-11.2 C
United States of America
Tuesday, January 21, 2025

Superior siRNA supply in combating hepatitis B virus: mechanistic insights and up to date updates | Journal of Nanobiotechnology


  • Bagcchi S. WHO’s 2024 tips to fight hepatitis B. Lancet Infect Dis. 2024;24: e360.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu YC, Huang DQ, Nguyen MH. World burden of hepatitis B virus: present standing, missed alternatives and a name for motion. Nat Rev Gastroenterol Hepatol. 2023;20:524–37.

    Article 
    PubMed 

    Google Scholar
     

  • Razavi-Shearer D, Gamkrelidze I, Pan C, Jia J, Berg T, Grey R, Lim YS, Chen CJ, Ocama P, Desalegn H, Abbas Z. World prevalence, cascade of care, and prophylaxis protection of hepatitis B in 2022: a modelling examine. Lancet Gastroenterol Hepatol. 2023;8:879–907.

    Article 
    CAS 

    Google Scholar
     

  • Revill PA, Chisari FV, Block JM, Dandri M, Gehring AJ, Guo H, et al. A world scientific technique to remedy hepatitis B. Lancet Gastroenterol Hepatol. 2019;4:545–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuen M-F, Chen D-S, Dusheiko GM, Janssen HL, Lau DT, Locarnini SA, et al. Hepatitis B virus an infection. Nat Rev Dis Primers. 2018;4:1–20.

    Article 

    Google Scholar
     

  • Liaw Y-F, Chu C-M. Hepatitis B virus an infection. Lancet. 2009;373:582–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trépo C, Chan HL, Lok A. Hepatitis B virus an infection. Lancet. 2014;384:2053–63.

    Article 
    PubMed 

    Google Scholar
     

  • Tang LS, Covert E, Wilson E, Kottilil S. Continual hepatitis B an infection: a evaluate. JAMA. 2018;319:1802–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busch Okay, Thimme R. Pure historical past of power hepatitis B virus an infection. Med Microbiol Immunol. 2015;204:5–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell C, Wang T, McNaughton AL, Barnes E, Matthews PC. Threat elements for the event of hepatocellular carcinoma (HCC) in power hepatitis B virus (HBV) an infection: a scientific evaluate and meta-analysis. J Viral Hepatitis. 2021;28:493–507.

    Article 
    CAS 

    Google Scholar
     

  • Lampertico P, Agarwal Okay, Berg T, Buti M, Janssen HL, Papatheodoridis G, et al. EASL 2017 Scientific Follow Pointers on the administration of hepatitis B virus an infection. Hepatology. 2017;67:370–98.

    Article 

    Google Scholar
     

  • Bourliere M, Rabiega P, Ganne-Carrie N, Serfaty L, Marcellin P, Barthe Y, et al. Impact on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos (t) ide analogue remedy versus nucleos (t) ide analogue remedy alone in sufferers with HBe antigen-negative power hepatitis B and sustained undetectable plasma hepatitis B virus DNA: a randomised, managed, open-label trial. Lancet. 2017;2:177–88.


    Google Scholar
     

  • Chen VL, Yeh ML, Le AK, Jun M, Saeed WK, Yang JD, et al. Anti-viral remedy is related to improved survival however is underutilised in sufferers with hepatitis B virus-related hepatocellular carcinoma: real-world east and west expertise. Aliment Pharmacol Ther. 2018;48:44–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen VH, Le AK, Trinh HN, Chung M, Johnson T, Wong C, et al. Poor adherence to tips for therapy of power hepatitis B virus an infection at main care and referral practices. Clin Gastroenterol Hepatol. 2019;17:957-967.e957.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu CW, Su WW, Lee CM, Peng CY, Chuang WL, Kao JH, et al. Section IV randomized medical examine: peginterferon alfa-2a with adefovir or entecavir pre-therapy for HBeAg-positive power hepatitis B. J Formosan Med Assoc. 2018;117:588–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li GJ, Yu YQ, Chen SL, Fan P, Shao LY, Chen JZ, et al. Sequential mixture remedy with pegylated interferon results in lack of hepatitis B floor antigen and hepatitis B e antigen (HBeAg) seroconversion in HBeAg-positive power hepatitis B sufferers receiving long-term entecavir therapy. Antimicrob Brokers Chemother. 2015;59:4121–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A evaluate on present standing of antiviral siRNA. Rev Med Virol. 2018;28: e1976.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with illness: a progress report on siRNA-based therapeutics. Nat Rev Drug Discovery. 2007;6:443–53.

    Article 
    PubMed 

    Google Scholar
     

  • Sajid MI, Moazzam M, Cho Y, Kato S, Xu A, Method JJ, et al. siRNA therapeutics for the remedy of COVID-19 and different coronaviruses. Mol Pharm. 2021;18:2105–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta A, Michler T, Merkel OM. siRNA therapeutics towards respiratory viral infections-what have we discovered for potential COVID-19 therapies? Adv Healthcare Mater. 2021;10: e2001650.

    Article 

    Google Scholar
     

  • Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, et al. Small interfering RNA (siRNA)-based therapeutic functions towards viruses: ideas, potential, and challenges. J Biomed Sci. 2023;30:88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Berg F, Limani SW, Mnyandu N, Maepa MB, Ely A, Arbuthnot P. Advances with RNAi-based remedy for hepatitis B virus an infection. Viruses. 2020;12:851.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roca Suarez AA, Testoni B, Zoulim F. HBV 2021: New therapeutic methods towards an previous foe. Liver Int. 2021;41(Suppl 1):15–23.

    Article 
    PubMed 

    Google Scholar
     

  • Hui RW, Mak LY, Seto WK, Yuen MF. Therapeutic advances in HBV remedy. Scientific liver illness. 2024;23: e0161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui RW, Mak LY, Seto WK, Yuen MF. RNA interference as a novel therapy technique for power hepatitis B an infection. Clin Mol Hepatol. 2022;28:408–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SJ, Son S, Yhee JY, Choi Okay, Kwon IC, Kim SH, et al. Structural modification of siRNA for environment friendly gene silencing. Biotechnol Adv. 2013;31:491–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chisari FV, Ferrari C, Mondelli MU. Hepatitis B virus construction and biology. Microb Pathog. 1989;6:311–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic methods for hepatitis B virus an infection: in the direction of a remedy. Nat Rev Drug Discovery. 2019;18:827–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Locarnini S, Littlejohn M, Aziz MN, Yuen L. Doable origins and evolution of the hepatitis B virus (HBV). Semin Most cancers Biol. 2013;23:561–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeger C, Mason WS. Molecular biology of hepatitis B virus an infection. Virology. 2015;479:672–86.

    Article 
    PubMed 

    Google Scholar
     

  • Venkatakrishnan B, Zlotnick A. The structural biology of hepatitis B virus: type and performance. Annu Rev Virol. 2016;3:429–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Latest Advances in Hepatitis B Therapy. Prescription drugs. 2021;14:417.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei L, Ploss A. Core parts of DNA lagging strand synthesis equipment are important for hepatitis B virus cccDNA formation. Nat Microb. 2020;5:715–26.

    Article 
    CAS 

    Google Scholar
     

  • Wei L, Ploss A. Mechanism of hepatitis B virus cccDNA formation. Viruses. 2021;13:1463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ligat G, Goto Okay, Verrier E, Baumert TG. Focusing on viral cccDNA for remedy of power hepatitis B. Curr Hepatol Rep. 2020;19:235–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Management of cccDNA operate in hepatitis B virus an infection. J Hepatol. 2009;51:581–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassal M, Schaller H. Hepatitis B virus replication. Tendencies Microbiol. 1993;1:221–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsukuda S, Watashi Okay. Hepatitis B virus biology and life cycle. Antiviral Res. 2020;182: 104925.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a useful receptor for human hepatitis B and D virus. Elife. 2012;1: e00049.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asami J, Park JH, Nomura Y, Kobayashi C, Mifune J, Ishimoto N, et al. Structural foundation of hepatitis B virus receptor binding. Nat Struct Mol Biol. 2024;31:447–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, et al. The covalently closed duplex type of the hepadnavirus genome exists in situ as a heterogeneous inhabitants of viral minichromosomes. J Virol. 1995;69:3350–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassal M. HBV cccDNA: viral persistence reservoir and key impediment for a remedy of power hepatitis B. Intestine. 2015;64:1972–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glebe D, Bremer CM, editors. The molecular virology of hepatitis B virus. Seminars in liver illness; 2013: Thieme Medical Publishers.

  • Ghaemi Z, Nafiu O, Tajkhorshid E, Gruebele M, Hu J. A computational spatial whole-Cell mannequin for hepatitis B viral an infection and drug interactions. Sci Rep. 2023;13:21392.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornberg M, Lok AS-F, Terrault NA, Zoulim F, Berg T, Brunetto MR, et al. Steering for design and endpoints of medical trials in power hepatitis B-Report from the 2019 EASL-AASLD HBV Therapy Endpoints Convention. Hepatology. 2020;72:539–57.

    Article 
    CAS 

    Google Scholar
     

  • Gopalakrishna H, Ghany MG. Perspective on rising therapies to realize useful remedy of power hepatitis B. Curr Hepatol Rep. 2024;23:1–12.

    Article 

    Google Scholar
     

  • Jeng W-J, Lok AS. What’s going to it take to remedy hepatitis B? Hepatol Commun. 2023;7: e0084.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvaruso V, Craxì A. Fibrosis in power viral hepatitis. Greatest Pract Res Clin Gastroenterol. 2011;25:219–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allweiss L, Dandri M. The position of cccDNA in HBV upkeep. Viruses. 2017;9:156.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong GLH, Gane E, Lok ASF. The best way to obtain useful remedy of HBV: stopping NUCs, including interferon or new drug growth? J Hepatol. 2022;76:1249–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isorce N, Lucifora J, Zoulim F, Durantel D. Immune-modulators to fight hepatitis B virus an infection: from IFN-α to novel investigational immunotherapeutic methods. Antiviral Res. 2015;122:69–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltayiannis G, Karayiannis P. Therapy choices past IFNα and NUCs for power HBV an infection: expectations for tomorrow. J Viral Hepatitis. 2014;21:753–61.

    Article 
    CAS 

    Google Scholar
     

  • Yuen M-F, Seto W-Okay, Chow DH-F, Tsui Okay, Wong DK-H, Ngai VS, et al. Lengthy-term lamivudine remedy reduces the chance of long-term problems of power hepatitis B an infection even in sufferers with out superior illness. Antiviral Ther. 2007;12:1295–304.

    Article 
    CAS 

    Google Scholar
     

  • Kim WR, Loomba R, Berg T, Aguilar Schall RE, Yee LJ, Dinh PV, et al. Impression of long-term tenofovir disoproxil fumarate on incidence of hepatocellular carcinoma in sufferers with power hepatitis. B Most cancers. 2015;121:3631–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Yardeni D, Chang KM, Ghany MG. Present finest follow in hepatitis b administration and understanding long-term prospects for remedy. Gastroenterology. 2023;164:42-60.e46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexopoulou A, Vasilieva L, Karayiannis P. New approaches to the therapy of power hepatitis B. J Clin Med. 2020;9:3187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw T, Bartholomeusz A, Locarnini S. HBV drug resistance: mechanisms, detection and interpretation. J Hepatol. 2006;44:593–606.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta N, Goyal M, Wu CH, Wu GY. The molecular and structural foundation of HBV-resistance to nucleos(t)ide analogs. J Clin Transl Hepatol. 2014;2:202–11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin CL, Kao JH. Latest advances within the therapy of power hepatitis B. Knowledgeable Opin Pharmacother. 2011;12:2025–40.

    Article 
    PubMed 

    Google Scholar
     

  • Qu B, Brown RJ. Methods to inhibit Hepatitis B Virus on the transcript degree. Viruses. 2021;13:1327.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dusheiko G, Agarwal Okay, Maini MK. New approaches to power hepatitis B. N Engl J Med. 2023;388:55–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konishi M, Wu CH, Wu GY. Inhibition of HBV replication by siRNA in a steady HBV-producing cell line. Hepatology. 2003;38:842–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Kasianchuk N, Dobrowolska Okay, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, et al. Gene-editing and RNA interference in treating hepatitis B: a evaluate. Viruses. 2023;15:2395.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe T, Hayashi S, Tanaka YJV. Drug discovery examine geared toward a useful remedy for HBV. Viruses. 2022;14:1393.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryther RC, Flynt AS, Phillips JA third, Patton JG. siRNA therapeutics: huge potential from small RNAs. Gene Ther. 2005;12:5–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grünweller A, Hartmann RK. RNA interference as a gene-specific method for molecular medication. Curr Med Chem. 2005;12:3143–61.

    Article 
    PubMed 

    Google Scholar
     

  • Rana TM. Illuminating the silence: understanding the construction and performance of small RNAs. Nat Rev Mol Cell Biol. 2007;8:23–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macrae IJ, Zhou Okay, Li F, Repic A, Brooks AN, Cande WZ, et al. Structural foundation for double-stranded RNA processing by Dicer. Science. 2006;311:195–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurreck J. siRNA effectivity: construction or sequence-that is the query. J Biomed Biotechnol. 2006;2006:83757.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sneller L, Lin C, Worth A, Kottilil S, Chua JVJM. RNA interference therapeutics for power hepatitis B: progress challenges, and future prospects. Microorganisms. 2024;12:599.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sajid MI, Moazzam M, Kato S, Yeseom Cho Okay, Tiwari RK. Overcoming BARRIERS for siRNA therapeutics: from bench to bedside. Prescription drugs. 2020;13:294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Berg FT. Optimisation of expressed RNA interference mimics utilizing predicted stem size: College of the Witwatersrand, School of Science, Faculty of Molecular and Cell Biology. 2016.

  • Wittrup A, Lieberman J. Flattening illness: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16:543–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayagam JS, Cargill ZC, Agarwal KJCHR. The position of RNA interference in useful remedy methods for power hepatitis B. Curr Hepatol Rep. 2020;19:362–9.

    Article 

    Google Scholar
     

  • Shukla S, Sumaria CS, Pradeepkumar PI. Exploring chemical modifications for siRNA therapeutics: a structural and useful outlook. ChemMedChem. 2010;5:328–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4: e252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Zhou Y, Richards AMJT. Efficient instruments for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics. 2021;11:8771.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumeier J, Meister G. siRNA specificity: RNAi mechanisms and techniques to cut back off-target results. Entrance Plant Sci. 2021;11: 526455.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setten RL, Rossi JJ, Han S. The present state and future instructions of RNAi-based therapeutics. Na Rev Drug Discov. 2019;18:421–46.

    Article 
    CAS 

    Google Scholar
     

  • Schwarz DS, Ding H, Kennington L, Moore JT, Schelter J, Burchard J, et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genetic. 2006;2: e140.

    Article 

    Google Scholar
     

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotech. 2004;22:326–30.

    Article 
    CAS 

    Google Scholar
     

  • Gish RG, Yuen M-F, Chan HLY, Given BD, Lai C-L, Locarnini SA, et al. Artificial RNAi triggers and their use in power hepatitis B therapies with healing intent. Antiviral Res. 2015;121:97–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X. Identification of host elements regulating hepatitis B virus covalently closed round DNA transcription: College of Pittsburgh; 2024.

  • Okada H, Sakamoto T, Nio Okay, Li Y, Kuroki Okay, Sugimoto S, et al. Lipid nanoparticle-encapsulated DOCK11-siRNA effectively reduces hepatitis B virus cccDNA degree in contaminated mice. Mol Ther Strategies Clin Dev. 2024;32: 101289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohd-Ismail NK, Lim Z, Gunaratne J, Tan Y-J. Mapping the interactions of HBV cccDNA with host elements. J Mol Sci. 2019;20:4276.

    Article 
    CAS 

    Google Scholar
     

  • Allweiss L, Giersch Okay, Pirosu A, Volz T, Muench RC, Beran RK, et al. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complicated and silencing of the viral genome in vivo. Intestine. 2022;71:372–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y-Y, Murai Okay, Lyu J, Honda MJV. Roles performed by DOCK11, a Guanine nucleotide trade issue, in HBV entry and persistence in hepatocytes. Viruses. 2024;16:745.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grassi M, Cavallaro G, Scirè S, Scaggiante B, Dapas B, Farra R, et al. Present methods to enhance the efficacy and the supply of nucleic acid primarily based medication. Curr Sign Transduct Ther. 2010;5:92–120.

    Article 
    CAS 

    Google Scholar
     

  • Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, et al. Polymer-mediated supply of siRNAs to hepatocellular carcinoma: variables affecting specificity and effectiveness. Molecules. 2018;23:777.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barba AA, Cascone S, Caccavo D, Lamberti G, Chiarappa G, Abrami M, et al. Engineering approaches in siRNA supply. Int J Pharm. 2017;525:343–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shegokar R, Al Shaal L, Mishra PR. SiRNA supply: challenges and position of provider methods. Pharmazie. 2011;66:313–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Hong J, Zheng S, Ding Y, Guo S, Zhang H, et al. Elimination pathways of systemically delivered siRNA. Mol Ther. 2011;19:381–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paunovska Okay, Loughrey D, Dahlman JE. Drug supply methods for RNA therapeutics. Nat Rev Genet. 2022;23:265–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, et al. siRNA: mechanism of motion, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905: 174178.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Lu Z, Wientjes MG, Au JL. Supply of siRNA therapeutics: limitations and carriers. AAPS J. 2010;12:492–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Shen Y. Overcoming obstacles to develop efficient and secure siRNA therapeutics. Knowledgeable Opin Biol Ther. 2009;9:609–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juliano R, Bauman J, Kang H, Ming X. Organic limitations to remedy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6:686–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavrilov Okay, Saltzman WM. Therapeutic siRNA: ideas, challenges, and techniques. Yale J Biol Med. 2012;85:187–200.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneda Y. Gene remedy: a battle towards organic limitations. Curr Mol Med. 2001;1:493–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard Okay, Jensen Okay, Breen W, et al. Potent and protracted in vivo anti-HBV exercise of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deleavey GF, Watts JK, Damha MJ. Chemical modification of siRNA. Cur Protocols Nucleic Acid Chem. 2009. https://doi.org/10.1002/0471142700.nc1603s39.

    Article 

    Google Scholar
     

  • Chernikov IV, Ponomareva UA, Chernolovskaya EL. Structural modifications of siRNA enhance its efficiency in vivo. Int J Mol Sci. 2023;24:956.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaglione M, Messere A. Latest progress in chemically modified siRNAs. Mini Rev Med Chem. 2010;10:578–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo MK, Yhee JY, Kim SH, Kim Okay. The potential and advances in RNAi remedy: chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers. J Managed Rel. 2014;193:113–21.

    Article 
    CAS 

    Google Scholar
     

  • Ku SH, Jo SD, Lee YK, Kim Okay, Kim SH. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Vyver T, De Smedt SC, Raemdonck Okay. Modulating intracellular pathways to enhance non-viral supply of RNA therapeutics. Adv Drug Deliv Rev. 2022;181: 114041.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, et al. Non-viral nanoparticles for RNA interference: ideas of design and sensible tips. Adv Drug Deliv Rev. 2021;174:576–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan Y, Liu X-Y, Lu A, Wang X-Y, Jiang L-X, Wang J-C. Non-viral vectors for RNA supply. J Management Launch. 2022;342:241–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong L, Liu D, Cao Z, Zheng N, Mao C, Liu S, et al. Analysis standing and prospect of non-viral vectors primarily based on siRNA: a evaluate. Int J Mol Sci. 2023;24:3375.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Okay, Huang L. Nonviral strategies for siRNA supply. Mol Pharm. 2009;6:651–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David S, Pitard B, Benoît J-P, Passirani C. Non-viral nanosystems for systemic siRNA supply. Pharmacol Res. 2010;62:100–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA supply in breast most cancers. J Managed Launch. 2014;190:440–50.

    Article 
    CAS 

    Google Scholar
     

  • Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA supply to the lung. Adv Drug Deliv Rev. 2007;59:124–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schluep T, Lickliter J, Hamilton J, Lewis DL, Lai CL, Lau JY, et al. Security, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the therapy of power hepatitis B virus an infection, in wholesome volunteers. Clin Pharm Drug Dev. 2017;6:350–62.

    Article 
    CAS 

    Google Scholar
     

  • Yuen MF, Schiefke I, Yoon JH, Ahn SH, Heo J, Kim JH, et al. RNA interference remedy with ARC-520 leads to extended hepatitis B floor antigen response in sufferers with power hepatitis B an infection. Hepatology. 2020;72:19–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gane E, Locarnini S, Lim TH, Strasser S, Sievert W, Cheng W, et al. Quick-term therapy with RNA interference remedy, JNJ-3989, leads to sustained hepatitis B floor antigen suppression in sufferers with power hepatitis B receiving nucleos (t) ide analogue therapy. J Hepatol. 2020. https://doi.org/10.1016/S0168-8278(20)30597-3.

    Article 
    PubMed 

    Google Scholar
     

  • Agarwal Okay, Gane E, Cheng W, Sievert W, Roberts SK, Ahn SH, et al. HBcrAg, HBV-RNA declines in a section 2a examine evaluating the multi-dose exercise of ARB-1467 in HBeAg-positive and destructive virally suppressed topics with hepatitis B. J Hepatol. 2017;66:S688.

    Article 

    Google Scholar
     

  • Streinu-Cercel A, Gane E, Cheng W, Sievert W, Roberts S, Ahn S, et al. A section 2a examine evaluating the multi-dose exercise of ARB-1467 in HBeAg constructive and destructive virally suppressed topics with hepatitis B. J Hepatol. 2017;1:S688–9.

    Article 

    Google Scholar
     

  • Gupta SV, Fanget MC, MacLauchlin C, Clausen VA, Li J, Cloutier D, et al. Scientific and preclinical single-dose pharmacokinetics of VIR-2218, an RNAi therapeutic concentrating on HBV an infection. Medication R&D. 2021;21:455–65.

    Article 
    CAS 

    Google Scholar
     

  • Thi EP, Yuen R, Gane E, Sevinsky H, Sims Okay, Anderson M, et al., editors. Inhibition of hepatitis B floor antigen by RNA interference therapeutic AB-729 in power hepatitis B sufferers correlates with suppression of all HBsAg isoforms and HBV RNA. The Worldwide Liver Congress 2021 (ILC 2021); 2021: Elsevier BV. The Journal’s website is situated at http://www.elsevier.com

  • Yuen MF, Lim TH, Kim W, Tangkijvanich P, Yoon J-H, Sievert W, et al., editors. HBV RNAi inhibitor RG6346 in Section 1b-2a trial was secure, well-tolerated, and resulted in substantial and sturdy reductions in serum HBsAg ranges. The Liver Assembly Digital Expertise™; 2020: AASLD.

  • Seto W-Okay, Liang Z, Gan LM, Fu J, Yuen M-F. Security and antiviral exercise of RBD1016, a RNAi therapeutic, in Chinese language topics with power hepatitis B virus (HBV) an infection. J Hepatol. 2023;78:S1152.

    Article 

    Google Scholar
     

  • Springer AD, Dowdy SF. GalNAc-siRNA conjugates: main the way in which for supply of RNAi therapeutics. Nucleic Acid Ther. 2018;28:109–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korin E, Bejerano T, Cohen S. GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA concentrating on to the liver. J Management Launch. 2017;266:310–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda Y, Taira Okay. Ligand-targeted supply of therapeutic siRNA. Pharm Res. 2006;23:1631–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrone F, Craparo EF, Cemazar M, Kamensek U, Drago SE, Dapas B, et al. Focused supply of siRNAs towards hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J Managed Launch. 2021;330:1132–51.

    Article 
    CAS 

    Google Scholar
     

  • Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, et al. Scientific proof of idea for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25:71–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeulen LM, De Smedt SC, Remaut Okay, Braeckmans Okay. The proton sponge speculation: fable or reality? Eur J Pharm Biopharm. 2018;129:184–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Creusat G, Rinaldi A-S, Weiss E, Elbaghdadi R, Remy J-S, Mulherkar R, et al. Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA supply methods. Bioconjug Chem. 2010;21:994–1002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis DL. Dynamic polyconjugates ( DPC ) expertise : a chic answer to the siRNA supply downside. 2011.

  • Wong SC, Klein JJ, Hamilton HL, Chu Q, Frey CL, Trubetskoy VS, et al. Co-injection of a focused, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22:380–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL, Chu Q, et al. Hepatocyte-targeted RNAi therapeutics for the therapy of power hepatitis B virus an infection. Mol Ther. 2013;21:973–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic evaluation of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev. 2023;201: 115052.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al. Dynamic polyconjugates for focused in vivo supply of siRNA to hepatocytes. Proc Natl Acad Sci USA. 2007;104:12982–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: cutting-edge. Sign Transduct Goal Ther. 2020;5:101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noticed PE, Tune E-W. siRNA therapeutics: a medical actuality. Sci China Life Sci. 2020;63:485–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex ATJO. siRNA therapeutics and its challenges: latest advances in efficient supply for most cancers remedy. OpenNano. 2022;7: 100063.

    Article 
    CAS 

    Google Scholar
     

  • Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj Okay, Meyyazhagan A, et al. GalNAc-siRNA conjugates: potential instruments on the frontier of anti-viral therapeutics. Pharmacol Res. 2021;173: 105864.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair JK, Willoughby JL, Chan A, Charisse Okay, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits sturdy RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janas MM, Schlegel MK, Harbison CE, Yilmaz VO, Jiang Y, Parmar R, et al. Choice of GalNAc-conjugated siRNAs with restricted off-target-driven rat hepatotoxicity. Nat Commun. 2018;9:723.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Supply of oligonucleotides to the liver with GalNAc: from analysis to registered therapeutic drug. Mol Ther. 2020;28:1759–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu M, Zhang M, Hu B, Huang Y. siRNA design and GalNAc-empowered hepatic focused supply. Design and Supply of SiRNA therapeutics. 2021:77–100.

  • Kandasamy P, Mori S, Matsuda S, Erande N, Datta D, Willoughby JL, et al. Metabolically steady anomeric linkages containing GalNAc–siRNA conjugates: an interaction amongst ASGPR, glycosidase, and RISC pathways. J Med Chem. 2023;66:2506–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Leroux J-C, Castagner B. Effectively-defined multivalent ligands for hepatocytes concentrating on through asialoglycoprotein receptor. Bioconjug Chem. 2017;28:283–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharner J, Qi S, Rigo F, Bennett CF, Krainer AR. Supply of GalNAc-conjugated splice-switching ASOs to non-hepatic cells by way of ectopic expression of asialoglycoprotein receptor. Mol Ther Nucleic Acids. 2019;16:313–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster DJ, Brown CR, Shaikh S, Trapp C, Schlegel MK, Qian Okay, et al. Superior siRNA designs additional enhance in vivo efficiency of GalNAc-siRNA conjugates. Mol Ther. 2018;26:708–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri Okay, Zhang X, et al. Impression of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 2017;45(19):10969–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The present panorama of nucleic acid therapeutics. Nat Nanotech. 2021;16:630–43.

    Article 
    CAS 

    Google Scholar
     

  • Schlegel MK, Janas MM, Jiang Y, Barry JD, Davis W, Agarwal S, et al. From bench to bedside: bettering the medical security of GalNAc–siRNA conjugates utilizing seed-pairing destabilization. Nucleic Acids Res. 2022;50:6656–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macron D. Arrowhead presents preclinical knowledge on HBV candidate, subcutaneous supply tech. Gene Silencing Information. 2012.

  • Yuen M-F, Chan HL-Y, Given B, Hamilton J, Schluep T, Lewis DL, et al. Section II, dose ranging examine of ARC-520, a siR-NA-based therapeutic, in sufferers with power hepatitis B virus an infection: LB-21. Hepatology. 2014;60:1280A.


    Google Scholar
     

  • Yuen M-F, Wong DK-H, Schluep T, Lai C-L, Ferrari C, Locarnini S, et al. Lengthy-term serological, virological and histological responses to RNA inhibition by ARC-520 in Chinese language power hepatitis B sufferers on entecavir therapy. Intestine. 2022;71:789–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozema DB, Blokhin AV, Wakefield DH, Benson JD, Carlson JC, Klein JJ, et al. Protease-triggered siRNA supply autos. J Management Launch. 2015;209:57–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gane EJ, Locarnini S, Lim TH, Strasser SI, Sievert W, Cheng W, et al., editors. Dose response with the RNA interference (RNAi) remedy JNJ-3989 mixed with nucleos (t) ide analogue (NA) therapy in expanded cohorts of sufferers (PTS) with power hepatitis B (CHB). The seventieth Annual Assembly of the American Affiliation for the Examine of Liver Illnesses (AASLD): The Liver Assembly 2019; 2019: John Wiley & Sons, Inc.

  • Yuen M-F, Locarnini S, Given B, Schluep T, Hamilton J, Biermer M, et al. First medical expertise with RNA interference-based triple mixture remedy in power hepatitis B: JNJ-3989, JNJ-6379 and a Nucleos (t) ide analogue. Hepatology. 2019;70:1489A.


    Google Scholar
     

  • Li H, Niu X, Zhang Y, Zhang D, Zhang Y, Wang L, et al. Pharmacokinetics, security, and tolerability of the siRNA JNJ-73763989 in wholesome Chinese language grownup members. Clin Pharmacol Drug Dev. 2023;12:175–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuen M-F, Locarnini S, Lim TH, Strasser SI, Sievert W, Cheng W, et al. Mixture remedies together with the small-interfering RNA JNJ-3989 induce fast and typically extended viral responses in sufferers with CHB. J Hepatol. 2022;77:1287–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuen MF, Asselah T, Jacobson IM, Brunetto MR, Janssen HLA, Takehara T, et al. Efficacy and security of the siRNA JNJ-73763989 and the capsid meeting modulator JNJ-56136379 (bersacapavir) with nucleos(t)ide analogues for the therapy of power hepatitis B virus an infection (REEF-1): a multicentre, double-blind, active-controlled, randomised, section 2b trial. Lancet Gastroenterol Hepatol. 2023;8:790–802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuen M-F, Berliba E, Kim YJ, Holmes JA, Lim Y-S, Strasser SI, et al., editors. Security and pharmacodynamics of the GalNAc-siRNA AB-729 in topics with power hepatitis B an infection. The Liver Assembly Digital Expertise™; 2020: AASLD.

  • Gane E, Yuen M, Anderson M, Cloherty G, Thi E, Wattamwar P, et al. A single dose of the GalNAc-siRNA AB-729 leads to extended reductions in HBsAg, HBcrAg, HBV DNA and HBV RNA within the absence of nucleos (t) ide analogue remedy in HBeAg-subjects with power hepatitis B an infection PO2879. 2021.

  • Gane E, Lim YS, Kim JB, Jadhav V, Shen L, Bakardjiev AI, et al. Analysis of RNAi therapeutics VIR-2218 and ALN-HBV for power hepatitis B: outcomes from randomized medical trials. J Hepatol. 2023;79:924–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui RW-H, Mak LY, Seto W-Okay, Yuen M-F. Assessing the growing pharmacotherapeutic panorama in hepatitis B therapy: a highlight on medication at section II medical trials. Knowledgeable Opin Emerg Medication. 2022;27(2):127–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan YC, Lee GH, Huang DQ, Lim SG. Future anti-HDV therapy methods, together with these geared toward HBV useful remedy. Liver Int. 2022. https://doi.org/10.1111/liv.15387.

    Article 
    PubMed 

    Google Scholar
     

  • Gane EJ, Kim W, Lim TH, Tangkijvanich P, Yoon J-H, Sievert W, et al. First-in-human randomized examine of RNAi therapeutic RG6346 for power hepatitis B virus an infection. J Hepatol. 2023;79:1139–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aibani N, Khan TN, Callan B. Liposome mimicking polymersomes; a comparative examine of the deserves of polymersomes by way of formulation and stability. Int J Pharm. 2020;2: 100040.

    CAS 

    Google Scholar
     

  • Tenchov R, Chicken R, Curtze AE, Zhou Q. Lipid nanoparticles─from liposomes to mRNA vaccine supply, a panorama of analysis range and development. ACS Nano. 2021;15:16982–7015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for most cancers remedy. Adv Drug Deliv Rev. 2014;66:110–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene supply. J Management Launch. 2006;114:100–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filion MC, Phillips NC. Toxicity and immunomodulatory exercise of liposomal vectors formulated with cationic lipids towards immune effector cells. Biochem Biophys Acta. 1997;1329:345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, et al. Lipid nanoparticles for siRNA supply in most cancers therapy. J Management Launch. 2023;361:130–46.

    Article 
    PubMed 

    Google Scholar
     

  • Yonezawa S, Koide H, Asai T. Latest advances in siRNA supply mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154:64–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic supply of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021;6: e10213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto N, Sato Y, Munakata T, Kakuni M, Tateno C, Sanada T, et al. Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based remedies for power HBV an infection. J Hepatol. 2016;64:547–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe T, Hatakeyama H, Matsuda-Yasui C, Sato Y, Sudoh M, Takagi A, et al. In vivo therapeutic potential of Dicer-hunting siRNAs concentrating on infectious hepatitis C virus. Sci Rep. 2014;4:4750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eley T, Russ R, Streinu-Cercel A, Gane EJ, Roberts SK, Ahn SH, et al., editors. Pharmacokinetics and exploratory exposure-response of siRNAs administered month-to-month as ARB-001467 (ARB-1467) in a Section 2a examine in HBeAg constructive and destructive virally suppressed topics with power hepatitis B. Hepatology (Baltimore, Md); 2017: WILEY 111 RIVER ST, HOBOKEN 07030–5774, NJ USA.

  • Durantel D. New remedies to succeed in useful remedy: virological approaches. Greatest Pract Res Clin Gastroenterol. 2017;31:329–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urits I, Swanson D, Swett MC, Patel A, Berardino Okay, Amgalan A, et al. A evaluate of patisiran (ONPATTRO®) for the therapy of polyneuropathy in folks with hereditary transthyretin amyloidosis. Neurol Ther. 2020;9:301–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto S, Shirasaki T, Yamashita T, Iwabuchi S, Suzuki Y, Takamura Y, et al. DOCK11 and DENND2A play pivotal roles within the upkeep of hepatitis B virus in host cells. PLoS ONE. 2021;16: e0246313.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Zheng S, Guo Z, de Mollerat du Jeu X, Liang X-J, Yang Z, et al. Ionizable liposomal siRNA therapeutics allows potent and protracted therapy of Hepatitis B. Sign Transduct Goal Ther. 2022;7:38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao L, Yang J, Feng J, Liu Z, Dong Y, Luo J, et al. PreS/2-21-guided siRNA nanoparticles goal to inhibit hepatitis B virus an infection and replication. Entrance Immunol. 2022;13: 856463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller JB, Kos P, Tieu V, Zhou Okay, Siegwart DJ. Improvement of cationic quaternary ammonium sulfonamide amino lipids for nucleic acid supply. ACS Appl Mater Interfaces. 2018;10:2302–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar Okay, Maiti B, Kondaiah P, Bhattacharya S. Efficacious gene silencing in serum and vital apoptotic exercise induction by survivin downregulation mediated by new cationic gemini tocopheryl lipids. Mol Pharm. 2015;12:351–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hean J, Crowther C, Ely A, Ul Islam R, Barichievy S, Bloom Okay, et al. Inhibition of hepatitis B virus replication in vivo utilizing lipoplexes containing altritol-modified antiviral siRNAs. Artif DNA. 2010;1:17–26.

    Article 

    Google Scholar
     

  • Yang J, Zhang Q, Chang H, Cheng Y. Floor-engineered dendrimers in gene supply. Chem Rev. 2015;115:5274–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA supply: latest progress and challenges. View. 2021;2:20200026.

    Article 
    CAS 

    Google Scholar
     

  • Blakney AK, Zhu Y, McKay PF, Bouton CR, Yeow J, Tang J, et al. Huge is gorgeous: enhanced saRNA supply and immunogenicity by a better molecular weight, bioreducible, cationic polymer. ACS Nano. 2020;14:5711–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park TG, Jeong JH, Kim SW. Present standing of polymeric gene supply methods. Adv Drug Deliv Rev. 2006;58:467–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahane A, Waghmode A, Kapphahn A, Dhuri Okay, Gupta A, Bahal R. Position of lipid-based and polymer-based non-viral vectors in nucleic acid supply for next-generation gene remedy. Molecules. 2020;25:2866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug supply units. J Management Launch. 2001;70:1–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable managed drug supply provider. Polymers. 2011;3:1377–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro applied sciences for delivering macromolecular therapeutics utilizing poly(D, L-lactide-co-glycolide) and its derivatives. J Management Launch. 2008;125:193–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gary DJ, Puri N, Gained YY. Polymer-based siRNA supply: views on the elemental and phenomenological distinctions from polymer-based DNA supply. J Management Launch. 2007;121:64–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aghamiri S, Jafarpour A, Gomari MM, Ghorbani J, Rajabibazl M, Payandeh Z. siRNA nanotherapeutics: a promising technique for anti-HBV remedy. IET Nanobiotechnol. 2019;13(5):457–63. https://doi.org/10.1049/iet-nbt.2018.5286.

    Article 
    PubMed Central 

    Google Scholar
     

  • Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(D, L-lactide-co-glycolide) nanospheres for plasmid DNA supply and HBV gene-silencing. Int J Pharm. 2011;415:259–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou B, Qin L, Huang L. Liver most cancers cells because the mannequin for growing liver-targeted RNAi therapeutics. Biochem Biophys Res Commun. 2023;644:85–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda S, Keiser Okay, Nair JK, Charisse Okay, Manoharan RM, Kretschmer P, et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked by way of nucleosides elicit sturdy gene silencing in vivo in hepatocytes. ACS Chem Biol. 2015;10:1181–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, et al. Focused supply of antisense oligonucleotides to hepatocytes utilizing triantennary N-acetyl galactosamine improves efficiency 10-fold in mice. Nucleic Acids Res. 2014;42:8796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel M-L, et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol. 2015;63:1093–102.

    Article 
    PubMed 

    Google Scholar
     

  • Yu X, Lengthy Q, Shen S, Liu Z, Chandran J, Zhang J, et al. Screening of an epigenetic compound library identifies BRD4 as a possible antiviral goal for hepatitis B virus covalently closed round DNA transcription. Antiviral Res. 2023;211: 105552.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinelli DD. Machine studying for siRNA effectivity prediction: a scientific evaluate. Well being Sci Rev. 2024;11: 100157.

    Article 

    Google Scholar
     

  • Jadhav V, Vaishnaw A, Fitzgerald Okay, Maier MA. RNA interference within the period of nucleic acid therapeutics. Nat Biotechnol. 2024;42:1–12.

    Article 

    Google Scholar
     

  • Tang Q, Khvorova A. RNAi-based drug design: concerns and future instructions. Nat Rev Drug Discov. 2024;23:1–24.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles