Simon, P. & Gogotsi, Y. Views for electrochemical capacitors and associated gadgets. Nat. Mater. 19, 1151–1163 (2020).
Shao, H., Wu, Y.-C., Lin, Z., Taberna, P.-L. & Simon, P. Nanoporous carbon for electrochemical capacitive power storage. Chem. Soc. Rev. 49, 3005–3039 (2020).
Wu, J. Understanding the electrical double-layer construction, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).
Choi, C. et al. Attaining excessive power density and excessive energy density with pseudocapacitive supplies. Nat. Rev. Mater. 5, 5–19 (2020).
Fleischmann, S. et al. Pseudocapacitance: from elementary understanding to excessive energy power storage supplies. Chem. Rev. 120, 6738–6782 (2020).
Simon, P., Gogotsi, Y. & Dunn, B. The place do batteries finish and supercapacitors start? Science 343, 1210–1211 (2014).
Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon movies for micro-supercapacitors. Science 328, 480–483 (2010).
Lee, J. A. et al. Ultrafast cost and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013).
Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode supplies: nanostructures from 0 to three dimensions. Power Environ. Mater. 8, 702–730 (2015).
Beidaghi, M. & Gogotsi, Y. Capacitive power storage in micro-scale gadgets: latest advances in design and fabrication of micro-supercapacitors. Power Environ. Mater. 7, 867–884 (2014).
Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).
Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).
Wang, X. et al. Probing nanoconfined ion transport in electrified 2D laminate membranes with electrochemical impedance spectroscopy. Small Strategies 6, e2200806 (2022).
Hoang Ngoc Minh, T., Stoltz, G. & Rotenberg, B. Frequency and field-dependent response of confined electrolytes from brownian dynamics simulations. J. Chem. Phys. 158, 104103 (2023).
Goikolea, E. & Mysyk, R. in Rising Nanotechnologies in Rechargeable Power Storage Techniques 131–169 (2017).
Pal, B. et al. Understanding electrochemical capacitors with in situ methods. Renew. Maintain. Power Rev. 149, 111418 (2021).
Patra, A. et al. Understanding the cost storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9, 25852–25891 (2021).
Wang, L. X. et al. Monitoring ion transport in nanochannels by way of transient single-particle imaging. Angew. Chem. Int. Ed. 135, e202315805 (2023).
Xin, W. et al. Tunable ion transport in two-dimensional nanofluidic channels. J. Phys. Chem. Lett. 14, 627–636 (2023).
Boyd, S. et al. Results of interlayer confinement and hydration on capacitive cost storage in birnessite. Nat. Mater. 20, 1689–1694 (2021).
Guo, Y. et al. Sub-nanometer confined ions and solvent molecules intercalation capacitance in microslits of 2D supplies. Small 17, e2104649 (2021).
Pean, C. et al. Confinement, desolvation, and electrosorption results on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137, 12627–12632 (2015).
Fleischmann, S. et al. Steady transition from double-layer to Faradaic cost storage in confined electrolytes. Nat. Power 7, 222–228 (2022).
Zhang, E. et al. Unraveling the capacitive cost storage mechanism of nitrogen-doped porous carbons by EQCM and ssNMR. J. Am. Chem. Soc. 144, 14217–14225 (2022).
Ge, Okay., Shao, H., Raymundo-Piñero, E., Taberna, P.-L. & Simon, P. Cation desolvation-induced capacitance enhancement in decreased graphene oxide (rGO). Nat. Commun. 15, 1935 (2024).
Liu, L., Raymundo-Pinero, E., Sunny, S., Taberna, P. L. & Simon, P. Position of floor terminations for cost storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angew. Chem. Int. Ed. 63, e202319238 (2024).
Liu, X. et al. Structural dysfunction determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).
Yin, H., Shao, H., Daffos, B., Taberna, P.-L. & Simon, P. The consequences of native graphitization on the charging mechanisms of microporous carbon supercapacitor electrodes. Electrochem. Commun. 137, 107258 (2022).
Forse, A. C., Merlet, C., Griffin, J. M. & Gray, C. P. New views on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).
Prehal, C. et al. Monitoring the structural association of ions in carbon supercapacitor nanopores utilizing in situ small-angle X-ray scattering. Power Environ. Mater. 8, 1725–1735 (2015).
Futamura, R. et al. Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).
Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Power 2, 16215 (2017).
Mao, X. et al. Self-assembled nanostructures in ionic liquids facilitate cost storage at electrified interfaces. Nat. Mater. 18, 1350–1357 (2019).
Lee, S. S., Koishi, A., Bourg, I. C. & Fenter, P. Ion correlations drive cost overscreening and heterogeneous nucleation at stable–aqueous electrolyte interfaces. Proc. Natl Acad. Sci. USA 118, e2105154118 (2021).
Tian, Y. et al. Nanoscale one-dimensional shut packing of interfacial alkali ions pushed by water-mediated attraction. Nat. Nanotechnol. 19, 479–484 (2024).
Gao, Q., Tsai, W. Y. & Balke, N. In situ and operando force-based atomic drive microscopy for probing native performance in power storage supplies. Electrochem. Sci. Adv. 2, e2100038 (2021).
Wang, H. et al. In situ NMR spectroscopy of supercapacitors: perception into the cost storage mechanism. J. Am. Chem. Soc. 135, 18968–18980 (2013).
Forse, A. C. et al. NMR examine of ion dynamics and cost storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137, 7231–7242 (2015).
Liu, D. et al. Ion-specific nanoconfinement impact in multilayered graphene membranes: a mixed nuclear magnetic resonance and computational examine. Nano Lett. 23, 5555–5561 (2023).
Quill, T. J. et al. An ordered, self-assembled nanocomposite with environment friendly digital and ionic transport. Nat. Mater. 22, 362–368 (2023).
Forse, A. C. et al. Direct statement of ion dynamics in supercapacitor electrodes utilizing in situ diffusion NMR spectroscopy. Nat. Power 2, 16216 (2017).
Chen, B. et al. Extremely localized costs of confined electrical double layers inside 0.7 nm layered channels. Adv. Power Mater. 13, 2300716 (2023).
Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the stable/liquid interface. Nat. Commun. 7, 12695 (2016).
Zaman, W. et al. In situ investigation of water on MXene interfaces. Proc. Natl Acad. Sci. USA 118, e2108325118 (2021).
Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) research of ions and solvents insertion into extremely porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).
Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) examine of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).
Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance methods reveal the construction of {the electrical} double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).
Niu, L. et al. Understanding the charging of supercapacitors by electrochemical quartz crystal microbalance. Ind. Chem. Mater. 1, 175–187 (2023).
Levi, M. D., Daikhin, L., Aurbach, D. & Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ research of electrodes for supercapacitors and batteries: a mini-review. Electrochem. Commun. 67, 16–21 (2016).
Sigalov, S., Levi, M. D., Daikhin, L., Salitra, G. & Aurbach, D. Electrochemical quartz crystal admittance research of ion adsorption on nanoporous composite carbon electrodes in aprotic options. J. Stable State Electrochem. 18, 1335–1344 (2014).
Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for monitoring compositional and mechanical modifications in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).
Maurel, V. et al. Operando AC in-plane impedance spectroscopy of electrodes for power storage programs. J. Electrochem. Soc. 169, 120510 (2022).
Marcotte, A., Mouterde, T., Nigues, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport throughout single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).
Cheng, C. et al. Low-voltage electrostatic modulation of ion diffusion by way of layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).
Gouy, M. On the structure of the electrical cost on the floor of an electrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).
Chapman, D. L. LI. A contribution to the speculation of electrocapillarity. Lond. Edinb. Dublin Philos. Magazine. J. Sci. 25, 475–481 (1913).
Stern, O. The speculation of the electrolytic double-layer. Z. Elektrochem. 30, 1014–1020 (1924).
Frumkin, A., Petrii, O. & Damaskin, B. in Complete Treatise of Electrochemistry: the Double Layer 221–289 (1980).
Trasatti, S. & Lust, E. in Trendy Facets of Electrochemistry Vol. 33 (eds White, R. A. et al.) 1–215 (Springer, 1999).
Wei, Z. et al. Relation between double layer construction, capacitance, and floor pressure in electrowetting of graphene and aqueous electrolytes. J. Am. Chem. Soc. 146, 760–772 (2023).
Alam, M. T., Islam, M. M., Okajima, T. & Ohsaka, T. Measurements of differential capacitance at mercury/room-temperature ionic liquids interfaces. J. Phys. Chem. C 111, 18326–18333 (2007).
Lockett, V., Horne, M., Sedev, R., Rodopoulos, T. & Ralston, J. Differential capacitance of the double layer on the electrode/ionic liquids interface. Phys. Chem. Chem. Phys. 12, 12499–12512 (2010).
Ye, J. et al. Cost storage mechanisms of single-layer graphene in ionic liquid. J. Am. Chem. Soc. 141, 16559–16563 (2019).
Uematsu, Y., Netz, R. R. & Bonthuis, D. J. The consequences of ion adsorption on the potential of zero cost and the differential capacitance of charged aqueous interfaces. J. Phys. Condens. Matter 30, 064002 (2018).
Huang, J. On acquiring double-layer capacitance and potential of zero cost from voltammetry. J. Electroanal. Chem. 870, 114243 (2020).
Xu, P., von Rueden, A. D., Schimmenti, R., Mavrikakis, M. & Suntivich, J. Optical technique for quantifying the potential of zero cost on the platinum–water electrochemical interface. Nat. Mater. 22, 503–510 (2023).
Wang, Y., Gordon, E. & Ren, H. Mapping the potential of zero cost and electrocatalytic exercise of metallic–electrolyte interface by way of a grain-by-grain strategy. Anal. Chem. 92, 2859–2865 (2020).
McCaffrey, D. L. et al. Mechanism of ion adsorption to aqueous interfaces: graphene/water vs. air/water. Proc. Natl Acad. Sci. USA 114, 13369–13373 (2017).
Gao, C. et al. Measuring the pseudocapacitive conduct of particular person V2O5 particles by scanning electrochemical cell microscopy. Anal. Chem. 95, 10565–10571 (2023).
Ebejer, N. et al. Scanning electrochemical cell microscopy: a flexible method for nanoscale electrochemistry and purposeful imaging. Annu. Rev. Anal. Chem. 6, 329–351 (2013).
Wang, X. et al. Titanium carbide MXene exhibits an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).
Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).
Wu, Y. C. et al. Electrochemical characterization of single layer graphene/electrolyte interface: impact of solvent on the interfacial capacitance. Angew. Chem. Int. Ed. 60, 13317–13322 (2021).
Chen, W. et al. Two-dimensional quantum-sheet movies with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).
Jaugstetter, M., Blanc, N., Kratz, M. & Tschulik, Okay. Electrochemistry beneath confinement. Chem. Soc. Rev. 51, 2491–2543 (2022).
Liu, Y. M., Merlet, C. & Smit, B. Carbons with common pore geometry yield elementary insights into supercapacitor cost storage. ACS Cent. Sci. 5, 1813–1823 (2019).
Merlet, C. et al. Extremely confined ions retailer cost extra effectively in supercapacitors. Nat. Commun. 4, 2701 (2013).
Wang, B. et al. Interlayer confined water enabled pseudocapacitive sodium-ion storage in nonaqueous electrolyte. ACS Nano 18, 798–808 (2023).
Lounasvuori, M. et al. Vibrational signature of hydrated protons confined in MXene interlayers. Nat. Commun. 14, 1322 (2023).
Chmiola, J. et al. Anomalous enhance in carbon capacitance at pore sizes lower than 1 nanometer. Science 313, 1760–1763 (2006).
Baggio, B. F. & Grunder, Y. In situ X-ray methods for electrochemical interfaces. Annu. Rev. Anal. Chem. 14, 87–107 (2021).
Chen, J. & Lee, P. S. Electrochemical supercapacitors: from mechanism understanding to multifunctional functions. Adv. Power Mater. 11, 2003311 (2021).
Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2010).
Son, C. Y. & Wang, Z. G. Picture-charge results on ion adsorption close to aqueous interfaces. Proc. Natl Acad. Sci. USA 118, e2020615118 (2021).
Kondrat, S., Feng, G., Bresme, F., Urbakh, M. & Kornyshev, A. A. Idea and simulations of ionic liquids in nanoconfinement. Chem. Rev. 123, 6668–6715 (2023).
Kondrat, S., Pérez, C., Presser, V., Gogotsi, Y. & Kornyshev, A. Impact of pore dimension and its dispersity on the power storage in nanoporous supercapacitors. Power Environ. Mater. 5, 6474–6479 (2012).
Luo, Z.-X., Xing, Y.-Z., Ling, Y.-C., Kleinhammes, A. & Wu, Y. Electroneutrality breakdown and particular ion results in nanoconfined aqueous electrolytes noticed by NMR. Nat. Commun. 6, 6358 (2015).
Hey, D. et al. Figuring out and stopping degradation in flavin mononucleotide-based redox circulate batteries by way of NMR and EPR spectroscopy. Nat. Commun. 14, 5207 (2023).
Forse, A. Nuclear Magnetic Resonance Research of Ion Adsorption in Supercapacitor Electrodes. PhD thesis, Univ. Cambridge (2015).
Levy, A., de Souza, J. P. & Bazant, M. Z. Breakdown of electroneutrality in nanopores. J. Colloid Interface Sci. 579, 162–176 (2020).
Robin, P., Delahais, A., Bocquet, L. & Kavokine, N. Ion filling of a one-dimensional nanofluidic channel within the interplay confinement regime. J. Chem. Phys. 158, 124703 (2023).
Sugahara, A. et al. Destructive dielectric fixed of water confined in nanosheets. Nat. Commun. 10, 850 (2019).
Xu, T. et al. Discovery of quick and secure proton storage in bulk hexagonal molybdenum oxide. Nat. Commun. 14, 8360 (2023).
Mitchell, J. B., Wang, R., Ko, J. S., Lengthy, J. W. & Augustyn, V. Essential function of structural water for enhanced Li+ insertion kinetics in crystalline tungsten oxides. J. Electrochem. Soc. 169, 030534 (2022).
Tang, P. et al. Understanding pseudocapacitance mechanisms by synchrotron X‐ray analytical methods. Power Environ. Mater. 6, e12619 (2023).
Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Utility of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for power storage. Nat. Mater. 8, 872–875 (2009).
Shpigel, N. et al. Can anions be inserted into MXene? J. Am. Chem. Soc. 143, 12552–12559 (2021).
Wei, J. et al. Metallic-ion oligomerization inside electrified carbon micropores and its impact on capacitive cost storage. Adv. Mater. 34, e2107439 (2022).
Lu, C. et al. Dehydration-enhanced ion–pore interactions dominate anion transport and selectivity in nanochannels. Sci. Adv. 9, eadf8412 (2023).
Lin, Z., Shao, H., Xu, Okay., Taberna, P.-L. & Simon, P. MXenes as high-rate electrodes for power storage. Traits Chem. 2, 654–664 (2020).
Tsai, W.-Y., Wang, R., Boyd, S., Augustyn, V. & Balke, N. Probing native electrochemistry by way of mechanical cyclic voltammetry curves. Nano Power 81, 105592 (2021).
Zheng, Okay., Xian, Y. & Lin, Z. A technique for deconvoluting and quantifying the actual‐time species fluxes and ionic currents utilizing in situ electrochemical quartz crystal microbalance. Adv. Mater. Interfaces 9, 2200112 (2022).
Michael, H., Jervis, R., Brett, D. J. L. & Shearing, P. R. Developments in dilatometry for characterisation of electrochemical gadgets. Batteries Supercaps 4, 1378–1396 (2021).
Hu, M. et al. Excessive-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).
Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a flexible device for finding out the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).
Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electrical subject impact tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).
Gittins, J. W. et al. Understanding electrolyte ion dimension results on the efficiency of conducting metallic–natural framework supercapacitors. J. Am. Chem. Soc. 146, 12473–12484 (2024).
Escobar-Teran, F. et al. Gravimetric and dynamic deconvolution of world EQCM response of carbon nanotube primarily based electrodes by AC-electrogravimetry. Electrochem. Commun. 70, 73–77 (2016).
Frąckowiak, E., Płatek-Mielczarek, A., Piwek, J. & Fic, Okay. Superior characterization methods for electrochemical capacitors. Adv. Inorg. Chem. 79, 151–207 (2022).
Eleri, O. E., Lou, F. & Yu, Z. in Nanostructured Supplies for Supercapacitors 101–128 (2022).
Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Strategies Prim. 1, 41 (2021).
Tivony, R., Safran, S., Pincus, P., Silbert, G. & Klein, J. Charging dynamics of a person nanopore. Nat. Commun. 9, 4203 (2018).
Black, J. M. et al. Pressure‐primarily based in situ examine of anion and cation insertion into porous carbon electrodes with completely different pore sizes. Adv. Power Mater. 4, 1300683 (2014).
Ge, Okay., Shao, H., Taberna, P.-L. & Simon, P. Understanding ion charging dynamics in nanoporous carbons for electrochemical double layer capacitor functions. ACS Power Lett. 8, 2738–2745 (2023).
Henrique, F., Żuk, P. J. & Gupta, A. A community mannequin to foretell ionic transport in porous supplies. Proc. Natl Acad. Sci. USA 121, e2401656121 (2024).
Zhan, H. et al. Physics-based machine studying found nanocircuitry for nonlinear ion transport in nanoporous electrodes. J. Phys. Chem. C 127, 13699–13705 (2023).
Zhou, H. et al. Common design ideas for CAPodes as ionologic gadgets. Angew. Chem. 135, e202305397 (2023).