Hobbs, S. Ok. et al. Regulation of transport pathways in tumor vessels: Function of tumor kind and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).
Peer, D. et al. Nanocarriers as an rising platform for most cancers remedy. Nat. Nanotechnol. 2, 751–760 (2007).
He, H., Liu, L., Morin, E. E., Liu, M. & Schwendeman, A. Survey of medical translation of most cancers nanomedicines—classes discovered from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).
Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).
Sindhwani, S. et al. The entry of nanoparticles into strong tumours. Nat. Mater. 19, 566–575 (2020).
Kingston, B. R. et al. Particular endothelial cells govern nanoparticle entry into strong tumors. ACS Nano 15, 14080–14094 (2021).
Nguyen, L. N. M. et al. The exit of nanoparticles from strong tumours. Nat. Mater. 22, 1261–1272 (2023).
Nguyen, L. N. M. et al. The mechanisms of nanoparticle supply to strong tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).
Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).
Fung, Ok. Y. Y., Fairn, G. D. & Lee, W. L. Transcellular vesicular transport in epithelial and endothelial cells: challenges and alternatives. Visitors 19, 5–18 (2018).
Oh, P. et al. In vivo proteomic imaging evaluation of caveolae reveals pumping system to penetrate strong tumors. Nat. Med. 20, 1062–1068 (2014).
Commisso, C. et al. Macropinocytosis of protein is an amino acid provide route in Ras-transformed cells. Nature 497, 633–637 (2013).
Basagiannis, D. et al. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation by means of macropinocytosis. J. Cell Sci. 129, 4091–4104 (2016).
Pulaski, B. A. & Ostrand‐Rosenberg, S. Mouse 4T1 breast tumor mannequin. Curr. Protoc. Immunol. 39, 20.2.1–20.2.16 (2000).
Parton, R. G. & Simons, Ok. The a number of faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).
Kerr, M. C. & Teasdale, R. D. Defining macropinocytosis. Visitors 10, 364–371 (2009).
Swanson, J. A. & Watts, C. Macropinocytosis. Traits Cell Biol. 5, 424–428 (1995).
Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, within the regulation of endocytosis. Strategies Enzymol. 438, 77–93 (2008).
Koivusalo, M. et al. Amiloride inhibits macropinocytosis by reducing submembranous pH and stopping Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563 (2010).
Zhu, M. et al. Machine-learning-assisted single-vessel evaluation of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).
Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis through DOCK4 to advertise atherosclerosis. Nature 569, 565–569 (2019).
Commisso, C., Flinn, R. J. & Bar-Sagi, D. Figuring out the macropinocytic index of cells by means of a quantitative image-based assay. Nat. Protoc. 9, 182–192 (2014).
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key rules and strategies for learning the endocytosis of organic and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).
Carmichael, S. W., Brooks, J. C., Malhotra, R. Ok., Wakade, T. D. & Wakade, A. R. Ultrastructural demonstration of exocytosis within the intact rat adrenal medulla. J. Electron Microsc. Tech. 12, 316–322 (1989).
Hastoy, B., Clark, A., Rorsman, P. & Lang, J. Fusion pore in exocytosis: greater than an exit gate? A β-cell perspective. Cell Calcium 68, 45–61 (2017).
Sykes, E. A. et al. Tailoring nanoparticle designs to focus on most cancers based mostly on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016).
Ahn, W., Singla, B., Marshall, B. & Csányi, G. Visualizing membrane ruffle formation utilizing scanning electron microscopy. J. Vis. Exp. https://doi.org/10.3791/62658 (2021).
Lambies, G. & Commisso, C. Macropinocytosis, capabilities and mechanisms. Subcell. Biochem. 98, 15–40 (2022).
Fullstone, G., Wooden, J., Holcombe, M. & Battaglia, G. Modelling the transport of nanoparticles below blood circulate utilizing an agent-based strategy. Sci. Rep. 5, 10649 (2015).
Tan, J., Thomas, A. & Liu, Y. Affect of pink blood cells on nanoparticle focused supply in microcirculation. Mushy Matter 8, 1934–1946 (2011).
Pernet-Gallay, Ok. et al. Vascular permeability within the RG2 glioma mannequin could be mediated by macropinocytosis and be unbiased of the opening of the tight junction. J. Cereb. Blood Move Metab. 37, 1264–1275 (2016).
Eelen, G., Zeeuw, P. de, Simons, M. & Carmeliet, P. Endothelial cell metabolism in regular and diseased vasculature. Circ. Res. 116, 1231–1244 (2015).
Ngo, W. et al. Why nanoparticles favor liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).
Tsoi, Ok. M. et al. Mechanism of exhausting nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).
Liebner, S. et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331 (2000).
Xiang, S. et al. Uptake mechanisms of non-viral gene supply. J. Management. Launch 158, 371–378 (2012).
Dai, Q. et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in strong tumors. ACS Nano 12, 8423–8435 (2018).
Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).
Matsumura, Y. & Maeda, H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 46, 6387–92 (1986).
Bae, E. et al. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells by means of calcium-mediated macropinocytosis and lysosomal exocytosis. Nat. Commun. 13, 4268 (2022).
Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the subsequent technology. Cell 144, 646–674 (2011).
Zhang, Y., Wu, J. L. Y., Lazarovits, J. & Chan, W. C. W. An evaluation of the binding operate and structural group of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).
Lin, Z. P., Ngo, W., Mladjenovic, S. M., Wu, J. L. Y. & Chan, W. C. W. Nanoparticles bind to endothelial cells in injured blood vessels through a transient protein corona. Nano Lett. 23, 1003–1009 (2023).
Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).
Chauhan, V. P. et al. Normalization of tumour blood vessels improves the supply of nanomedicines in a size-dependent method. Nat. Nanotechnol. 7, 383–388 (2012).