Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.
Veeranarayanan S, Azam AH, Kiga Okay, Watanabe S, Cui LZ. Bacteriophages as stable tumor theragnostic brokers. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23010402.
Maeda H, Bharate GY, Daruwalla J. Polymeric medication for environment friendly tumor-targeted drug supply primarily based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–19. https://doi.org/10.1016/j.ejpb.2008.11.010.
Li WP, Little N, Park J, Foster CA, Chen JW, Lu JQ. Tumor-associated fibroblast-targeting nanoparticles for enhancing stable tumor remedy: progress and challenges. Mol Pharmaceut. 2021;18(8):2889–905. https://doi.org/10.1021/acs.molpharmaceut.1c00455.
Lee DE, Koo H, Solar IC, Ryu JH, Kim Okay, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41(7):2656–72. https://doi.org/10.1039/c2cs15261d.
Yu G, Chen X. Host-guest chemistry in supramolecular theranostics. Theranostics. 2019;9(11):3041–74. https://doi.org/10.7150/thno.31653.
Luo C, Solar J, Solar B, He Z. Prodrug-based nanoparticulate drug supply methods for most cancers remedy. Traits Pharmacol Sci. 2014;35(11):556–66. https://doi.org/10.1016/j.ideas.2014.09.008.
Ma X, Tian H. Stimuli-responsive supramolecular polymers in aqueous resolution. Acc Chem Res. 2014;47(7):1971–81. https://doi.org/10.1021/ar500033n.
Hu J, Liu S. Engineering responsive polymer constructing blocks with host-guest molecular recognition for purposeful purposes. Acc Chem Res. 2014;47(7):2084–95. https://doi.org/10.1021/ar5001007.
Heo J, Kim SY, Whang D, Kim Okay. Form-induced, hexagonal, open frameworks: rubidium ion complexed cucurbituril. Angew Chem Int Ed Engl. 1999;38(5):641–3. https://doi.org/10.1002/(sici)1521-3773(19990301)38:5percent3c641::Assist-anie641percent3e3.0.Co;2-o.
Isobe H, Tomita N, Lee JW, Kim HJ, Kim Okay, Nakamura E. Ternary complexes between DNA, polyamine, and cucurbituril: a modular method to DNA-binding molecules. Angew Chem Int Ed Engl. 2000;39(23):4257–60. https://doi.org/10.1002/1521-3773(20001201)39:23percent3c4257::Assist-anie4257percent3e3.0.Co;2-6.
Kornmüller A, Karcher S, Jekel M. Cucurbituril for water remedy. Half II: ozonation and oxidative regeneration of cucurbituril. Water Res. 2001;35(14):3317–24. https://doi.org/10.1016/s0043-1354(01)00039-2.
Marquez C, Nau WM. two mechanisms of gradual host-guest complexation between cucurbit[6]uril and cyclohexylmethylamine: pH-responsive supramolecular kinetics. Angew Chem Int Ed Engl. 2001;40(17):3155–60. https://doi.org/10.1002/1521-3773(20010903)40:17percent3c3155::Assist-anie3155percent3e3.0.Co;2-7.
Zhao J, Kim HJ, Oh J, Kim SY, Lee JW, Sakamoto S, et al. Cucurbit[n]uril derivatives soluble in water and natural solvents. Angew Chem Int Ed Engl. 2001;40(22):4233–5. https://doi.org/10.1002/1521-3773(20011119)40:22percent3c4233::Assist-anie4233percent3e3.0.Co;2-d.
Jon SY, Selvapalam N, Oh DH, Kang JK, Kim SY, Jeon YJ, et al. Facile synthesis of cucurbit[n]uril derivatives by way of direct functionalization: increasing utilization of cucurbit[n]uril. J Am Chem Soc. 2003;125(34):10186–7. https://doi.org/10.1021/ja036536c.
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and alternatives of functionalized cucurbiturils for biomedical purposes. JACS Au. 2023;3(9):2356–77. https://doi.org/10.1021/jacsau.3c00273.
Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115(22):12320–406. https://doi.org/10.1021/acs.chemrev.5b00341.
Yang XR, Liu FB, Zhao ZY, Liang F, Zhang HJ, Liu SM. Cucurbit[10]uril-based chemistry. Chin Chem Lett. 2018;29(11):1560–6. https://doi.org/10.1016/j.cclet.2018.01.032.
Lee JW, Samal S, Selvapalam N, Kim HJ, Kim Okay. Cucurbituril homologues and derivatives: new alternatives in supramolecular chemistry. Acc Chem Res. 2003;36(8):621–30. https://doi.org/10.1021/ar020254k.
Liu YH, Zhang YM, Yu HJ, Liu Y. Cucurbituril-based biomacromolecular assemblies. Angew Chem Int Ed Engl. 2021;60(8):3870–80. https://doi.org/10.1002/anie.202009797.
Yan X, Wang F, Zheng B, Huang F. Stimuli-responsive supramolecular polymeric supplies. Chem Soc Rev. 2012;41(18):6042–65. https://doi.org/10.1039/c2cs35091b.
Haag R. Supramolecular drug-delivery programs primarily based on polymeric core-shell architectures. Angew Chem Int Ed Engl. 2004;43(3):278–82. https://doi.org/10.1002/anie.200301694.
Cabral H, Nishiyama N, Kataoka Okay. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44(10):999–1008. https://doi.org/10.1021/ar200094a.
Rodell CB, Mealy JE, Burdick JA. Supramolecular guest-host interactions for the preparation of biomedical supplies. Bioconjugate Chem. 2015;26(12):2279–89. https://doi.org/10.1021/acs.bioconjchem.5b00483.
Webber MJ. Engineering responsive supramolecular biomaterials: towards good therapeutics. Bioeng Transl Med. 2016;1(3):252–66. https://doi.org/10.1002/btm2.10031.
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril household. Angew Chem Int Edit. 2005;44(31):4844–70. https://doi.org/10.1002/anie.200460675.
Li S, Gao Y, Ding Y, Xu A, Tan H. Supramolecular nano drug supply programs mediated by way of host-guest chemistry of cucurbit[n]uril (n = 6 and seven). Chin Chem Lett. 2021;32(1):313–8. https://doi.org/10.1016/j.cclet.2020.04.049.
Langer R. New strategies of drug supply. Science. 1990;249(4976):1527–33. https://doi.org/10.1126/science.2218494.
Wu H, Chen H, Tang B, Kang Y, Xu JF, Zhang X. Host-guest interactions between oxaliplatin and cucurbit[7]uril/cucurbit[7]uril derivatives below pseudo-physiological circumstances. Langmuir. 2020;36(5):1235–40. https://doi.org/10.1021/acs.langmuir.9b03325.
Zhu P, Zhang Y, Lv P, Liao X, Zhao Y, Yang B. Practical supramolecular micelles pushed by the amphiphilic advanced of biotin-acyclic cucurbituril and cannabidiol for cell-targeted drug supply. Int J Pharm. 2022;625:122048. https://doi.org/10.1016/j.ijpharm.2022.122048.
Solar T, Wang Q, Bi Y, Chen X, Liu L, Ruan C, et al. Supramolecular amphiphiles primarily based on cyclodextrin and hydrophobic medication. J Mater Chem B. 2017;5(14):2644–54. https://doi.org/10.1039/c6tb03272a.
Yang X, Huang Q, Bardelang D, Wang C, Lee SMY, Wang R. Supramolecular alleviation of cardiotoxicity of a small-molecular kinase inhibitor. Org Biomol Chem. 2017;15 (38):8046–53.
Pashkina E, Aktanova A, Mirzaeva I, Kovalenko E, Andrienko I, Knauer N, et al. The impact of cucurbit[7]uril on the antitumor and immunomodulating properties of oxaliplatin and carboplatin. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22147337.
Zhao M, Liang Z, Zhang B, Wang Q, Lee J, Li F, et al. Supramolecular container-mediated floor engineering method for regulating the organic concentrating on impact of nanoparticles. Nano Lett. 2020;20(11):7941–7. https://doi.org/10.1021/acs.nanolett.0c02701.
Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in stable tumors. ACS Nano. 2018;12(8):8423–35. https://doi.org/10.1021/acsnano.8b03900.
Zou L, Braegelman AS, Webber MJ. Spatially outlined drug concentrating on by in situ host-guest chemistry in a residing animal. ACS Cent Sci. 2019;5(6):1035–43. https://doi.org/10.1021/acscentsci.9b00195.
Jallinoja VIJ, Carney BD, Zhu M, Bhatt Okay, Yazaki PJ, Houghton JL. Cucurbituril-ferrocene: host-guest primarily based pretargeted positron emission tomography in a xenograft mannequin. Bioconjug Chem. 2021;32(8):1554–8. https://doi.org/10.1021/acs.bioconjchem.1c00280.
Zdarova Karasova J, Mzik M, Kucera T, Vecera Z, Kassa J, Sestak V. Interplay of cucurbit[7]uril with oxime K027, atropine, and paraoxon: dangerous or advantageous supply system? Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21217883.
Chen Y, Huang Z, Xu JF, Solar Z, Zhang X. Cytotoxicity regulated by host-guest interactions: a supramolecular technique to appreciate managed disguise and publicity. ACS Appl Mater Interfaces. 2016;8(35):22780–4. https://doi.org/10.1021/acsami.6b08295.
Chen Y, Huang Z, Zhao H, Xu JF, Solar Z, Zhang X. Supramolecular chemotherapy: cooperative enhancement of antitumor exercise by combining managed launch of oxaliplatin and consuming of spermine by cucurbit[7]uril. ACS Appl Mater Interfaces. 2017;9(10):8602–8. https://doi.org/10.1021/acsami.7b01157.
Chen H, Chen Y, Wu H, Xu JF, Solar Z, Zhang X. Supramolecular polymeric chemotherapy primarily based on cucurbit[7]uril-PEG copolymer. Biomaterials. 2018;178:697–705. https://doi.org/10.1016/j.biomaterials.2018.02.051.
Chen Y, Solar Z. Supramolecular chemotherapy primarily based on the host-guest advanced of lobaplatin-cucurbit[7]uril. ACS Appl Bio Mater. 2020;3(4):2449–54. https://doi.org/10.1021/acsabm.0c00172.
Huang X, Zhou H, Jiao R, Liu H, Qin C, Xu L, et al. Supramolecular chemotherapy: host-guest complexes of heptaplatin-cucurbit[7]uril towards colorectal regular and tumor cells. Langmuir. 2021;37(18):5475–82. https://doi.org/10.1021/acs.langmuir.0c03603.
Chen Y, Jing L, Meng Q, Li B, Chen R, Solar Z. Supramolecular chemotherapy: noncovalent bond synergy of cucurbit[7]uril in opposition to human colorectal tumor cells. Langmuir. 2021;37(31):9547–52. https://doi.org/10.1021/acs.langmuir.1c01422.
Zhou H, Meng Q, Li B, Liu Y, Li Z, Li X, et al. Supramolecular mixture chemotherapy: cucurbit[8]uril advanced enhanced platinum drug infiltration and modified nanomechanical property of colorectal most cancers cells. Langmuir. 2022;38(46):14326–34. https://doi.org/10.1021/acs.langmuir.2c02388.
Kuok KI, In Ng PC, Ji X, Wang C, Yew WW, Chan DPC, et al. Supramolecular technique for decreasing the cardiotoxicity of bedaquiline with out compromising its antimycobacterial efficacy. Meals Chem Toxicol. 2018;119:425–9. https://doi.org/10.1016/j.fct.2017.12.022.
Huang Q, Li S, Yin H, Wang C, Lee SMY, Wang R. Assuaging the hepatotoxicity of trazodone by way of supramolecular encapsulation. Meals Chem Toxicol. 2018;112:421–6. https://doi.org/10.1016/j.fct.2017.12.016.
Jerzykiewicz J, Czogalla A. Polyethyleneimine-based lipopolyplexes as carriers in anticancer gene therapies. Supplies. 2021. https://doi.org/10.3390/ma15010179.
Huang Q, Li S, Ding YF, Yin H, Wang LH, Wang R. Macrocycle-wrapped polyethylenimine for gene supply with diminished cytotoxicity. Biomater Sci. 2018;6(5):1031–9. https://doi.org/10.1039/c8bm00022k.
Yang X, Wang R, Kermagoret A, Bardelang D. Oligomeric cucurbituril complexes: from peculiar assemblies to rising purposes. Angew Chem Int Ed Engl. 2020;59(48):21280–92. https://doi.org/10.1002/anie.202004622.
Chen R, Li H, Cai J, Wang C, Lin Z, Liu C, et al. Nice particulate air air pollution and the expression of microRNAs and circulating cytokines related to irritation, coagulation, and vasoconstriction. Environ Well being Perspect. 2018;126(1):017007. https://doi.org/10.1289/ehp1447.
Kuan SL, Bergamini FRG, Weil T. Practical protein nanostructures: a chemical toolbox. Chem Soc Rev. 2018;47(24):9069–105. https://doi.org/10.1039/c8cs00590g.
Huang Z, Qin Okay, Deng G, Wu G, Bai Y, Xu JF, et al. Supramolecular chemistry of cucurbiturils: tuning cooperativity with a number of noncovalent interactions from optimistic to destructive. Langmuir. 2016;32(47):12352–60. https://doi.org/10.1021/acs.langmuir.6b01709.
Ioannou E, Labrou NE. Rational design of self-assembling supramolecular protein nanostructures using the cucurbit[8]uril macrocyclic host. Strategies Mol Biol. 2022;2487:177–87. https://doi.org/10.1007/978-1-0716-2269-8_11.
Barbero H, Masson E. Design and recognition of cucurbituril-secured platinum-bound oligopeptides. Chem Sci. 2021;12(29):9962–8. https://doi.org/10.1039/d1sc02637b.
Hirani Z, Taylor HF, Babcock EF, Bockus AT, Varnado CD Jr, Bielawski CW, et al. Molecular recognition of methionine-terminated peptides by cucurbit[8]uril. J Am Chem Soc. 2018;140(38):12263–9. https://doi.org/10.1021/jacs.8b07865.
Zhang YM, Liu JH, Yu Q, Wen X, Liu Y. Focused polypeptide-microtubule aggregation with cucurbit[8]uril for enhanced cell apoptosis. Angew Chem Int Ed Engl. 2019;58(31):10553–7. https://doi.org/10.1002/anie.201903243.
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: an rising remedy choice for stable tumors. Adv Sci. 2017;4(1):1600106. https://doi.org/10.1002/advs.201600106.
Dabrowski JM, Arnaut LG. Photodynamic remedy (PDT) of most cancers: from native to systemic remedy. Photochem Photobiol Sci. 2015;14(10):1765–80. https://doi.org/10.1039/c5pp00132c.
O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and medical advances in photodynamic remedy. Photochem Photobiol. 2009;85(5):1053–74. https://doi.org/10.1111/j.1751-1097.2009.00585.x.
Rajora MA, Lou JWH, Zheng G. Advancing porphyrin’s biomedical utility by way of supramolecular chemistry. Chem Soc Rev. 2017;46(21):6433–69. https://doi.org/10.1039/C7CS00525C.
Yang Okay, Zhang Z, Du J, Li W, Pei Z. Host-guest interplay primarily based supramolecular photodynamic remedy programs: a promising candidate within the battle in opposition to most cancers. Chem Commun. 2020;56(44):5865–76. https://doi.org/10.1039/d0cc02001j.
Wang XQ, Lei Q, Zhu JY, Wang WJ, Cheng Q, Gao F, et al. Cucurbit[8]uril regulated activatable supramolecular photosensitizer for focused most cancers imaging and photodynamic remedy. ACS Appl Mater Interfaces. 2016;8(35):22892–9. https://doi.org/10.1021/acsami.6b07507.
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size-reducible nanodrug with an aggregation-enhanced photodynamic impact for deep chemo-photodynamic remedy. Angew Chem Int Ed Engl. 2018;57(35):11384–8. https://doi.org/10.1002/anie.201807602.
Wei X, Liu L, Guo X, Wang Y, Zhao J, Zhou S. Gentle-activated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic remedy of multidrug-resistant tumors. ACS Appl Mater Interfaces. 2018;10(21):17672–84. https://doi.org/10.1021/acsami.8b04163.
Mao W, Liao Y, Ma D. A supramolecular meeting mediated by host-guest interactions for improved chemo-photodynamic mixture remedy. Chem Commun. 2020;56(30):4192–5. https://doi.org/10.1039/d0cc01096k.
Ni XL, Chen S, Yang Y, Tao Z. Facile cucurbit[8]uril-based supramolecular method to manufacture tunable luminescent supplies in aqueous resolution. J Am Chem Soc. 2016;138(19):6177–83. https://doi.org/10.1021/jacs.6b01223.
Ghale G, Nau WM. Dynamically analyte-responsive macrocyclic host-fluorophore programs. Acc Chem Res. 2014;47(7):2150–9. https://doi.org/10.1021/ar500116d.
Zhang T, Zhang C-H. Photograph-controlled reversible secondary self-assembly of supramolecular nanosheets and their drug supply habits. J Mater Chem B. 2019;7(48):7736–43. https://doi.org/10.1039/C9TB02017A.
Solis-Egana F, Lavin-Urqueta N, Diaz DG, Marino-Ocampo N, Faundez MA, Fuentealba D. Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Photoch Photobio Sci. 2022;21(3):349–59. https://doi.org/10.1007/s43630-022-00174-7.
Balmain A. Most cancers as a posh genetic trait: tumor susceptibility in people and mouse fashions. Cell. 2002;108(2):145–52. https://doi.org/10.1016/S0092-8674(02)00622-0.
Li W, Wang L, Solar T, Tang H, Bui B, Cao D, et al. Characterization of nanoparticles combining polyamine detection with photodynamic remedy. Commun Biol. 2021;4(1):803. https://doi.org/10.1038/s42003-021-02317-5.
Solar C, Zhang H, Yue L, Li S, Cheng Q, Wang R. Facile preparation of cucurbit[6]uril-based polymer nanocapsules for focused photodynamic remedy. ACS Appl Mater Interfaces. 2019;11(26):22925–31. https://doi.org/10.1021/acsami.9b04403.
Angelos S, Khashab NM, Yang YW, Trabolsi A, Khatib HA, Stoddart JF, et al. pH clock-operated mechanized nanoparticles. J Am Chem Soc. 2009;131(36):12912–4. https://doi.org/10.1021/ja9010157.
Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the remedy of malignant illness. Radiother Oncol. 1984;2(4):343–66. https://doi.org/10.1016/s0167-8140(84)80077-8.
Mao W, Mao D, Yang F, Ma D. Transformative supramolecular vesicles primarily based on acid-degradable acyclic cucurbit[n]uril and a prodrug for promoted tumoral-cell uptake. Chemistry. 2019;25(9):2272–80. https://doi.org/10.1002/chem.201804835.
Mao WP, Wang SY, Mao DK, Liu YM, Li LB, Ma D. Supramolecular complexation with kinetic stabilization: cucurbit[6]uril encapsulated doxorubicin-based prodrugs for pH-responsive managed launch. New J Chem. 2022;46(11):5355–60. https://doi.org/10.1039/d1nj06237a.
Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour focused drug supply: a overview. Biomaterials. 2016;85:152–67. https://doi.org/10.1016/j.biomaterials.2016.01.061.
Zhang X, Rakesh KP, Shantharam CS, Manukumar HM, Asiri AM, Marwani HM, et al. Podophyllotoxin derivatives as a wonderful anticancer aspirant for future chemotherapy: a key present imminent wants. Bioorg Med Chem. 2018;26(2):340–55. https://doi.org/10.1016/j.bmc.2017.11.026.
Kamal A, Hussaini SMA, Rahim A, Riyaz S. Podophyllotoxin derivatives: a patent overview (2012–2014). Professional Opin Ther Pat. 2015;25(9):1025–34. https://doi.org/10.1517/13543776.2015.1051727.
Antunez-Mojica M, Rodriguez-Salarichs J, Redondo-Horcajo M, Leon A, Barasoain I, Canales A, et al. Structural and biochemical characterization of the interplay of tubulin with potent pure analogues of podophyllotoxin. J Nat Prod. 2016;79(8):2113–21. https://doi.org/10.1021/acs.jnatprod.6b00428.
Aisner J, Lee EJ. Etoposide. Present and future standing. Most cancers. 1991;67(1 Suppl):215–9. https://doi.org/10.1002/1097-0142(19910101)67:1+%3c215::aid-cncr2820671302percent3e3.0.co;2-d.
Li F, Liu D, Liao X, Zhao Y, Li R, Yang B. Acid-controlled launch complexes of podophyllotoxin and etoposide with acyclic cucurbit[n]urils for low cytotoxicity. Bioorg Med Chem. 2019;27(3):525–32. https://doi.org/10.1016/j.bmc.2018.12.035.
Xing P, Zhao Y. Supramolecular vesicles for stimulus-responsive drug supply. Small Strategies. 2018. https://doi.org/10.1002/smtd.201700364.
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2008;417(1):1–13. https://doi.org/10.1042/bj20081386.
Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent imaging probe concentrating on mitochondria primarily based on supramolecular host-guest meeting and disassembly. ACS Omega. 2022;7(38):34268–77. https://doi.org/10.1021/acsomega.2c03766.
Wu X, Chen Y, Yu Q, Li FQ, Liu Y. A cucurbituril/polysaccharide/carbazole ternary supramolecular meeting for focused cell imaging. Chem Commun. 2019;55(30):4343–6. https://doi.org/10.1039/c9cc01601e.
Vaidya A, Solar Y, Ke T, Jeong EK, Lu ZR. Distinction enhanced MRI-guided photodynamic remedy for site-specific most cancers remedy. Magn Reson Med. 2006;56(4):761–7. https://doi.org/10.1002/mrm.21009.
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic remedy delivered by nano-graphene oxide. ACS Nano. 2011;5(9):7000–9. https://doi.org/10.1021/nn201560b.
Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, et al. Photosensitizer-loaded gold vesicles with robust plasmonic coupling impact for imaging-guided photothermal/photodynamic remedy. ACS Nano. 2013;7(6):5320–9. https://doi.org/10.1021/nn4011686.
Gao L, Fei J, Zhao J, Li H, Cui Y, Li J. Hypocrellin-loaded gold nanocages with excessive two-photon effectivity for photothermal/photodynamic most cancers remedy in vitro. ACS Nano. 2012;6(9):8030–40. https://doi.org/10.1021/nn302634m.
Narayanan N, Kim JH, Santhakumar H, Joseph MM, Karunakaran V, Shamjith S, et al. Nanotheranostic probe constructed on methylene blue loaded cucurbituril [8] and gold nanorod: focused phototherapy together with sers imaging on breast most cancers cells. J Phys Chem B. 2021;125(49):13415–24. https://doi.org/10.1021/acs.jpcb.1c08609.
Kim D, Aktalay A, Jensen N, Uno Okay, Bossi ML, Belov VN, et al. Supramolecular advanced of photochromic diarylethene and cucurbit[7]uril: fluorescent photoswitching system for biolabeling and imaging. J Am Chem Soc. 2022;144(31):14235–47. https://doi.org/10.1021/jacs.2c05036.
Bhaumik SK, Biswas R, Banerjee S. Cucurbituril primarily based luminescent supplies in aqueous media and stable state. Chem Asian J. 2021;16(16):2195–210. https://doi.org/10.1002/asia.202100594.
Liu G, Xu X, Dai X, Jiang C, Zhou Y, Lu L, et al. Cucurbituril-activated photoreaction of dithienylethene for controllable focused lysosomal imaging and anti-counterfeiting. Mater Horiz. 2021;8(9):2494–502. https://doi.org/10.1039/d1mh00811k.
Yu Y, Li Y, Wang X, Nian H, Wang L, Li J, et al. Cucurbit[10]uril-based [2]rotaxane: preparation and supramolecular assembly-induced fluorescence enhancement. J Org Chem. 2017;82(11):5590–6. https://doi.org/10.1021/acs.joc.7b00400.
Biedermann F, Scherman OA. Cucurbit[8]uril mediated donor-acceptor ternary complexes: a mannequin system for finding out charge-transfer interactions. J Phys Chem B. 2012;116(9):2842–9. https://doi.org/10.1021/jp2110067.
Ziganshina AY, Ko YH, Jeon WS, Kim Okay. Steady pi-dimer of a tetrathiafulvalene cation radical encapsulated within the cavity of cucurbit[8]uril. Chem Commun. 2004;7:806–7. https://doi.org/10.1039/b316651a.
Music Q, Jiao Y, Wang Z, Zhang X. Tuning the power hole by supramolecular approaches: in direction of near-infrared natural assemblies and supplies. Small. 2016;12(1):24–31. https://doi.org/10.1002/smll.201501661.
Liu H, Lin M, Cui Y, Gan W, Solar J, Li B, et al. Single-crystal constructions of cucurbituril-based supramolecular host-guest complexes for bioimaging. Chem Commun. 2021;57(79):10190–3. https://doi.org/10.1039/d1cc04823f.
Xiang H, Cheng J, Ma X, Zhou X, Chruma JJ. Close to-infrared phosphorescence: supplies and purposes. Chem Soc Rev. 2013;42(14):6128–85. https://doi.org/10.1039/c3cs60029g.
Wang S, Gu Okay, Guo Z, Yan C, Yang T, Chen Z, et al. Self-assembly of a monochromophore-based polymer permits unprecedented ratiometric tracing of hypoxia. Adv Mater. 2019;31(3):e1805735. https://doi.org/10.1002/adma.201805735.
Schulze M, Steffen A, Wurthner F. Close to-IR phosphorescent ruthenium(II) and iridium(III) perylene bisimide metallic complexes. Angew Chem Int Ed Engl. 2015;54(5):1570–3. https://doi.org/10.1002/anie.201410437.
Leung MY, Tang MC, Cheung WL, Lai SL, Ng M, Chan MY, et al. Thermally stimulated delayed phosphorescence (TSDP)-based gold(III) complexes of tridentate pyrazine-containing pincer ligand with extensive emission shade tunability and their software in natural light-emitting gadgets. J Am Chem Soc. 2020;142(5):2448–59. https://doi.org/10.1021/jacs.9b12136.
Tang MC, Leung MY, Lai SL, Ng M, Chan MY, Wing-Wah YV. Realization of thermally stimulated delayed phosphorescence in arylgold(III) complexes and environment friendly gold(III) primarily based blue-emitting natural light-emitting gadgets. J Am Chem Soc. 2018;140(40):13115–24. https://doi.org/10.1021/jacs.8b09205.
Solar S, Ma L, Wang J, Ma X, Tian H. Pink-light excited environment friendly metal-free near-infrared room-temperature phosphorescent movies. Natl Sci Rev. 2022;9(2):nwab085. https://doi.org/10.1093/nsr/nwab085.
Wang C, Liu YH, Liu Y. Close to-infrared phosphorescent swap of diarylethene phenylpyridinium by-product and cucurbit[8]uril for cell imaging. Small. 2022;18(21):e2201821. https://doi.org/10.1002/smll.202201821.
Zhou WL, Chen Y, Yu Q, Zhang H, Liu ZX, Dai XY, et al. Ultralong purely natural aqueous phosphorescence supramolecular polymer for focused tumor cell imaging. Nat Commun. 2020;11(1):4655. https://doi.org/10.1038/s41467-020-18520-7.
Uzunova VD, Cullinane C, Brix Okay, Nau WM, Day AI. Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo examine. Org Biomol Chem. 2010;8(9):2037–42. https://doi.org/10.1039/b925555a.
Cornil J, Beljonne D, Calbert J-P, Brédas J-L. Interchain interactions in natural π-conjugated supplies: impression on digital construction, optical response, and cost transport. Adv Mater. 2001;13(14):1053–67. https://doi.org/10.1002/1521-4095(200107)13:14percent3c1053::AID-ADMA1053percent3e3.0.CO;2-7.
Il Kim S, Ju Kim H, Younger PS. Extremely fluorescent supramolecular nanoring composed of bent-shaped cyanostilbene derivatives and cucurbit[8]urils. Chemistry. 2023;29(17):e202203828. https://doi.org/10.1002/chem.202203828.
Zhang X, Chen X, Music J, Zhang J, Ren X, Zhao Y. Dimension-transformable nanostructures: from design to biomedical purposes. Adv Mater. 2020;32(48):e2003752. https://doi.org/10.1002/adma.202003752.
Li Y, Kroger M, Liu WK. Form impact in mobile uptake of PEGylated nanoparticles: comparability between sphere, rod, dice and disk. Nanoscale. 2015;7(40):16631–46. https://doi.org/10.1039/c5nr02970h.
Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional comfortable nanomaterials: an interesting world of supplies. Adv Mater. 2015;27(3):403–27. https://doi.org/10.1002/adma.201401857.
Hou D, Pu L, Zhou S, Wang R, Xu Y, Zhang W, et al. Spiropyran-appended cucurbit[6]uril enabling direct technology of 2D supplies inside residing cells. Small. 2021;17(52):e2102392. https://doi.org/10.1002/smll.202102392.
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Most cancers screening in the USA, 2019: a overview of present American Most cancers Society tips and present points in most cancers screening. CA Most cancers J Clin. 2019;69(3):184–210. https://doi.org/10.3322/caac.21557.
Shahrokhian S. Lead phthalocyanine as a selective provider for preparation of a cysteine-selective electrode. Anal Chem. 2001;73(24):5972–8. https://doi.org/10.1021/ac010541m.
Zhou Y, Yoon J. Current progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev. 2012;41(1):52–67. https://doi.org/10.1039/C1CS15159B.
Li SH, Yu CW, Xu JG. A cyclometalated palladium-azo advanced as a differential chromogenic probe for amino acids in aqueous resolution. Chem Commun. 2005;4:450–2. https://doi.org/10.1039/b414131h.
Yang MX, Tang Q, Yang M, Wang Q, Tao Z, Xiao X, et al. pH-stimulus response dye-cucurbituril sensor for amino acids in aqueous resolution. Spectrochim Acta A Mol Biomol Spectrosc. 2020;230:118076. https://doi.org/10.1016/j.saa.2020.118076.
Truxal AE, Cao L, Isaacs L, Wemmer DE, Pines A. Immediately functionalized cucurbit[7]uril as a biosensor for the selective detection of protein interactions by (129) Xe hyperCEST NMR. Chemistry. 2019;25(24):6108–12. https://doi.org/10.1002/chem.201900610.
Lu B, Wang L, Ran X, Tang H, Cao D. Current advances in fluorescent strategies for polyamine detection and the polyamine suppressing technique in tumor remedy. Biosensors. 2022. https://doi.org/10.3390/bios12080633.
Bhamore JR, Murthy ZVP, Kailasa SK. Fluorescence turn-off detection of spermine in biofluids utilizing pepsin mediated synthesis of gold nanoclusters as a probe. J Mol Liq. 2019;280:18–24. https://doi.org/10.1016/j.molliq.2019.01.132.
Tawfik SM, Shim J, Biechele-Speziale D, Sharipov M, Lee Y-I. Novel, “flip off-on” sensors for extremely selective and delicate detection of spermine primarily based on heparin-quenching of fluorescence CdTe quantum dots-coated amphiphilic thiophene copolymers. Sens Act, B Chem. 2018;257:734–44. https://doi.org/10.1016/j.snb.2017.10.172.
Kim TI, Kim Y. Analyte-directed formation of emissive excimers for the selective detection of polyamines. Chem Commun. 2016;52(70):10648–51. https://doi.org/10.1039/c6cc05761f.
Naik VG, Kumar V, Bhasikuttan AC, Kadu Okay, Ramanan SR, Bhosle AA, et al. Strong-supported amplification of aggregation emission: a tetraphenylethylene-cucurbit[6]uril@hydroxyapatite-based supramolecular sensing meeting for the detection of spermine and spermidine in human urine and blood. ACS Appl Bio Mater. 2021;4(2):1813–22. https://doi.org/10.1021/acsabm.0c01527.
Singh P, Mittal LS, Bhargava G, Kumar S. Ionic self-assembled platform of perylenediimide-sodium dodecylsulfate for detection of spermine in medical samples. Chem Asian J. 2017;12(8):890–9. https://doi.org/10.1002/asia.201700120.
Zhong C, Hu C, Kumar R, Trouillet V, Biedermann F, Hirtz M. Cucurbit[n]uril-immobilized sensor arrays for indicator-displacement assays of small bioactive metabolites. ACS Appl Nano Mater. 2021;4(5):4676–87. https://doi.org/10.1021/acsanm.1c00293.
Mallick S, Chandra F, Koner AL. A ratiometric fluorescent probe for detection of biogenic major amines with nanomolar sensitivity. Analyst. 2016;141(3):827–31. https://doi.org/10.1039/C5AN01911G.
Tu J, Solar S, Xu Y. A novel self-assembled platform for the ratiometric fluorescence detection of spermine. Chem Commun. 2016;52(5):1040–3. https://doi.org/10.1039/C5CC07861J.
Bhosle AA, Banerjee M, Hiremath SD, Sisodiya DS, Naik VG, Barooah N, et al. A mixture of a graphene quantum dots-cationic pink dye donor-acceptor pair and cucurbit[7]uril as a supramolecular sensor for ultrasensitive detection of most cancers biomarkers spermine and spermidine. J Mater Chem B. 2022;10(40):8258–73. https://doi.org/10.1039/d2tb01269c.
Deng CL, Murkli SL, Isaacs LD. Supramolecular hosts as in vivo sequestration brokers for prescription drugs and toxins. Chem Soc Rev. 2020;49(21):7516–32. https://doi.org/10.1039/d0cs00454e.
Ganapati S, Grabitz SD, Murkli S, Scheffenbichler F, Rudolph MI, Zavalij PY, et al. Molecular containers bind medication of abuse in vitro and reverse the hyperlocomotive impact of methamphetamine in rats. ChemBioChem. 2017;18(16):1583–8. https://doi.org/10.1002/cbic.201700289.
Thevathasan T, Grabitz SD, Santer P, Rostin P, Akeju O, Boghosian JD, et al. Calabadion 1 selectively reverses respiratory and central nervous system results of fentanyl in a rat mannequin. Br J Anaesth. 2020;125(1):e140–7. https://doi.org/10.1016/j.bja.2020.02.019.
Murkli S, Klemm J, Brockett AT, Shuster M, Briken V, Roesch MR, et al. In Vitro and in vivo sequestration of phencyclidine by Me(4) cucurbit[8]uril*. Chemistry. 2021;27(9):3098–105. https://doi.org/10.1002/chem.202004380.
Stäuble CG, Blobner M. The way forward for neuromuscular blocking brokers. Curr Opin Anaesthesiol. 2020;33(4):490–8. https://doi.org/10.1097/aco.0000000000000891.
Zafirova Z, Dalton A. Neuromuscular blockers and reversal brokers and their impression on anesthesia follow. Finest Pract Res Clin Anaesthesiol. 2018;32(2):203–11. https://doi.org/10.1016/j.bpa.2018.06.004.
Murkli S, Klemm J, King D, Zavalij PY, Isaacs L. Acyclic cucurbit[n]uril-type receptors: fragrant wall extension enhances binding affinity, delivers helical chirality, and permits fluorescence sensing. Chemistry. 2020;26(66):15249–58. https://doi.org/10.1002/chem.202002874.
Shaya D, Isaacs L. Acyclic cucurbit[n]uril-type containers as receptors for neuromuscular blocking brokers: structure-binding affinity relationships. Croat Chem Acta. 2019;92(2):163–71. https://doi.org/10.5562/cca3507.
Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a important overview. Arch Toxicol. 2020;94(7):2275–92. https://doi.org/10.1007/s00204-020-02797-0.
Andrýs R, Klusoňová A, Lísa M, Kassa J, Karasová J. Impact of oxime encapsulation on acetylcholinesterase reactivation: pharmacokinetic examine of the asoxime-cucurbit[7]uril advanced in mice utilizing hydrophilic interplay liquid chromatography-mass spectrometry. Mol Pharm. 2021;18(6):2416–27. https://doi.org/10.1021/acs.molpharmaceut.1c00257.
Eizadi-Temper N, Jaberi D, Barouti Z, Rahimi A, Mansourian M, Dorooshi G, et al. The efficacy of hemodialysis on paraquat poisoning mortality: a scientific overview and meta-analysis. J Res Med Sci. 2022;27:74. https://doi.org/10.4103/jrms.jrms_235_21.
Ling Y, Mague JT, Kaifer AE. Inclusion complexation of diquat and paraquat by the hosts cucurbit[7]uril and cucurbit[8]uril. Chemistry. 2007;13(28):7908–14. https://doi.org/10.1002/chem.200700402.
Zhang X, Xu X, Li S, Li L, Zhang J, Wang R. An artificial receptor as a selected antidote for paraquat poisoning. Theranostics. 2019;9(3):633–45. https://doi.org/10.7150/thno.31485.
Zhang X, Huang Q, Zhao ZZ, Xu X, Li S, Yin H, Li L, Zhang J, Wang R. An Eco- and Person-Pleasant Herbicide. J Agric Meals Chem. 2019;67(28):7783–92.
Cheng M, Isaacs L. Acyclic cucurbituril that includes pendant cyclodextrins. Supramol Chem. 2021;33(3):53–62. https://doi.org/10.1080/10610278.2021.1927033.
Haerter F, Simons JC, Foerster U, Moreno Duarte I, Diaz-Gil D, Ganapati S, et al. Comparative effectiveness of calabadion and sugammadex to reverse non-depolarizing neuromuscular-blocking brokers. Anesthesiology. 2015;123(6):1337–49. https://doi.org/10.1097/aln.0000000000000868.
Diaz-Gil D, Haerter F, Falcinelli S, Ganapati S, Hettiarachchi GK, Simons JC, et al. A novel technique to reverse common anesthesia by scavenging with the acyclic cucurbit[n]uril-type molecular container calabadion 2. Anesthesiology. 2016;125(2):333–45. https://doi.org/10.1097/aln.0000000000001199.
Wang Z, Solar C, Yang Okay, Chen X, Wang R. Cucurbituril-based supramolecular polymers for biomedical purposes. Angew Chem Int Ed Engl. 2022;61(38):e202206763. https://doi.org/10.1002/anie.202206763.