3.1 C
United States of America
Thursday, April 3, 2025

Uneven photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on poly(heptazine imides)


  • OECD–FAO Agricultural Outlook 2020–2029 (OECD, 2020).

  • Werpy, T. A., Holladay, J. E. & White, J. F. Prime Worth Added Chemical compounds From Biomass: Outcomes of Screening for Potential Candidates from Sugars and Synthesis Gasoline (US Division of Power, 2004).

  • Dodekatos, G., Schünemann, S. & Tüysüz, H. Current advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. From glycerol to value-added merchandise. Angew. Chem. Int. Ed. 46, 4434–4440 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dias da Silva Ruy, A. et al. Market prospecting and evaluation of the financial potential of glycerol from biodiesel. In Biotechnological Purposes of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen, 2020).

  • Katryniok, B. et al. Selective catalytic oxidation of glycerol: views for top worth chemical compounds. Inexperienced Chem. 13, 1960–1979 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton course of utilizing a secure NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kobori, Y., Myles, D. C. & Whitesides, G. M. Substrate specificity and carbohydrate synthesis utilizing transketolase. J. Org. Chem. 57, 5899–5907 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Xiao, C., Lin, S., Tittmann, Okay. & Dai, S. Multifaceted function of the substrate phosphate group in transketolase catalysis. ACS Catal. 14, 355–365 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Horecker, B. L., Hurwitz, J. & Smyrniotis, P. Z. Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Am. Chem. Soc. 78, 692–694 (1956).

    Article 
    CAS 

    Google Scholar
     

  • Munos, J. W., Pu, X., Mansoorabadi, S. O., Kim, H. J. & Liu, H.-W. A secondary kinetic isotope impact examine of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase-catalyzed response: proof for a retroaldol–aldol rearrangement. J. Am. Chem. Soc. 131, 2048–2049 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaeri, J., Wohlgemuth, R. & Woodley, J. M. Semiquantitative course of screening for the biocatalytic synthesis of d-xylulose-5-phosphate. Org. Course of Res. Dev. 10, 605–610 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cai, G. et al. Thermodynamic investigation of inhibitor binding to 1-deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett. 3, 496–500 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, M., Meena, B., Yu, A., Solar, C. & Challapalli, S. Developments in catalysts for glycerol oxidation by way of photo-/electrocatalysis: a complete overview of latest developments. Inexperienced Chem. 25, 8411–8443 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) sides uncovered WO3 nanosheets. Angew. Chem. Int. Ed. 63, e202319685 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to excessive value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the synthetic photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical manufacturing. Nat. Chem. 16, 1250–1260 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M. & Dontsova, D. In direction of natural zeolites and inclusion catalysts: Heptazine imide salts can alternate metallic cations within the stable state. Chem. Asian J. 12, 1517–1522 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3LiCl]: a crystalline 2D carbon nitride community. Chem. Eur. J. 17, 3213–3221 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlomberg, H. et al. Structural Insights into poly(heptazine imides): a light-storing carbon nitride materials for darkish photocatalysis. Chem. Mater. 31, 7478–7486 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Carbon dioxide mediated, reversible chemical hydrogen storage utilizing a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2, 9490–9495 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J.-R. et al. Correct Okay-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 21, 22819–22830 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Potassium-Ion-assisted regeneration of energetic cyano teams in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen discount. Angew. Chem. Int. Ed. 58, 16644–16650 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, F. Okay. et al. Purposeful carbon nitride supplies—design methods for electrochemical gadgets. Nat. Rev. Mater. 2, 17030 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164–6175 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. Molecular-level insights on the reactive aspect of carbon nitride single crystals photocatalysing general water splitting. Nat. Catal. 3, 649–655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bredas, J.-L. Thoughts the hole! Mater. Horiz. 1, 17–19 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vogt, C. & Weckhuysen, B. M. The idea of energetic website in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C., Wang, Z., Mao, S., Chen, Z. & Wang, Y. Coordination atmosphere of energetic websites and their impact on catalytic efficiency of heterogeneous catalysts. Chin. J. Catal. 43, 928–955 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Cui, Y., Shi, J., Tao, X. & Zhu, G. Porous carbon supported Lewis acid–base websites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B 330, 122457 (2023).

    Article 
    CAS 

    Google Scholar
     

  • An, Z. et al. Pt1 enhanced C–H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 13, 5467 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone by way of enhanced center hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mörsdorf, J.-M. & Ballmann, J. Coordination-induced radical technology: selective hydrogen atom abstraction by way of managed Ti–C σ-bond homolysis. J. Am. Chem. Soc. 145, 23452–23460 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Quick modulation of d-band holes amount within the early response levels for enhancing acidic oxygen evolution. Angew. Chem. Int. Ed. 62, e202308082 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Electrode/electrolyte synergy for concerted promotion of electron and proton transfers towards environment friendly impartial water oxidation. Angew. Chem. Int. Ed. 62, e202303200 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dai, X. et al. Cardio oxidative synthesis of formamides from amines and bioderived formyl surrogates. Angew. Chem. Int. Ed. 63, e202402241 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Ma, L., Yuan, J., Zhang, X.-M. & Tang, Z. Tuning band buildings of Hf-PCN-224(M) for β-carbonyl C(sp3)-H bond activation and difunctionalization: tandem C(sp3) radical cross-coupling via photoredox. Appl. Catal. B 321, 122049 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically remoted Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic websites for photocatalytic C–H activation. Sci. Adv. 10, eadl5432 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. R., Yang, X. F., Lengthy, B. & Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) floor: understanding the catalytic conduct of bulk gold. ACS Catal. 3, 1693–1699 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X., Guo, Y., Zou, Y. & Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt(oxy) hydroxide by high-valent cobalt redox facilities. Appl. Catal. B 309, 121247 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. J., Lee, J., Inexperienced, S. Okay., Huber, G. W. & Kim, W. B. Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7, 1051–1056 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jedsukontorn, T., Ueno, T., Saito, N. & Hunsom, M. Narrowing band hole vitality of faulty black TiO2 fabricated by resolution plasma course of and its photocatalytic exercise on glycerol transformation. J. Alloys Compd. 757, 188–199 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y.-B., Nunotani, N., Morita, Okay. & Imanaka, N. Manufacturing of hydroxypyruvic acid by glycerol oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 catalysts. Catalysts 12, 69 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jedsukontorn, T., Saito, N. & Hunsom, M. Photocatalytic conduct of metal-decorated TiO2 and their catalytic exercise for transformation of glycerol to worth added compounds. Mol. Catal. 432, 160–171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. PtBi intermetallic compounds with enhanced stability in direction of base-free selective oxidation of glycerol. Ind. Eng. Chem. Res. 62, 17503–17512 (2023).

    Article 

    Google Scholar
     

  • Dou, J. et al. Carbon supported Pt9Sn1 nanoparticles as an environment friendly nanocatalyst for glycerol oxidation. Appl. Catal. B 180, 78–85 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q. et al. A metal-free photocatalyst for extremely environment friendly hydrogen peroxide photoproduction in actual seawater. Nat. Commun. 12, 483 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Photo voltaic-driven extremely selective conversion of glycerol to dihydroxyacetone utilizing floor atom engineered BiVO4 photoanodes. Nat. Commun. 15, 5475 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nørskov, J. Okay. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles