Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, Bray F. Most cancers statistics for the 12 months 2020: an summary. Int J Most cancers. 2021;149(4):778–789.
Solar W, Shi Q, Zhang H, Yang Okay, Ke Y, Wang Y, Qiao L. Advances within the methods and methodologies of most cancers gene remedy. Discov Med. 2019;27(146):45–55.
Jia C, Guo Y, Wu FG. Chemodynamic remedy through fenton and fenton-like nanomaterials: methods and up to date advances. Small. 2022;18(6):e2103868.
Riley RS, June CH, Langer R, Mitchell MJ. Supply applied sciences for most cancers immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.
Li X, Lovell JF, Yoon J, Chen X. Medical improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.
Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic remedy, and mechanisms of most cancers cell demise. J Oncol 2022. 2022;7211485.
Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, Sumer BD, Gao J. Photoactivation swap from kind II to kind I reactions by electron-rich micelles for improved photodynamic remedy of most cancers cells below hypoxia. J Management Launch. 2011;156(3):276–80.
Sieber F. Phototherapy, photochemotherapy, and bone marrow transplantation. J Hematother. 1993;2(1):43–62.
Marcus SL, Dugan MH. World standing of medical photodynamic remedy: the registration course of for a brand new remedy. Lasers Surg Med. 1992;12(3):318–24.
Kashtan H, Papa MZ, Wilson BC, Deutch AA, Stern HS. Use of photodynamic remedy within the palliation of large superior rectal most cancers. Section I/II research, Dis Colon Rectum. 1991;34(7):600-4; dialogue 604-5.
Jocham D, Baumgartner R, Stepp H, Unsold E. Medical expertise with the integral photodynamic remedy of bladder carcinoma. J Photochem Photobiol B. 1990;6(1–2):183–7.
Hamano T, Nagai Okay. Results of allogeneic stimulations on the proliferation and differentiation of the hemopoietic stem cell. Transplantation. 1978;25(1):23–6.
Kurwa HA, Barlow RJ. The position of photodynamic remedy in dermatology. Clin Exp Dermatol. 1999;24(3):143–8.
Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates gentle photothermal remedy for tumor ablation. Asian J Pharm Sci. 2021;16(6):738–61.
Jiang Z, Jiang Z, Jiang Y, Cheng Y, Yao Q, Chen R, Kou L. Fe-involved nanostructures act as photothermal transduction brokers in most cancers photothermal remedy. Colloids Surf B Biointerfaces. 2023;228:113438.
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal remedy and wound therapeutic. Theranostics. 2020;10(25):11719–36.
Raz O, Haider MA, Davidson SR, Lindner U, Hlasny E, Weersink R, Gertner MR, Kucharczyk W, McCluskey SA, Trachtenberg J. Actual-time magnetic resonance imaging-guided focal laser remedy in sufferers with low-risk prostate most cancers. Eur Urol. 2010;58(1):173–7.
Lindner U, Weersink RA, Haider MA, Gertner MR, Davidson SR, Atri M, Wilson BC, Fenster A, Trachtenberg J. Picture guided photothermal focal remedy for localized prostate most cancers: section I trial. J Urol. 2009;182(4):1371–7.
Wang Y, Wang H, Zhou L, Lu J, Jiang B, Liu C, Guo J. Photodynamic remedy of pancreatic most cancers: the place have we come from and the place are we going? Photodiagnosis Photodyn Ther. 2020;31:101876.
Deng X, Shao Z, Zhao Y. Options to the drawbacks of Photothermal and Photodynamic Most cancers Remedy. Adv Sci (Weinh). 2021;8(3):2002504.
Wan J, Wu W, Che Y, Kang N, Zhang R. Low dose photodynamic-therapy induce immune escape of tumor cells in a HIF-1alpha dependent method by means of PI3K/Akt pathway. Int Immunopharmacol. 2015;28(1):44–51.
Yang M, Olaoba OT, Zhang C, Kimchi ET, Staveley-O’Carroll KF, Li G. Most cancers immunotherapy supply system: an replace. Pharmaceutics.2022;14(8).
Kennedy LB, Salama AKS. A assessment of most cancers immunotherapy toxicity. CA Most cancers J Clin. 2020;70(2):86–104.
Yao Q, Kou L, Tu Y, Zhu L. MMP-responsive sensible drug supply and tumor concentrating on. Tendencies Pharmacol Sci. 2018;39(8):766–81.
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-targeted Nano-Sized automobiles for enhanced and site-specific drug supply. Cancers (Basel). 2020;12(10):2837.
Kou L, Bhutia YD, Yao Q, He Z, Solar J, Ganapathy V. Transporter-guided supply of nanoparticles to enhance drug permeation throughout mobile boundaries and drug publicity to selective cell varieties. Entrance Pharmacol. 2018;9(27):27.
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Concentrating on endothelial permeability within the EPR impact. J Management Launch. 2023;361:212–35.
Kou L, Jiang X, Tang Y, Xia X, Li Y, Cai A, Zheng H, Zhang H, Ganapathy V, Yao Q, Chen R. Resetting amino acid metabolism of most cancers cells by ATB0,+-targeted nanoparticles for enhanced anticancer remedy. Bioactive Mater. 2022;9:15–28.
Kou L, Solar R, Jiang X, Lin X, Huang H, Bao S, Zhang Y, Li C, Chen R, Yao Q. Tumor Microenvironment-Responsive, Multistaged Liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced Most cancers Remedy. ACS Appl Mater Interfaces. 2020;12(27):30031–43.
Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, Zhang Y, Chen J, Valic MS, Syed AM, MacMillan P, Couture-Senécal J, Zheng G, Chan WCW. The dose threshold for nanoparticle tumour supply. Nat Mater. 2020;19(12):1362–71.
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Methods for delivering nanoparticles throughout tumor blood vessels. Adv Funct Mater. 2021;31(8).
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Ouyang B, Lin Z, Wang L, Egeblad M, Chan WCW. The entry of nanoparticles into stable tumours. Nat Mater. 2020;19(5):566–75.
Chen Z, Chen H, Huang L, Duan B, Dai S, Cai W, Solar M, Jiang Z, Lu R, Jiang Y, Jiang X, Zheng H, Yao Q, Kim Okay, Lin G, Xie C, Chu M, Chen R, Kou L. ATB(0,+)-targeted nanoparticles provoke autophagy suppression to beat chemoresistance for enhanced colorectal most cancers remedy. Int J Pharm. 2023;641:123082.
Zheng H, Chen Z, Cai A, Lin X, Jiang X, Zhou B, Wang J, Yao Q, Chen R, Kou L. Nanoparticle mediated codelivery of nifuratel and doxorubicin for synergistic anticancer remedy by means of STAT3 inhibition. Colloids Surf B. 2020;193:111109.
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The position of transporters in most cancers redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci. 2020;15(2):145–57.
Wagner S, Mullins CS, Linnebacher M. Colorectal most cancers vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418–32.
Wang M, Rao J, Wang M, Li X, Liu Okay, Naylor MF, Nordquist RE, Chen WR, Zhou F. Most cancers photo-immunotherapy: from bench to bedside. Theranostics. 2021;11(5):2218–31.
Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Metivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell demise. J Exp Med. 2005;202(12):1691–701.
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell demise in most cancers remedy. Annu Rev Immunol. 2013;31:51–72.
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell demise and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75.
Sobhana S, Sarathy NP, Karthikeyan L, Shanthi Okay, Vivek R. Extremely-small NIR-Responsive Nanotheranostic Agent for focused photothermal ablation Induced damage-Related molecular patterns (DAMPs) from Put up-PTT of Tumor cells activate immunogenic cell demise. Nanotheranostics. 2023;7(1):41–60.
Lou X, Wang H, Liu Y, Huang Y, Liu Z, Zhang W, Wang T. Perylene-based reactive oxygen species Supergenerator for Immunogenic Photochemotherapy towards Hypoxic tumors. Angew Chem Int Ed Engl. 2023;62(11):e202214586.
Gao Y, Music Z, Jia L, Tang Y, Wang C, Zhao X, Hu H, Chen D, Qiao M. Self-amplified ROS manufacturing from fatty acid oxidation enhanced tumor immunotherapy by atorvastatin/PD-L1 siRNA lipopeptide nanoplexes. Biomaterials. 2022;291:121902.
Gong X, Li J, Xu X, Wu Y, Lei Y, Liu H, Qian X, Li Y, Zhang Z. Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity. Biomaterials. 2022;290:121855.
Li B, Hao G, Solar B, Gu Z, Xu ZP. Engineering a therapy-induced immunogenic most cancers cell demise amplifier to spice up systemic tumor elimination. Adv Funct Mater. 2020;30(22).
Solar Q, Yang Z, Lin M, Peng Y, Wang R, Du Y, Zhou Y, Li J, Qi X. Phototherapy and anti-GITR antibody-based remedy synergistically reinvigorate immunogenic cell demise and reject established cancers. Biomaterials. 2021;269:120648.
Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug launch and reactive oxygen species burst induced by polyprodrug nanoreactors can improve chemotherapy. Nat Commun. 2019;10(1):1704.
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Concentrating on photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell demise. Nat Commun. 2019;10(1):3349.
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug supply techniques for enhancing tumor-targeting potential and decreasing antagonistic unwanted side effects. Asian J Pharm Sci. 2020;15(3):311–25.
Niu B, Liao Okay, Zhou Y, Wen T, Quan G, Pan X, Wu C. Software of glutathione depletion in most cancers remedy: enhanced ROS-based remedy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110.
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat. 2021;59:100787.
Solar Y, Zhao D, Wang G, Wang Y, Cao L, Solar J, Jiang Q, He Z. Current progress of hypoxia-modulated multifunctional nanomedicines to reinforce photodynamic remedy: alternatives, challenges, and future improvement. Acta Pharm Sin B. 2020;10(8):1382–96.
Shi C, Li M, Zhang Z, Yao Q, Shao Okay, Xu F, Xu N, Li H, Fan J, Solar W, Du J, Lengthy S, Wang J, Peng X. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced most cancers chemo-photodynamic remedy. Biomaterials. 2020;233:119755.
Zhao J, Zhang Y, Zhang J, Wu H, Li J, Zhao Y, Zhang L, Zou D, Li Z, Wang S. Artificial and biodegradable molybdenum(IV) diselenide triggers the Cascade Picture- and immunotherapy of Tumor. Adv Healthc Mater. 2022;11(15):e2200524.
Wang S, Wang Z, Li Z, Zhang X, Zhang H, Zhang T, Meng X, Sheng F, Hou Y. Amelioration of systemic antitumor immune responses in cocktail remedy by immunomodulatory nanozymes. Sci Adv. 2022;8(21):eabn3883.
Wang L, Kang Okay, Hou H, Ma Y, Yu Okay, Qu F, Lin H. NIR-II-driven intracellular photocatalytic oxygen-generation on Z-Scheme iron sulfide/cobalt sulfide nanosheets for hypoxic tumor remedy. J Colloid Interface Sci. 2022;625:145–57.
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the hypoxia limitation for photodynamic remedy. Adv Mater. 2021;33(48):e2103978.
Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, Tian H, Zheng M, Ma Y, Cai L. Bioinspired hybrid protein oxygen Nanocarrier amplified photodynamic remedy for eliciting anti-tumor immunity and abscopal impact. ACS Nano. 2018;12(8):8633–45.
Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for lengthy circulation and enhanced phototherapy. Acta Biomater. 2017;59:269–82.
Wang H, Guo Y, Wang C, Jiang X, Liu H, Yuan A, Yan J, Hu Y, Wu J. Gentle-controlled oxygen manufacturing and assortment for sustainable photodynamic remedy in tumor hypoxia. Biomaterials. 2021;269:120621.
Ghosh P, Vidal C, Dey S, Zhang L. Mitochondria concentrating on as an efficient technique for most cancers remedy. Int J Mol Sci. 2020;21(9).
Nixon GL, Moss DM, Shone AE, Lalloo DG, Fisher N, O’Neill PM, Ward SA, Biagini GA. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother. 2013;68(5):977–85.
Zhang A, Gao A, Zhou C, Xue C, Zhang Q, Fuente JM, Cui D. Confining ready Ultrasmall nanozymes Loading ATO for Lung Most cancers Catalytic Remedy/Immunotherapy. Adv Mater. 2023;35(45):e2303722.
Semenza GL. Concentrating on HIF-1 for most cancers remedy. Nat Rev Most cancers. 2003;3(10):721–32.
Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Most cancers cell metabolism in hypoxia: position of HIF-1 as key regulator and therapeutic goal. Int J Mol Sci. 2021;22(11).
Cai Z, Xin F, Wei Z, Wu M, Lin X, Du X, Chen G, Zhang D, Zhang Z, Liu X, Yao C. Photodynamic remedy mixed with antihypoxic signaling and CpG adjuvant as an in situ Tumor Vaccine based mostly on Steel-Natural Framework nanoparticles to spice up Most cancers Immunotherapy. Adv Healthc Mater. 2020;9(1):e1900996.
Zhou Y, Ren X, Hou Z, Wang N, Jiang Y, Luan Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy through tumor microenvironment modulation. Nanoscale Horiz. 2021;6(2):120–31.
Zhou Z, Chen J, Liu Y, Zheng C, Luo W, Chen L, Zhou S, Li Z, Shen J. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm Sin B. 2022;12(11):4204–23.
Li J, Tong D, Lin J. Present standing of most cancers hunger remedy. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022;51(2):241–50.
Wang Q, Niu D, Shi J, Wang L. A 3-in-one ZIFs-Derived CuCo(O)/GOx@PCNs Hybrid Cascade Nanozyme for Immunotherapy/Enhanced Hunger/Photothermal remedy. ACS Appl Mater Interfaces. 2021;13(10):11683–95.
Wang M, Chang M, Zheng P, Solar Q, Wang G, Lin J, Li C. A noble AuPtAg-GOx nanozyme for synergistic Tumor Immunotherapy Induced by Hunger Remedy-augmented gentle Photothermal Remedy. Adv Sci (Weinh). 2022;9(31):e2202332.
Marchesi F, Vignali D, Manini B, Rigamonti A, Monti P. Manipulation of glucose availability to spice up most cancers immunotherapies. Cancers (Basel). 2020;12(10).
Pajak B, Siwiak E, Soltyka M, Priebe A, Zielinski R, Fokt I, Ziemniak M, Jaskiewicz A, Borowski R, Domoradzki T, Priebe W. 2-Deoxy-d-Glucose and its analogs: from diagnostic to therapeutic brokers. Int J Mol Sci. 2019;21(1).
Miura Okay, Wen Y, Tsushima M, Nakamura H. Photodynamic remedy by glucose transporter 1-Selective gentle inactivation. ACS Omega. 2022;7(38):34685–92.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg impact: the metabolic necessities of cell proliferation. Science. 2009;324(5930):1029–33.
Tudor D, Nenu I, Filip GA, Olteanu D, Cenariu M, Tabaran F, Ion RM, Gligor L, Baldea I. Mixed routine of photodynamic remedy mediated by Gallium phthalocyanine chloride and metformin enhances anti-melanoma efficacy. PLoS ONE. 2017;12(3):e0173241.
Xiong W, Qi L, Jiang N, Zhao Q, Chen L, Jiang X, Li Y, Zhou Z, Shen J. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl Mater Interfaces. 2021;13(7):8026–41.
Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by Metformin-Induced Discount of Tumor Hypoxia. Most cancers Immunol Res. 2017;5(1):9–16.
Pereira FV, Melo ACL, Low JS, de Castro IA, Braga TT, Almeida DC, Batista de Lima AGU, Hiyane MI, Correa-Costa M, Andrade-Oliveira V, Origassa CST, Pereira RM, Kaech SM, Rodrigues EG, Camara NOS. Metformin exerts antitumor exercise through induction of a number of demise pathways in tumor cells and activation of a protecting immune response. Oncotarget. 2018;9(40):25808–25.
Amin D, Richa T, Mollaee M, Zhan T, Tassone P, Johnson J, Luginbuhl A, Cognetti D, Martinez-Outschoorn U, Stapp R, Solomides C, Rodeck U, Curry J. Metformin results on FOXP3(+) and CD8(+) T cell infiltrates of Head and Neck squamous cell carcinoma. Laryngoscope. 2020;130(9):E490–8.
Luo L, Li X, Zhang J, Zhu C, Jiang M, Luo Z, Qin B, Wang Y, Chen B, Du Y, Lou Y, You J. Enhanced immune reminiscence by means of a relentless photothermal-metabolism regulation for most cancers prevention and remedy. Biomaterials. 2021;270:120678.
Luo L, Qin B, Jiang M, Xie L, Luo Z, Guo X, Zhang J, Li X, Zhu C, Du Y, Peng L, You J. Regulating immune reminiscence and reversing tumor thermotolerance by means of a step-by-step starving-photothermal remedy. J Nanobiotechnol. 2021;19(1):297.
Zheng X, Liu Y, Liu Y, Zhang T, Zhao Y, Zang J, Yang Y, He R, Chong G, Ruan S, Xu D, Li Y, Dong H. Twin closed-loop of catalyzed lactate depletion and immune response to potentiate photothermal immunotherapy. ACS Appl Mater Interfaces. 2022;(14)20:23260–276.
Luo Y, Li Y, Huang Z, Li X, Wang Y, Hou J, Zhou S. A Nanounit Technique disrupts Vitality Metabolism and alleviates immunosuppression for Most cancers Remedy. Nano Lett. 2022;22(15):6418–27.
Lu Y, Wang Y, Liu W, Ma H, Yang B, Shao Okay, Lengthy S, Solar W, Du J, Fan J, Liu B, Wang L, Peng X. Photothermal nano-dot reactivate immune-hot for tumor remedy through reprogramming most cancers cells metabolism. Biomaterials. 2023;296:122089.
Pavlova NN, Thompson CB. The rising Hallmarks of most cancers metabolism. Cell Metab. 2016;23(1):27–47.
Mai Z, Zhong J, Zhang J, Chen G, Tang Y, Ma W, Li G, Feng Z, Li F, Liang XJ, Yang Y, Yu Z. Provider-free immunotherapeutic nano-booster with twin synergistic results based mostly on glutaminase inhibition mixed with photodynamic remedy. ACS Nano. 2023.
Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. Most cancers cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13(1):3676.
Xie L, Li J, Wang G, Sang W, Xu M, Li W, Yan J, Li B, Zhang Z, Zhao Q, Yuan Z, Fan Q, Dai Y. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97.
Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H. IDO upregulates regulatory T cells through tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol. 2010;185(10):5953–61.
Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Most cancers J. 2010;16(4):354–9.
Yang Z, Gao D, Guo X, Jin L, Zheng J, Wang Y, Chen S, Zheng X, Zeng L, Guo M, Zhang X, Tian Z. Preventing Immune Chilly and Reprogramming Immunosuppressive Tumor Microenvironment with Purple Blood Cell membrane-camouflaged nanobullets. ACS Nano. 2020;14(12):17442–57.
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles along with IDO inhibitor improve most cancers photothermal remedy and immunotherapy. Adv Sci (Weinh). 2018;5(5):1700891.
Mohapatra A, Mondal J, Sathiyamoorthy P, Mohanty A, Revuri V, Rajendrakumar SK, Lee YK, Park IK. Thermosusceptible nitric-oxide-releasing nitrogel for strengthening Antitumor Immune responses with Tumor Collagen Diminution and Deep tissue supply throughout NIR Laser-assisted photoimmunotherapy. ACS Appl Mater Interfaces. 2023;15(11):14173–183.
Wu C, Xu J, Xie Z, Huang H, Li N, Wei X, Li T, Yang H, Li S, Qin X, Liu Y. Gentle-responsive hyaluronic acid nanomicelles co-loaded with an IDO inhibitor focus focused photoimmunotherapy towards immune chilly most cancers. Biomater Sci. 2021;9(23):8019–31.
Guo Y, Liu Y, Wu W, Ling D, Zhang Q, Zhao P, Hu X. Indoleamine 2,3-dioxygenase (ido) inhibitors and their nanomedicines for most cancers immunotherapy. Biomaterials. 2021;276:121018.
Marti ILAA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci. 2021;78(13):5303–24.
Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–54.
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor exercise. Cell. 2016;167(3):829–42. e13.
Feng Y, Zhang H, Xie X, Chen Y, Yang G, Wei X, Li N, Li M, Li T, Qin X, Li S, You F, Wu C, Yang H, Liu Y. Cascade-activatable NO launch based mostly on GSH-detonated nanobomb for multi-pathways most cancers remedy. Mater In the present day Bio. 2022;14:100288.
Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Concentrating on tumor microenvironment for most cancers remedy. Int J Mol Sci. 2019;20(4).
Cho H, Kwon HY, Sharma A, Lee SH, Liu X, Miyamoto N, Kim JJ, Im SH, Kang NY, Chang YT. Visualizing irritation with an M1 macrophage selective probe through GLUT1 because the gating goal. Nat Commun. 2022;13(1):5974.
Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a definite M2 polarised inhabitants selling tumour development: potential targets of anti-cancer remedy. Eur J Most cancers. 2006;42(6):717–27.
Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic development and immune surveillance. Immunol Rev. 2008;222:155–61.
Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Far more than M1 and M2 macrophages, there are additionally CD169(+) and TCR(+) macrophages. Entrance Immunol. 2015;6:263.
Wang S, Liu G, Li Y, Pan Y. Metabolic reprogramming induces macrophage polarization within the Tumor Microenvironment. Entrance Immunol. 2022;13:840029.
Zhao JL, Ye YC, Gao CC, Wang L, Ren KX, Jiang R, Hu SJ, Liang SQ, Bai J, Liang JL, Ma PF, Hu YY, Li BC, Nie YZ, Chen Y, Li XF, Zhang W, Han H, Qin HY. Notch-mediated lactate metabolism regulates MDSC improvement by means of the Hes1/MCT2/c-Jun axis. Cell Rep. 2022;38(10):110451.
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: position in tumorigenesis and immunotherapy implications. J Most cancers. 2021;12(1):54–64.
Li X, Guo X, Ling J, Tang Z, Huang G, He L, Chen T. Nanomedicine-based most cancers immunotherapies developed by reprogramming tumor-associated macrophages. Nanoscale. 2021;13(9):4705–27.
Yang Z, Luo Y, Yu H, Liang Okay, Wang M, Wang Q, Yin B, Chen H. Reshaping the Tumor Immune Microenvironment based mostly on a light-activated nanoplatform for environment friendly Most cancers Remedy, Superior supplies (Deerfield Seashore. Fla). 2022;34(11):e2108908.
Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, Johnson SF, Carrasco RD, Lazo S, Bronson RT, Davis SP, Lobera M, Nolan MA, Letai A. Class IIa HDAC inhibition reduces breast tumours and metastases by means of anti-tumour macrophages. Nature. 2017;543(7645):428–32.
Yue Y, Li F, Li Y, Wang Y, Guo X, Cheng Z, Li N, Ma X, Nie G, Zhao X. Biomimetic nanoparticles carrying a Repolarization Agent of Tumor-Related macrophages for Transforming of the Inflammatory Microenvironment following photothermal remedy. ACS Nano. 2021;15(9):15166–79.
Dvorak HF. Tumors: wounds that don’t heal. Similarities between tumor stroma technology and wound therapeutic. N Engl J Med. 1986;315(26):1650–9.
Zhou L, Yang Okay, Andl T, Wickett RR, Zhang Y. Perspective of Concentrating on Most cancers-Related fibroblasts in Melanoma. J Most cancers. 2015;6(8):717–26.
De Jaeghere EA, Denys HG, De Wever O. Fibroblasts gasoline Immune escape within the Tumor Microenvironment. Tendencies Most cancers. 2019;5(11):704–23.
Ziani L, Chouaib S, Thiery J. Alteration of the Antitumor Immune response by Most cancers-Related fibroblasts. Entrance Immunol. 2018;9:414.
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells within the tumor microenvironment. Entrance Endocrinol (Lausanne). 2022;13:988295.
Chen X, Music E. Turning foes to pals: concentrating on cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.
Fang T, Zhang J, Zuo T, Wu G, Xu Y, Yang Y, Yang J, Shen Q. Chemo-Photothermal Mixture Most cancers Remedy with ROS Scavenging, Extracellular Matrix Depletion, and Tumor Immune activation by Telmisartan and Diselenide-Paclitaxel Prodrug Loaded nanoparticles. ACS Appl Mater Interfaces. 2020;12(28):31292–308.
Nicolas-Boluda A, Vaquero J, Laurent G, Renault G, Bazzi R, Donnadieu E, Roux S, Fouassier L, Gazeau F. Photothermal Depletion of Most cancers-Related fibroblasts normalizes Tumor Stiffness in Desmoplastic Cholangiocarcinoma. ACS Nano. 2020;14(5):5738–53.
Li X, Yong T, Wei Z, Bie N, Zhang X, Zhan G, Li J, Qin J, Yu J, Zhang B, Gan L, Yang X. Reversing inadequate photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794.
Li J, Zhen X, Lyu Y, Jiang Y, Huang J, Pu Okay. Cell membrane coated Semiconducting Polymer nanoparticles for enhanced Multimodal Most cancers Phototheranostics. ACS Nano. 2018;12(8):8520–30.
Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Most cancers-Related fibroblasts within the breast Tumor Microenvironment. J Mammary Gland Biol Neoplasia. 2021;26(2):135–55.
Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. Looking for definitions: Most cancers-associated fibroblasts and their markers. Int J Most cancers. 2020;146(4):895–905.
Music P, Pan Q, Solar Z, Zou L, Yang L. Fibroblast activation protein alpha: Complete detection strategies for drug goal and tumor marker. Chem Biol Work together. 2022;354:109830.
Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Fibroblast activation protein-positive fibroblasts promote tumor development by means of secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Make investments. 2019;99(6):777–92.
Yu Q, Tang X, Zhao W, Qiu Y, He J, Wan D, Li J, Wang X, He X, Liu Y, Li M, Zhang Z, He Q. Delicate hyperthermia promotes immune checkpoint blockade-based immunotherapy towards metastatic pancreatic most cancers utilizing size-adjustable nanoparticles. Acta Biomater. 2021;133:244–56.
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The position of pure killer cells in Autoimmune illnesses. Entrance Immunol. 2021;12:622306.
Zitti B, Bryceson YT. Pure killer cells in irritation and autoimmunity. Cytokine Development Issue Rev. 2018;42:37–46.
Malhotra A, Shanker A. NK cells: immune cross-talk and therapeutic implications. Immunotherapy. 2011;3(10):1143–66.
Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by pure killer cells. J Exp Med. 2002;195(3):335–41.
Pahl J, Cerwenka A. Tricking the stability: NK cells in anti-cancer immunity. Immunobiology. 2017;222(1):11–20.
Liu H, Lei D, Li J, Xin J, Zhang L, Fu L, Wang J, Zeng W, Yao C, Zhang Z, Wang S. MMP-2 inhibitor-mediated Tumor Microenvironment Regulation utilizing a sequentially launched Bio-nanosystem for enhanced Most cancers Picture-Immunotherapy. ACS Appl Mater Interfaces. 2022;14(37):41834–50.
Wang S, Liu H, Xin J, Rahmanzadeh R, Wang J, Yao C, Zhang Z. Chlorin-based photoactivable galectin-3-Inhibitor nanoliposome for enhanced photodynamic remedy and NK Cell-related immunity in Melanoma. ACS Appl Mater Interfaces. 2019;11(45):41829–41.
Solar JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. NK cells and immune reminiscence. J Immunol. 2011;186(4):1891–7.
Tarannum M, Romee R. Cytokine-induced memory-like pure killer cells for most cancers immunotherapy. Stem Cell Res Ther. 2021;12(1):592.
Terren I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O, Borrego F. Cytokine-Induced Reminiscence-Like NK cells: from the fundamentals to medical purposes. Entrance Immunol. 2022;13:884648.
Solar X, Cao Z, Mao Okay, Wu C, Chen H, Wang J, Wang X, Cong X, Li Y, Meng X, Yang X, Yang YG, Solar T. Photodynamic remedy produces enhanced efficacy of antitumor immunotherapy by concurrently inducing intratumoral launch of sorafenib. Biomaterials. 2020;240:119845.
Wu Y, Yi M, Niu M, Mei Q, Wu Okay. Myeloid-derived suppressor cells: an rising goal for anticancer immunotherapy. Mol Most cancers. 2022;21(1):184.
Joshi S, Sharabi A. Concentrating on myeloid-derived suppressor cells to reinforce pure killer cell-based immunotherapy. Pharmacol Ther. 2022;235:108114.
De Cicco P, Ercolano G, Ianaro A. The New Period of Most cancers Immunotherapy: concentrating on myeloid-derived suppressor cells to beat Immune Evasion. Entrance Immunol. 2020;11:1680.
Shou D, Wen L, Music Z, Yin J, Solar Q, Gong W. Suppressive position of myeloid-derived suppressor cells (MDSCs) within the microenvironment of breast most cancers and focused immunotherapies. Oncotarget. 2016;7(39):64505–11.
Chen Q, He Y, Wang Y, Li C, Zhang Y, Guo Q, Zhang Y, Chu Y, Liu P, Chen H, Zhou Z, Zhou W, Zhao Z, Li X, Solar T, Jiang C. Penetrable Nanoplatform for Chilly Tumor Immune Microenvironment Reeducation. Adv Sci (Weinh). 2020;7(17):2000411.
Bayless S, Travers JB, Sahu RP, Rohan CA. Inhibition of photodynamic remedy induced-immunosuppression with aminolevulinic acid results in enhanced outcomes of tumors and pre-cancerous lesions. Oncol Lett. 2021;22(3):664.
Domvri Okay, Petanidis S, Anestakis D, Porpodis Okay, Bai C, Zarogoulidis P, Freitag L, Hohenforst-Schmidt W, Katopodi T. Twin photothermal MDSCs-targeted immunotherapy inhibits lung immunosuppressive metastasis by enhancing T-cell recruitment. Nanoscale. 2020;12(13):7051–62.
Korbelik M, Banath J, Zhang W, Noticed KM, Szulc ZM, Bielawska A, Separovic D. Interplay of acid ceramidase inhibitor LCL521 with tumor response to photodynamic remedy and photodynamic therapy-generated vaccine. Int J Most cancers. 2016;139(6):1372–8.
He X, Xu C. Immune checkpoint signaling and most cancers immunotherapy. Cell Res. 2020;30(8):660–9.
Jiang X, Liu G, Li Y, Pan Y. Immune checkpoint: the novel goal for antitumor remedy. Genes Dis. 2021;8(1):25–37.
Sharma P, Allison JP. Immune checkpoint concentrating on in most cancers remedy: towards mixture methods with healing potential. Cell. 2015;161(2):205–14.
Relecom A, Merhi M, Inchakalody V, Uddin S, Rinchai D, Bedognetti D, Dermime S. Rising dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. J Exp Clin Most cancers Res. 2021;40(1):74.
Xing R, Gao J, Cui Q, Wang Q. Methods to enhance the Antitumor Impact of Immunotherapy for Hepatocellular Carcinoma. Entrance Immunol. 2021;12:783236.
O’Reilly EM, Oh DY, Dhani N, Renouf DJ, Lee MA, Solar W, Fisher G, Hezel A, Chang SC, Vlahovic G, Takahashi O, Yang Y, Fitts D, Philip PA. Durvalumab with or with out Tremelimumab for sufferers with metastatic pancreatic ductal adenocarcinoma: a section 2 Randomized Medical Trial. JAMA Oncol. 2019;5(10):1431–8.
Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W. Photodynamic remedy mediated by unhazardous core-Shell nanoparticles synergizes with Immune Checkpoint Blockade to elicit Antitumor immunity and antimetastatic impact on breast Most cancers. J Am Chem Soc. 2016;138(51):16686–95.
Zhang N, Music J, Liu Y, Liu M, Zhang L, Sheng D, Deng L, Yi H, Wu M, Zheng Y, Wang Z, Yang Z. Photothermal remedy mediated by phase-transformation nanoparticles facilitates supply of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. J Management Launch. 2019;306:15–28.
Wen Y, Chen X, Zhu X, Gong Y, Yuan G, Qin X, Liu J. Photothermal-Chemotherapy Built-in nanoparticles with Tumor Microenvironment Response enhanced the induction of immunogenic cell demise for colorectal Most cancers environment friendly remedy. ACS Appl Mater Interfaces. 2019;11(46):43393–408.
Li Y, Li X, Doughty A, West C, Wang L, Zhou F, Nordquist RE, Chen WR. Phototherapy utilizing immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast most cancers. Nanomedicine. 2019;18:44–53.
Chen H, Luan X, Paholak HJ, Burnett JP, Stevers NO, Sansanaphongpricha Okay, He M, Chang AE, Li Q, Solar D. Depleting tumor-associated Tregs through nanoparticle-mediated hyperthermia to reinforce anti-CTLA-4 immunotherapy. Nanomed (Lond). 2020;15(1):77–92.
McKernan P, Virani NA, Faria GNF, Karch CG, Prada Silvy R, Resasco DE, Thompson LF, Harrison RG. Focused single-walled Carbon nanotubes for Photothermal Remedy mixed with Immune Checkpoint Inhibition for the remedy of metastatic breast Most cancers. Nanoscale Res Lett. 2021;16(1):9.
Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, Chen X, Zhang X, Zhang H, Mei L. Photothermal most cancers immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Management Launch. 2019;296:150–61.
Wang M, Music J, Zhou F, Hoover AR, Murray C, Zhou B, Wang L, Qu J, Chen WR. NIR-Triggered Phototherapy and Immunotherapy through an Antigen-capturing nanoplatform for metastatic Most cancers remedy. Adv Sci (Weinh). 2019;6(10):1802157.
Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy concentrating on 4-1BB: mechanistic rationale, medical outcomes, and future methods. Blood. 2018;131(1):49–57.
Etxeberria I, Glez-Vaz J, Teijeira A, Melero I. New rising targets in most cancers immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 2020;4(Suppl 3):e000733.
Qi X, Li F, Wu Y, Cheng C, Han P, Wang J, Yang X. Optimization of 4-1BB antibody for most cancers immunotherapy by balancing agonistic power with FcγR affinity. Nat Commun. 2019;10(1):2141.
Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: including the accelerator to most cancers immunotherapy. Most cancers Immunol Immunother. 2016;65(10):1243–8.
Cano-Mejia J, Shukla A, Ledezma DK, Palmer E, Villagra A, Fernandes R. CpG-coated prussian blue nanoparticles-based photothermal remedy mixed with anti-CTLA-4 immune checkpoint blockade triggers a sturdy abscopal impact towards neuroblastoma. Transl Oncol. 2020;13(10):100823.
Balakrishnan PB, Ledezma DK, Cano-Mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R, Sweeney EE. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal remedy for melanoma. Nano Res. 2022;15(3):2300–14.
Chen W, Qin M, Chen X, Wang Q, Zhang Z, Solar X. Combining photothermal remedy and immunotherapy towards melanoma by polydopamine-coated Al(2)O(3) nanoparticles. Theranostics. 2018;8(8):2229–41.
Chen Z, Zhang Q, Huang Q, Liu Z, Zeng L, Zhang L, Chen X, Music H, Zhang J. Photothermal MnO(2) nanoparticles enhance chemo-photothermal therapy-induced immunogenic cell demise in tumor immunotherapy. Int J Pharm. 2022;617:121578.
Ye X, Liang X, Chen Q, Miao Q, Chen X, Zhang X, Mei L. Surgical Tumor-Derived Personalised Photothermal Vaccine Formulation for Most cancers Immunotherapy. ACS Nano. 2019;13(3):2956–68.
Dalpke A, Zimmermann S, Heeg Okay. CpG DNA within the prevention and remedy of infections. BioDrugs. 2002;16(6):419–31.
Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or remedy of cancers, infectious illnesses, and allergic reactions. Int J Nanomed. 2017;12:515–31.
Xu W, Pang C, Music C, Qian J, Feola S, Cerullo V, Fan L, Yu H, Lehto VP. Black porous silicon as a photothermal agent and immunoadjuvant for environment friendly antitumor immunotherapy. Acta Biomater. 2022;152:473–83.
Li WH, Wu JJ, Wu L, Zhang BD, Hu HG, Zhao L, Li ZB, Yu XF, Li YM. Black phosphorous nanosheet: a novel immune-potentiating nanoadjuvant for near-infrared-improved immunotherapy. Biomaterials. 2021;273:120788.
Shao X, Ding Z, Zhou W, Li Y, Li Z, Cui H, Lin X, Cao G, Cheng B, Solar H, Li M, Liu Okay, Lu D, Geng S, Shi W, Zhang G, Music Q, Chen L, Wang G, Su W, Cai L, Fang L, Leong DT, Li Y, Yu XF, Li H. Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization by means of suppression of PLK1 kinase. Nat Nanotechnol. 2021;16(10):1150–60.
Aldinucci A, Turco A, Biagioli T, Toma FM, Bani D, Guasti D, Manuelli C, Rizzetto L, Cavalieri D, Massacesi L, Mello T, Scaini D, Bianco A, Ballerini L, Prato M, Ballerini C. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts on the nanoscale. Nano Lett. 2013;13(12):6098–105.
Fang RH, Gao W, Zhang L. Concentrating on medication to tumours utilizing cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33–48.
Wang H, Liu Y, He R, Xu D, Zang J, Weeranoppanant N, Dong H, Li Y. Cell membrane biomimetic nanoparticles for irritation and most cancers concentrating on in drug supply. Biomater Sci. 2020;8(2):552–68.
Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug supply. J Management Launch. 2015;220:600–7. (Pt B).
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Most cancers cell membrane-coated nanoparticles for bimodal imaging-guided photothermal remedy and docetaxel-enhanced immunotherapy towards most cancers. J Nanobiotechnol. 2021;19(1):449.
Chen PM, Pan WY, Wu CY, Yeh CY, Korupalli C, Luo PK, Chou CJ, Chia WT, Sung HW. Modulation of tumor microenvironment utilizing a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ most cancers vaccination. Biomaterials. 2020;230:119629.
Zuo YH, Zhao XP, Fan XX. Nanotechnology-based chimeric antigen receptor T-cell remedy in treating stable tumor. Pharmacol Res. 2022;184:106454.
Watanabe N, Mo F, McKenna MK. Influence of Manufacturing procedures on CAR T cell performance. Entrance Immunol. 2022;13:876339.
Chen Z, Pan H, Luo Y, Yin T, Zhang B, Liao J, Wang M, Tang X, Huang G, Deng G, Zheng M, Cai L. Nanoengineered CAR-T biohybrids for Strong Tumor Immunotherapy with Microenvironment Photothermal-Transforming Technique. Small. 2021;17(14):e2007494.
Lin X, Wang X, Li J, Cai L, Liao F, Wu M, Zheng D, Zeng Y, Zhang Z, Liu X, Wang J, Yao C. Localized NIR-II photo-immunotherapy by means of the mix of photothermal ablation and in situ generated interleukin-12 cytokine for effectively eliminating main and abscopal tumors. Nanoscale. 2021;13(3):1745–58.
Nguyen NT, Huang Okay, Zeng H, Jing J, Wang R, Fang S, Chen J, Liu X, Huang Z, You MJ, Rao A, Huang Y, Han G, Zhou Y. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced security. Nat Nanotechnol. 2021;16(12):1424–34.
Shi B, Li D, Yao W, Wang W, Jiang J, Wang R, Yan F, Liu H, Zhang H, Ye J. Multifunctional theranostic nanoparticles for multi-modal imaging-guided CAR-T immunotherapy and chemo-photothermal combinational remedy of non-hodgkin’s lymphoma. Biomater Sci. 2022;10(10):2577–89.
Zhu L, Liu J, Zhou G, Liu TM, Dai Y, Nie G, Zhao Q. Transforming of Tumor Microenvironment by Tumor-Concentrating on Nanozymes enhances Immune activation of CAR T cells for mixture remedy. Small. 2021;17(43):e2102624.
Chen Q, Hu Q, Dukhovlinova E, Chen G, Ahn S, Wang C, Ogunnaike EA, Ligler FS, Dotti G, Gu Z. Photothermal Remedy promotes Tumor Infiltration and Antitumor Exercise of CAR T cells. Adv Mater. 2019;31(23):e1900192.
Miller IC, Zamat A, Solar LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural exercise of CAR T cells engineered to supply immunomodulators below photothermal management. Nat Biomed Eng. 2021;5(11):1348–59.
Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, Wu L, Wang G, Xiao Y, Liu Z, Wang F, Li A, Shao D, Dong W, Liu W, Yuan Y. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane gives excessive specificity for hepatocellular carcinoma photothermal remedy remedy. Theranostics. 2020;10(3):1281–95.