7.7 C
United States of America
Sunday, November 24, 2024

Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains


  • Kiczynski, M. et al. Engineering topological states in atom-based semiconductor quantum dots. Nature 606, 694–699 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sompet, P. et al. Realizing the symmetry-protected Haldane part in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, S. et al. Remark of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Development of topological quantum magnets from atomic spins on surfaces. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01775-2 (2024).

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trebst, S. & Hickey, C. Kitaev supplies. Phys. Rep. 950, 1–37 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dzero, M., Solar, Okay., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Savary, L. & Balents, L. Quantum spin liquids: a evaluate. Rep. Prog. Phys. 80, 016502 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Y., Kanoda, Okay. & Ng, T.-Okay. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article 

    Google Scholar
     

  • Grohol, D. et al. Spin chirality on a two-dimensional annoyed lattice. Nat. Mater. 4, 323–328 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, W., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Hida, Okay. Crossover between the Haldane-gap part and the dimer part within the spin-1/2 alternating Heisenberg chain. Phys. Rev. B 45, 2207–2212 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin programs. Phys. Rev. B 83, 035107 (2011).

    Article 

    Google Scholar
     

  • Nakamura, M. & Todo, S. Order parameter to characterize valence-bond-solid states in quantum spin chains. Phys. Rev. Lett. 89, 077204 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Balents, L. Spin liquids in annoyed magnets. Nature 464, 199–208 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drost, R., Kezilebieke, S., Lado, J. L. & Liljeroth, P. Actual-space imaging of triplon excitations in engineered quantum magnets. Phys. Rev. Lett. 131, 086701 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diederix, Okay., Blöte, H., Groen, J., Klaassen, T. & Poulis, N. Theoretical and experimental examine of the magnetic properties of the singlet-ground-state system Cu(NO3)2·2.5H2O: an alternating linear Heisenberg antiferromagnet. Phys. Rev. B 19, 420–431 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Bonner, J. C., Friedberg, S. A., Kobayashi, H., Meier, D. L. & Blöte, H. W. Alternating linear-chain antiferromagnetism in copper nitrate Cu(NO3)2·2.5H2O. Phys. Rev. B 27, 248–260 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Garrett, A., Nagler, S., Tennant, D., Gross sales, B. & Barnes, T. Magnetic excitations within the S = 1/2 alternating chain compound (VO)2P2O7. Phys. Rev. Lett. 79, 745–748 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Forsyth, J., Wilkinson, C. & Zvyagin, A. The antiferromagnetic construction of copper tungstate, CuWO4. J. Phys. Condens. Matter 3, 8433 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Lake, B., Cowley, R. & Tennant, D. A dimer principle of the magnetic excitations within the ordered part of the alternating-chain compound. J. Phys. Condens. Matter 9, 10951 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Waki, T. et al. Remark of Bose–Einstein condensation of triplons in quasi 1D spin-gap system Pb2V3O9. J. Phys. Soc. Jpn 73, 3435–3438 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Valentine, J., Silverstein, A. & Soos, Z. Interdimer change in linear chain copper acetate-pyrazine. J. Am. Chem. Soc. 96, 97–103 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Bray, J. et al. Remark of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Phys. Rev. Lett. 35, 744–747 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Jacobs, I. et al. Spin-Peierls transitions in magnetic donor–acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metallic complexes. Phys. Rev. B 14, 3036–3051 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Castilla, G., Chakravarty, S. & Emery, V. Quantum magnetism of CuGeO3. Phys. Rev. Lett. 75, 1823–1826 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riera, J. & Dobry, A. Magnetic susceptibility within the spin-Peierls system CuGeO3. Phys. Rev. B 51, 16098–16102 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Hase, M., Terasaki, I. & Uchinokura, Okay. Remark of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. Phys. Rev.Lett. 70, 3651–3654 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Atomically exact bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, R. et al. Change guidelines for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, S. et al. Massive magnetic change coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, S. et al. On-surface synthesis of triangulene trimers through dehydration response. Nat. Commun. 13, 1705 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Aza-triangulene: on-surface synthesis and digital and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhavan, V., Chen, W., Jamneala, T., Crommie, M. & Wingreen, N. Tunneling right into a single magnetic atom: spectroscopic proof of the Kondo resonance. Science 280, 567–569 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic constructions. Science 312, 1021–1024 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C. et al. Tailoring magnetism of graphene nanoflakes through tip-controlled dehydrogenation. Phys. Rev. Lett. 132, 046201 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krane, N. et al. Change interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano Lett. 23, 9353–9359 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lado, J. L. & Fernández-Rossier, J. Magnetic edge anisotropy in graphenelike honeycomb crystals. Phys. Rev. Lett. 113, 027203 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández-Rossier, J. Concept of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17, 063016 (2015).

    Article 

    Google Scholar
     

  • White, S. R. Density matrix formulation for quantum renormalization teams. Phys. Rev. Lett. 69, 2863 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. T., Li, B. & Cho, S. Y. Topological quantum part transition in bond-alternating spin-1/2 Heisenberg chains. Phys. Rev. B 87, 054402 (2013).

    Article 

    Google Scholar
     

  • Collins, A., Hamer, C. J. & Weihong, Z. Modified triplet-wave enlargement technique utilized to the alternating Heisenberg chain. Phys. Rev. B 74, 144414 (2006).

    Article 

    Google Scholar
     

  • Ochsenbein, S. et al. Standing spin waves in an antiferromagnetic molecular Cr6 horseshoe. Europhys. Lett. 79, 17003 (2007).

    Article 

    Google Scholar
     

  • Shannon, C. Communication within the presence of noise. Proc. IRE 37, 10–21 (1949).

    Article 

    Google Scholar
     

  • Salace, G., Petit, C. & Vuillaume, D. Inelastic electron tunneling spectroscopy: capabilities and limitations in metallic–oxide–semiconductor gadgets. J. Appl. Phys. 91, 5896–5901 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kennedy, T. Precise diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2, 5737 (1990).

    Article 

    Google Scholar
     

  • Barnes, T., Riera, J. & Tennant, D. S=1/2 alternating chain utilizing multiprecision strategies. Phys. Rev. B 59, 11384–11397 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Baumann, S. et al. Electron paramagnetic resonance of particular person atoms on a floor. Science 350, 417–420 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob, D. & Fernández-Rossier, J. Concept of intermolecular change in coupled spin-1/2 nanographenes. Phys. Rev. B 106, 205405 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software program library for tensor community calculations. SciPost Phys. Codebases 10.21468/SciPostPhysCodeb.4 (2022).

  • Appelbaum, J. A. Change mannequin of zero-bias tunneling anomalies. Phys. Rev. 154, 633–643 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Weinberg, P. & Bukov, M. QuSpin: a Python bundle for dynamics and precise diagonalisation of quantum many physique programs half I: spin chains. SciPost Phys. 2, 003 (2017).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains. Supplies Cloud Archive https://doi.org/10.24435/materialscloud:x8-7y (2024).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles