Chai, Z. et al. Ultrafast all-optical switching. Adv. Decide. Mater. 5, 1600665 (2017).
Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).
Hohenleutner, M. et al. Actual-time statement of interfering crystal electrons in high-harmonic era. Nature 523, 572–575 (2015).
Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Ellipticity dependence of high-harmonic era in solids originating from coupled intraband and interband dynamics. Nat. Commun. 8, 745 (2017).
Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, 195 (2016).
Datta, I. et al. Low-loss composite photonic platform based mostly on 2D semiconductor monolayers. Nat. Photon. 14, 256–262 (2020).
Yao, Okay. et al. Steady wave sum frequency era and imaging of monolayer and heterobilayer two-dimensional semiconductors. ACS Nano 14, 708–714 (2020).
Trovatello, C. et al. Optical parametric amplification by monolayer transition metallic dichalcogenides. Nat. Photon. 15, 6–10 (2021).
Abdelwahab, I. et al. Large second-harmonic era in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022).
Guo, Q. et al. Ultrathin quantum gentle supply with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).
Lee, M. et al. Wafer-scale δ waveguides for built-in two-dimensional photonics. Science 381, 648–653 (2023).
Zograf, G. et al. Combining ultrahigh index with distinctive nonlinearity in resonant transition metallic dichalcogenide nanodisks. Nat. Photon. 18, 751–757 (2024).
Sortino, L. et al. Van der Waals heterostructure metasurfaces: atomic-layer meeting of ultrathin optical cavities. Preprint at https://arxiv.org/abs/2407.16480 (2024).
Busschaert, S. et al. Transition metallic dichalcogenide resonators for second harmonic sign enhancement. ACS Photon. 7, 2482–2488 (2020).
Hsu, W. T. et al. Second harmonic era from artificially stacked transition metallic dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).
Hsu, W.-T. et al. Dielectric affect on exciton binding power and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).
Zhao, M. et al. Atomically phase-matched second-harmonic era in a 2D crystal. Gentle. Sci. Appl. 5, e16131 (2016).
Xu, X. et al. In direction of compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors. Nat. Photon. 16, 698–706 (2022).
Trovatello, C. et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photon. (within the press).
Li, Z. et al. Direct visualization of phase-matched environment friendly second harmonic and broadband sum frequency era in hybrid plasmonic nanostructures. Gentle. Sci. Appl. 9, 180 (2020).
Caspani, L. et al. Built-in sources of photon quantum states based mostly on nonlinear optics. Gentle. Sci. Appl. 6, e17100 (2017).
Tsuchizawa, T. et al. Microphotonics gadgets based mostly on silicon microfabrication expertise. IEEE J. Sel. Prime. Quantum Electron. 11, 232–240 (2005).
Pu, M. et al. Extremely-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical sign processing. Laser Photon. Rev. 12, 1800111 (2018).
Shi, J. et al. Distant dual-cavity enhanced second harmonic era in a hybrid plasmonic waveguide. Nano Lett. 22, 688–694 (2022).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Yoxall, E. et al. Direct statement of ultraslow hyperbolic polariton propagation with detrimental part velocity. Nat. Photon. 9, 674–678 (2015).
Gersen, H. et al. Actual-space statement of ultraslow gentle in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).
Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics utilizing free electrons. Science 372, 1181–1186 (2021).
Niemann, R. et al. Spectroscopic and interferometric sum-frequency imaging of strongly coupled phonon polaritons in SiC metasurfaces. Adv. Mater. 36, 2312507 (2024).
Autler, S. H. & Townes, C. H. Stark impact in quickly various fields. Phys. Rev. 100, 703–722 (1955).
Hayat, A. et al. Dynamic Stark impact in strongly coupled microcavity exciton polaritons. Phys. Rev. Lett. 109, 033605 (2012).
LaMountain, T. et al. Valley-selective optical Stark impact of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).
Pogna, E. A. A. A. et al. Photograph-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 10, 1182–1188 (2016).
Trovatello, C. et al. Disentangling many-body results within the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).
Xu, D. et al. Ultrafast imaging of polariton propagation and interactions. Nat. Commun. 14, 3881 (2023).
Renken, S. et al. Untargeted results in natural exciton-polariton transient spectroscopy: a cautionary story. J. Chem. Phys. 155, 154701 (2021).
Delor, M., Weaver, H. L., Yu, Q. & Ginsberg, N. S. Imaging materials performance by three-dimensional nanoscale monitoring of power circulation. Nat. Mater. 19, 56–62 (2020).
Boyd, R. W. Nonlinear Optics third edn (Tutorial Press, 2008).
Bringuier, E., Bourdon, A., Piccioli, N. & Chevy, A. Optical second-harmonic era in lossy media: utility to GaSe and InSe. Phys. Rev. B 49, 16971–16982 (1994).
Neuschafer, D., Preiswerk, H., Spahni, H., Konz, E. & Marowsky, G. Second-harmonic era utilizing planar waveguides with consideration of pump depletion and absorption. J. Decide. Soc. Am. B 11, 649 (1994).
Liu, H. L. et al. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).
Stegeman, G. I. & Stolen, R. H. Waveguides and fibers for nonlinear optics. J. Decide. Soc. Am. B 6, 652 (1989).
Stegeman, G. I. & Seaton, C. T. Nonlinear built-in optics. J. Appl. Phys. 58, 57–78 (1985).
Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40 (2020).
Suhara, T. & Fujimura, M. Waveguide Nonlinear-Optic Gadgets (Springer Berlin Heidelberg, 2003).
Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and functions. Decide. Specific 15, 16604 (2007).
Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metallic dichalcogenides for environment friendly gentle absorption. ACS Photon. 6, 139–147 (2019).
Chervy, T. et al. Excessive-efficiency second-harmonic era from hybrid gentle–matter states. Nano Lett. 16, 7352–7356 (2016).
Schmutzler, J. et al. Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Phys. Rev. B 90, 075103 (2014).
Mennel, L. et al. Band nesting in two-dimensional crystals: an exceptionally delicate probe of pressure. Nano Lett. 20, 4242–4248 (2020).
Yoshikawa, N. et al. Interband resonant high-harmonic era by valley polarized electron–gap pairs. Nat. Commun. 10, 3709 (2019).
Choo, H. et al. Nanofocusing in a metallic–insulator–metallic hole plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 6, 838–844 (2012).
Mooshammer, F. et al. Enabling waveguide optics in rhombohedral-stacked transition metallic dichalcogenides with laser-patterned grating couplers. ACS Nano 18, 4118–4130 (2024).
Zeng, Z. et al. Managed vapor development and nonlinear optical functions of large-area 3R part WS2 and WSe2 atomic layers. Adv. Funct. Mater. 29, 1806874 (2019).
Li, X. et al. Rhombohedral-stacked bilayer transition metallic dichalcogenides for high-performance atomically skinny CMOS gadgets. Sci. Adv. 9, eade5706 (2023).
Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).
Moussa, H. et al. Remark of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863–868 (2023).
Tulyagankhodjaev, J. A. et al. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 382, 438–442 (2023).
Xu, D. et al. Dataset for “Spatiotemporal imaging of nonlinear optics in van der Waals waveguides” Zenodo https://doi.org/10.5281/zenodo.14231910 (2024).