Article 
    CAS 

    Google Scholar
     

  • Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran T, Bin; Lam SE, Khandaker MU, Bradley DA. Organic brokers for Synthesis of nanoparticles and their functions. J King Saud Univ Sci. 2022;34:101869. https://doi.org/10.1016/J.JKSUS.2022.101869.

    Article 

    Google Scholar
     

  • Rajput VD, Minkina T, Kimber RL, Singh VK, Shende S, Behal A, Sushkova S, Mandzhieva S, Lloyd JR. Insights into the biosynthesis of nanoparticles by the Genus Shewanella. Appl Environ Microbiol. 2021;87:e0139021. https://doi.org/10.1128/AEM.01390-21.

    Article 
    PubMed 

    Google Scholar
     

  • Thongthai P, Sivavong P, Osathanon T, Tantilertanant Y, Sakoolnamarka R, Singthong T, Uttasen S, Boonsuth B, Monmaturapoj N, Nantanapiboon DF, Focus. Antibacterial Impact, and cytotoxicity in kids’s toothpaste: in Vitro Research. Authentic Article. 2023;12:199–208. https://doi.org/10.1055/s-0043-1775829.

    Article 

    Google Scholar
     

  • Marquis RE, Clock SA, Mota-Meira M. Fluoride and Natural weak acids as modulators of Microbial Physiology. FEMS Microbiol Rev. 2003;26:493–510. https://doi.org/10.1111/J.1574-6976.2003.TB00627.X.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Técher D, Grosjean N, Sohm B, Blaudez D, Le Jean M. Not merely noxious? Time-Dependent Hormesis and Differential poisonous results systematically Induced by Uncommon Earth components in Escherichia Coli. Environ Sci Pollut Res Int. 2020;27:5640–9. https://doi.org/10.1007/S11356-019-07002-Z.

    Article 
    PubMed 

    Google Scholar
     

  • MUROMA A. Research within the bactericidal motion of salts of sure Uncommon Earth metals. Ann Med Exp Biol Fenn. 1958;36:1–54.

    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Feng J, Zhu W, Liu C, Xu S, Shao P, Wu D, Yang W, Gu J. Power toxicity of rare-earth components on human beings: implications of blood biochemical indices in REE-Excessive areas, South Jiangxi. Biol Hint Elem Res. 2000;73:1–17. https://doi.org/10.1385/BTER:73:1:1/METRICS.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu G, Ran Z, Wang H, Liu Y, Shen P, Lu Y. Research on eruption of warmth for Escherichia Coli B aroused by Lanthanum Nitrate and its mechanism. Entrance Chem China. 2008;3:70–5. https://doi.org/10.1007/S11458-008-0010-7.

    Article 

    Google Scholar
     

  • Maleke M, Valverde A, Vermeulen JG, Cason E, Gomez-Arias A, Moloantoa Ok, Coetsee-Hugo L, Swart H, Van Heerden E, Castillo J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Steel Resistant Bacterium. Entrance Microbiol. 2019;10:1–10. https://doi.org/10.3389/fmicb.2019.00081.

    Article 

    Google Scholar
     

  • Good NM, Lee HD, Hawker ER, Su MZ, Gilad AA, Martinez-Gomez NC. Hyperaccumulation of Gadolinium by Methylorubrum Extorquens AM1 reveals impacts of Lanthanides on Mobile processes past Methylotrophy. Entrance Microbiol. 2022;13:1–15. https://doi.org/10.3389/fmicb.2022.820327.

    Article 
    CAS 

    Google Scholar
     

  • Dwivedi S, Mondal P, Balomajumder C. Bioremoval of Fluoride from Artificial Water utilizing Gram-negative Micro organism Shewanella Putrefaciens. J Hazard Poisonous Radioact Waste. 2017;21. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000341.

  • Lucas J, Lucas P, Mercier TL, Rollat A, Davenport W. Uncommon Earths Uncommon Earths Manufacturing and Use; 2014; ISBN 9780444627353.

  • Bonificio WD, Clarke DR. Uncommon-earth separation utilizing Micro organism. Environ Sci Technol Lett. 2016;3:180–4. https://doi.org/10.1021/acs.estlett.6b00064.

    Article 
    CAS 

    Google Scholar
     

  • Medin S, Schmitz AM, Pian B, Mini Ok, Reid MC, Holycross M, Gazel E, Wu M, Barstow B. Genomic characterization of Uncommon Earth binding by Shewanella Oneidensis. Sci Rep. 2023;13:1–20. https://doi.org/10.1038/s41598-023-42742-6.

    Article 
    CAS 

    Google Scholar
     

  • Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM. Organic synthesis of fluorescent nanoparticles by Cadmium and Tellurite Resistant Antarctic Micro organism: exploring Novel Pure nanofactories. Microb Cell Truth. 2016;15:76. https://doi.org/10.1186/s12934-016-0477-8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gallardo C, Monrás JP, Plaza DO, Collao B, Saona LA, Durán-Toro V, Venegas FA, Soto C, Ulloa G, Vásquez CC, et al. Low-temperature biosynthesis of fluorescent Semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic Micro organism. J Biotechnol. 2014;187:108–15. https://doi.org/10.1016/j.jbiotec.2014.07.017.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an Open-Supply platform for Organic-Picture evaluation. Nat Strategies. 2012;9:676–82. https://doi.org/10.1038/NMETH.2019.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mothe T, Umashankar P, Sultanpuram VR. Isolation of Fluoride Resistant Microorganisms from Fluoride Contaminated Floor Water Samples of Nalgonda District and their function in Bioremediation. Biosci Biotechnol Res Asia. 2021;18:107–12. https://doi.org/10.13005/BBRA/2900.

    Article 

    Google Scholar
     

  • Liao Y, Brandt BW, Li J, Crielaard W, Van Loveren C, Deng DM. Fluoride Resistance in Streptococcus Mutans: a Mini Assessment. J Oral Microbiol. 2017;9. https://doi.org/10.1080/20002297.2017.1344509.

  • Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and Antibiofilm Properties of Yttrium Fluoride Nanoparticles. Int J Nanomed. 2012;7:5611–24. https://doi.org/10.2147/IJN.S37075.

    Article 
    CAS 

    Google Scholar
     

  • Chellaiah ER, Ravi P, Uthandakalaipandian R. Isolation and Identification of Excessive Fluoride Resistant Micro organism from Water samples of Dindigul District, Tamil Nadu, South India. Curr Res Microb Sci. 2021;2:100038. https://doi.org/10.1016/J.CRMICR.2021.100038.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castañeda J. Saturation impact of Up-Conversion luminescence from Erbium-Doped, silica-Titania Sol-Gel powders. J Uncommon Earths. 2011;29:420–5. https://doi.org/10.1016/S1002-0721(10)60472-3.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Meijerink A. Focus quenching in Upconversion Nanocrystals. J Phys Chem C. 2018;122:26298–306. https://doi.org/10.1021/acs.jpcc.8b09371.

    Article 
    CAS 

    Google Scholar
     

  • Sjöström JK, Bindler R, Granberg T, Kylander ME. Process for Natural Matter removing from Peat Samples for XRD Mineral Evaluation. Wetlands. 2019;39:473–81. https://doi.org/10.1007/s13157-018-1093-7.

    Article 

    Google Scholar
     

  • Janjua RA, Gao C, Dai R, Sui Z, Ahmad Raja MA, Wang Z, Zhen X, Zhang Z. Na+-Pushed nucleation of NaYF4:Yb,Er nanocrystals and Impact of temperature on their structural transformations and luminescent properties. J Phys Chem C. 2018;122:23242–50. https://doi.org/10.1021/acs.jpcc.8b09327.

    Article 
    CAS 

    Google Scholar
     

  • Nassar Y, Brizuela M. The Function of Fluoride on Caries Prevention. StatPearls 2023.

  • SM Brussock, TA Kral. Results of PH on expression of Sodium Fluoride Resistance in Streptococcus Mutans. 1987;66(1594–1596). https://doi.org/10.1177/00220345870660101701.

  • Michalak I, Chojnacka Ok, Witek-Krowiak A. Cutting-edge for the Biosorption Course of—a assessment. Appl Biochem Biotechnol. 2013;170. https://doi.org/10.1007/S12010-013-0269-0.

  • Takahashi Y, Châtellier X, Hattori KH, Kato Ok, Fortin D. Adsorption of Uncommon Earth components onto bacterial cell partitions and its implication for REE Sorption onto Pure Microbial mats. Chem Geol. 2005;219:53–67. https://doi.org/10.1016/j.chemgeo.2005.02.009.

    Article 
    CAS 

    Google Scholar
     

  • Naik AN, Patra S, Sen D, Goswami A. Evaluating the mechanism of Nucleation and Progress of Silver nanoparticles in a polymer membrane underneath steady Precursor Provide: tuning of a number of to single nucleation pathway. Phys Chem Chem Phys. 2019;21:4193–9. https://doi.org/10.1039/C8CP06202A.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen G, Ågren H, Ohulchanskyy TY, Prasad PN. Gentle Upconverting Core-Shell nanostructures: Nanophotonic Management for rising functions. 1680 | Chem Soc Rev. 2015;44:1680. https://doi.org/10.1039/c4cs00170b.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA. Exploration of microbial factories for synthesis of Nanoparticles – A Sustainable Method for Bioremediation of Environmental contaminants. Entrance Microbiol. 2021;12:658294. https://doi.org/10.3389/FMICB.2021.658294/BIBTEX.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of steel nanoparticles through Microbial enzymes: a mechanistic Method. Int J Mol Sci. 2018;19. https://doi.org/10.3390/IJMS19124100.

  • Valenzuela-Ibaceta F, Torres-Olea N, Ramos-Zúñiga J, Dietz-Vargas C, Navarro CA, Pérez-Donoso JM. Minicells as an Escherichia Coli Mechanism for the Accumulation and Disposal of Fluorescent Cadmium Sulphide Nanoparticles. Journal of Nanobiotechnology 2024 22:1 2024, 22, 1–15, https://doi.org/10.1186/S12951-024-02348-0

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of Microalgae and Lactobacilli in Biosynthesis of Silver nanoparticles. Bioimpacts. 2011;1:149–52. https://doi.org/10.5681/BI.2011.020.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Myers CR, Myers JM. Cloning and sequence of CymA, a gene encoding a Tetraheme cytochrome c required for discount of Iron(III), Fumarate, and nitrate by Shewanella Putrefaciens MR-1. J Bacteriol. 1997;179:1143–52. https://doi.org/10.1128/JB.179.4.1143-1152.1997.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of steel (Hydr)Oxides by Shewanella and Geobacter: a key function for Multihaem c-Kind cytochromes. Mol Microbiol. 2007;65:12–20. https://doi.org/10.1111/J.1365-2958.2007.05783.X.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Voeikova TA, Shebanova AS, Ivanov YD, Kaysheva AL, Novikova LM, Zhuravliova OA, Shumyantseva VV, Shaitan KV, Kirpichnikov MP, Debabov VG. The function of proteins of the outer membrane of Shewanella Oneidensis MR-1 within the formation and stabilization of silver sulfide nanoparticles. Appl Biochem Microbiol. 2016;52:769–75. https://doi.org/10.1134/S0003683816080081.

    Article 
    CAS 

    Google Scholar
     

  • Lado M, Sayegh J, Gia Gadñay A, Ben-Hur M, Borisover M. Warmth-Induced modifications in Soil Water-Extractable Natural Matter Characterised utilizing fluorescence and FTIR spectroscopies coupled with dimensionality discount strategies. Geoderma. 2023;430:116347. https://doi.org/10.1016/J.GEODERMA.2023.116347.

    Article 
    CAS 

    Google Scholar
     

  • Could-Crespo J, Martínez-Torres P, Quintana P, Alvarado-Gil JJ, Vilca-Quispe L, Camacho N. Research of the consequences of Heating on Natural Matter and Mineral Phases in limestones. J Spectrosc. 2021;2021(9082863). https://doi.org/10.1155/2021/9082863.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles