0.9 C
United States of America
Sunday, February 23, 2025

Service-free nanoparticles—new technique of enhancing druggability of pure merchandise | Journal of Nanobiotechnology


  • Area AC, Leite Kassuya CA, Konkiewitz EC, Ziff EB. Pure merchandise as sources of New Analgesic medication. Evid Based mostly Complement Alternat Med. 2022. https://doi.org/10.1155/2022/9767292. 2022(9767292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman DJ, Cragg GM. Pure merchandise as sources of New medication over the almost 4 a long time from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yuan H, Ma Q, Ye L, Piao G. The Conventional Drugs and Trendy Drugs from Pure merchandise. Molecules. 2016;21(5):559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang A, Solar H, Wang X. Mass spectrometry-driven drug discovery for improvement of natural medication. Mass Spectrom Rev. 2018;37(3):307–20. https://doi.org/10.1002/mas.21529.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, De Diego Puente T. A Compressive Assessment about Taxol(®): Historical past and Future Challenges. Molecules. 2020;25(24). https://doi.org/10.3390/molecules25245986.

  • Langer D, Mlynarczyk DT, Dlugaszewska J, Tykarska E. Potential of glycyrrhizic and glycyrrhetinic acids towards influenza kind A and B viruses: a perspective to develop new anti-influenza compounds and drug supply techniques. Eur J Med Chem. 2023;246:114934. https://doi.org/10.1016/j.ejmech.2022.114934.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: advances within the chemistry and biology of berberine. Eur J Med Chem. 2021;226:113839. https://doi.org/10.1016/j.ejmech.2021.113839.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou J, Liu H, Deng KW, Fan QM, Pan X, Zhu ZF, Yang YT, He FY. Analysis methods on the druggability of Chinese language medication based mostly onpharmacokinetics. China J Chin Materia Med. 2019;34(09):3916–20.


    Google Scholar
     

  • Luan X, Huang M, Ke BW, Ge GB, Zhang WD. Technique and problem of revolutionary drug analysis and improvement fromclinically efficient components of conventional Chinese language medication. China J Chin Materia Med. 2023;48(07):1705–10. https://doi.org/10.19540/j.cnki.cjcmm.20230112.201.

    Article 

    Google Scholar
     

  • Dipanjan Ok, Swarupananda M, Ayon D, Dipanjana A, Shayeri Chatterjee G, Apurbaa A, Biswajit B. Good multifunctional nanoparticles in Most cancers Theranostics: Progress and Prospect. Pharm Nanatechnol. 2024;12:1–13. https://doi.org/10.2174/0122117385304258240427054724.

    Article 

    Google Scholar
     

  • Dipanjan Ok, Swarupananda M, Susmita P, Suchana D, Bhupendra P, Ravish JP, Sajal Kumar J. Nanotechnology-powered meningitis therapies: lipid nanoparticles prepared the ground. Curr Pharm Biotechnol. 2024;25:1–13. https://doi.org/10.2174/0113892010303028240429073144.

    Article 

    Google Scholar
     

  • Karati D, Mukherjee S, Prajapati B, Bose A, Paul S, Elossaily GM, Roy S. A overview on lipid-polymer hybrid nanocarriers in most cancers. J Drug Deliv Sci Technol. 2024;97:105827. https://doi.org/10.1016/j.jddst.2024.105827.

    Article 
    CAS 

    Google Scholar
     

  • Gao CF, Xia JX, Zhu Y, Ren HW, Hong C, Lu WG, Wang JX. Utility of nanotechnology in enhancing druggability of activeingredients of Chinese language materia medica. Chin Conventional Herb Medication. 2018;49(12):2754–62.


    Google Scholar
     

  • Su Y, Gao J, Dong X, Wheeler KA, Wang Z. Neutrophil-mediated supply of Nanocrystal medication by way of Photoinduced irritation enhances Most cancers Remedy. ACS Nano. 2023;17(16):15542–55. https://doi.org/10.1021/acsnano.3c02013.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ma Y, Liu Y, Wang Y, Gao P. Transdermal codelivery system of resveratrol nanocrystals and fluorouracil@ HP-β-CD by dissolving microneedles for cutaneous melanoma remedy. J Drug Deliv Sci Technol. 2024;91:105257. https://doi.org/10.1016/j.jddst.2023.105257.

    Article 
    CAS 

    Google Scholar
     

  • Kotian V, Koland M, Mutalik S. Nanocrystal-based topical gels for enhancing Wound Therapeutic Efficacy of Curcumin. Crystals. 2022;12(11):1565.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Solar Y, Cheng M, Liu Q, Liu W, Gao C, Feng J, Jin Y, Tu L. Enhancing oral bioavailability of Luteolin Nanocrystals by Floor Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech. 2021;22(3):133. https://doi.org/10.1208/s12249-021-02012-y.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu C, Chang D, Zhang X, Sui H, Kong Y, Zhu R, Wang W. Oral fast-dissolving movies containing lutein nanocrystals for improved bioavailability: formulation improvement, in vitro and in vivo analysis. AAPS PharmSciTech. 2017;18(8):2957–64. https://doi.org/10.1208/s12249-017-0777-2.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stanisic D, Liu LHB, Dos Santos RV, Costa AF, Durán N, Tasic L. New sustainable course of for Hesperidin isolation and Anti-ageing results of Hesperidin Nanocrystals. Molecules. 2020;25(19). https://doi.org/10.3390/molecules25194534.

  • Zhang J, Zhang J, Wang S, Yi T. Growth of an oral compound Pickering Emulsion composed of nanocrystals of poorly soluble ingredient and unstable oils from conventional Chinese language medication. Pharmaceutics. 2018;10(4). https://doi.org/10.3390/pharmaceutics10040170.

  • Zhang YN, Yin HM, Zhang Y, Zhao W, Liu LX, Zhang DJ, Kuang HX. Synthesis and characterization of Pharmaceutical Co-crystal of Luteolin with 4, 4’-Dipyridy. J Northeast Agricultural Univ. 2015;46(12):72–8. https://doi.org/10.19720/j.cnki.issn.1005-9369.2015.12.011.

    Article 
    CAS 

    Google Scholar
     

  • Liu M, Hong C, Li G, Ma P, Xie Y. The technology of myricetin-nicotinamide nanococrystals by prime down and backside up applied sciences. Nanotechnology. 2016;27(39):395601. https://doi.org/10.1088/0957-4484/27/39/395601.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang D, Wang H, Liu Q, Yuan P, Chen T, Zhang L, Yang S, Zhou Z, Lu Y, Du G. Structural panorama on a collection of rhein: Berberine cocrystal salt solvates: the formation, dissolution elucidation from experimental and theoretical investigations. Chin Chem Lett. 2022;33(06):3207–11.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Li YG, Zhang M, Zhang YJ, Lou BY. A drug-drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2021;111(1):82–7.

    Article 
    PubMed 

    Google Scholar
     

  • Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for enhancing oral bioavailability of medicine: intestinal transport mechanisms and influencing elements. AAPS PharmSciTech. 2021;22(5):179. https://doi.org/10.1208/s12249-021-02041-7.

    Article 
    PubMed 

    Google Scholar
     

  • Chang Z, Chen D, Peng J, Liu R, Li B, Kang J, Guo L, Hou R, Xu X, Lee M, Zhang X. Bone-targeted Supramolecular Nanoagonist assembled by Correct Ratiometric Natural-Derived therapeutics for osteoporosis reversal. Nano Lett. 2024;24(17):5154–64. https://doi.org/10.1021/acs.nanolett.4c00029.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Y, Zhao D, Yang F, Ye C, Chen Z, Chen Y, Yu X, Xie J, Dou Y, Chang J. ACS Nano. 2024;18(11):7890–906. https://doi.org/10.1021/acsnano.3c09286. Situ Self-Assembled Phytopolyphenol-Coordinated Clever Nanotherapeutics for Multipronged Administration of Ferroptosis-Pushed Alzheimer’s Illness.

  • Verma S, Singh A, Mishra A. Gallic acid: molecular rival of most cancers. Environ Toxicol Pharmacol. 2013;35(3):473–85. https://doi.org/10.1016/j.etap.2013.02.011.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong S, Zhao J, Cao C, Wong CK, Kuchel RP, De Luca S, Hook JM, Garvey CJ, Smith S, Ho J, Stenzel MH. Simply add sugar for carbohydrate induced self-assembly of curcumin. Nat Commun. 2019;10(1):582. https://doi.org/10.1038/s41467-019-08402-y.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin H, Xu Q, Zhang F, Wu H, Hu B, Chen G, Ban X, Duan X, Yu M. Self-assembled carrier-free nanomedicine suppresses tumor stemness to beat the acquired drug-resistance of hepatocellular carcinoma. Chem Eng J. 2023;474:145555. https://doi.org/10.1016/j.cej.2023.145555.

    Article 
    CAS 

    Google Scholar
     

  • Zou JJ, Le JQ, Zhang BC, Yang MY, Jiang JL, Lin JF, Wu PY, Li C, Chen L, Shao JW. Accelerating transdermal supply of insulin by ginsenoside nanoparticles with distinctive permeability. Int J Pharm. 2021;605:120784. https://doi.org/10.1016/j.ijpharm.2021.120784.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast most cancers by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnol. 2020;18(1):116. https://doi.org/10.1186/s12951-020-00679-2.

    Article 
    CAS 

    Google Scholar
     

  • Wu X, Zang R, Qiu Y, Yang N, Liu M, Wei S, Xu X, Diao Y. Self-assembly of Rhein and Matrine nanoparticles for enhanced Wound Therapeutic. Molecules. 2024;29(14). https://doi.org/10.3390/molecules29143326.

  • Cheng J, Zhao H, Yao L, Li Y, Qi B, Wang J, Yang X. Easy and multifunctional pure self-assembled sterols with anticancer activity-mediated supramolecular photosensitizers for enhanced Antitumor Photodynamic Remedy. ACS Appl Mater Interfaces. 2019;11(33):29498–511. https://doi.org/10.1021/acsami.9b07404.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao R, Zheng G, Fan L, Shen Z, Jiang Ok, Guo Y, Shao JW. Service-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for most cancers imaging and chemo-photo mixture remedy. Acta Biomater. 2018;70:197–210. https://doi.org/10.1016/j.actbio.2018.01.028.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng XX, Xie Q, Yang CL, Kong L, Zhang ZP. Arrier-free nanoparticles based mostly on self-assembly of energetic components from Chinese language medication. Acta Pharm Sinica. 2021;56(12):3203–11. https://doi.org/10.16438/j.0513-4870.2021-0748.

    Article 
    CAS 

    Google Scholar
     

  • Wang F, Liu Y, Cai P, Zhong X, Zhong J, Li Y, Hu H, Sheng Y, Pan H, Kong F. Fabrication and characterization of gelatin-finger Citron Polysaccharide nanoparticles for enhanced solubility and bioavailability of Luteolin in treating Acute Alcoholic Liver Illness. J Agric Meals Chem. 2024;72(50):28072–83. https://doi.org/10.1021/acs.jafc.4c08282.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Z, Zheng Y, Shi H, Xie H, Yang Y, Zhu F, Ke L, Chen H, Gao Y. Handy tuning of the elasticity of self-assembled Nano-Sized triterpenoids to control their Organic actions. ACS Appl Mater Interfaces. 2021;13(37):44065–78. https://doi.org/10.1021/acsami.1c12418.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo QW, Yao L, Li L, Yang Z, Zhao MM, Zheng YZ, Zhuo FF, Liu TT, Zhang XW, Liu D, Tu PF, Zeng KW. Inherent functionality of self-assembling nanostructures in particular proteasome activation for Most cancers Cell pyroptosis. Small. 2023;19(9):e2205531. https://doi.org/10.1002/smll.202205531.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fabiano A, De Leo M, Cerri L, Piras AM, Braca A, Zambito Y. Saffron extract self-assembled nanoparticles to delay the precorneal residence of crocin. J Drug Deliv Sci Technol. 2022;74:103580. https://doi.org/10.1016/j.jddst.2022.103580.

    Article 
    CAS 

    Google Scholar
     

  • Liang X, Gao C, Cui L, Wang S, Wang J, Dai Z. Self-assembly of an amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for extra efficacious mixture chemotherapy in Most cancers. Adv Mater. 2017;29(40). https://doi.org/10.1002/adma.201703135.

  • Solar H, Nai J, Deng B, Zheng Z, Chen X, Zhang C, Sheng H, Zhu L. Angelica Sinensis Polysaccharide-based nanoparticles for liver-targeted supply of Oridonin. Molecules. 2024;29(3). https://doi.org/10.3390/molecules29030731.

  • Wang Ok, Xu J, Liu Y, Cui Z, He Z, Zheng Z, Huang X, Zhang Y. Self-assembled Angelica Sinensis polysaccharide nanoparticles with an instinctive liver-targeting means as a drug service for acute alcoholic liver harm safety. Int J Pharm. 2020;577:118996. https://doi.org/10.1016/j.ijpharm.2019.118996.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Li Y, Wang C, Li G, Zhao Y, Yang Y. Synthesis of methylprednisolone loaded ibuprofen modified inulin based mostly nanoparticles and their utility for drug supply. Mater Sci Eng C Mater Biol Appl. 2014;42:111–5. https://doi.org/10.1016/j.msec.2014.05.025.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li R, Zhou J, Zhang X, Wang Y, Wang J, Zhang M, He C, Zhuang P, Chen H. Building of the Gal-NH(2)/mulberry leaf polysaccharides-lysozyme/luteolin nanoparticles and the amelioration results on lipid accumulation. Int J Biol Macromol. 2023;253(Pt 3):126780. https://doi.org/10.1016/j.ijbiomac.2023.126780.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cai X, Weng Q, Lin J, Chen G, Wang S. Radix Pseudostellariae protein-curcumin nanocomplex: enchancment on the soundness, mobile uptake and antioxidant exercise of curcumin. Meals Chem Toxicol. 2021;151:112110. https://doi.org/10.1016/j.fct.2021.112110.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou J, Zhang J, Gao G, Wang H, He X, Chen T, Ke L, Rao P, Wang Q. Boiling licorice produces self-assembled protein nanoparticles: a Novel supply of Bioactive nanomaterials. J Agric Meals Chem. 2019;67(33):9354–61. https://doi.org/10.1021/acs.jafc.9b03208.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, Wang H, Zhang X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization by means of the ROS-MAPK-NFκB P65 signaling pathway after spinal wire harm. J Nanobiotechnol. 2022;20(1):65. https://doi.org/10.1186/s12951-022-01273-4.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical utility of mesenchymal stem cell exosomes alleviates the Imiquimod Induced Psoriasis-Like irritation. Int J Mol Sci. 2021;22(2). https://doi.org/10.3390/ijms22020720.

  • Li S, Liu J, Liu S, Jiao W, Wang X. Mesenchymal stem cell-derived extracellular vesicles forestall the event of osteoarthritis by way of the circHIPK3/miR-124-3p/MYH9 axis. J Nanobiotechnol. 2021;19(1):194. https://doi.org/10.1186/s12951-021-00940-2.

    Article 
    CAS 

    Google Scholar
     

  • Carobolante G, Mantaj J, Ferrari E, Vllasaliu D. Cow milk and intestinal epithelial cell-derived Extracellular vesicles as techniques for enhancing oral drug supply. Pharmaceutics. 2020;12(3). https://doi.org/10.3390/pharmaceutics12030226.

  • Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani N, a A, Witwer KW, Regulation JX. Efficacy and security of small extracellular vesicle interventions in wound therapeutic and pores and skin regeneration: a scientific overview and meta-analysis of animal research. Theranostics. 2022;12(15):6455–508. https://doi.org/10.7150/thno.73436.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Feng T, Wan Y, Dai B, Liu Y. Anticancer exercise of bitter melon-derived vesicles extract towards breast Most cancers. Cells. 2023;12(6). https://doi.org/10.3390/cells12060824.

  • Liu B, Lu Y, Chen X, Muthuraj PG, Li X, Pattabiraman M, Zempleni J, Kachman SD, Natarajan SK, Yu J. Protecting function of Shiitake Mushroom-Derived Exosome-Like nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Harm in mice. Vitamins. 2020;12(2). https://doi.org/10.3390/nu12020477.

  • Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-Activated protein kinase. Mol Ther. 2017;25(7):1641–54. https://doi.org/10.1016/j.ymthe.2017.01.025.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shen H, Zhang M, Liu D, Liang X, Chang Y, Hu X, Gao W. Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular harm by means of the Keap1/Nrf2 pathway. Meals Funct. 2024. https://doi.org/10.1039/d4fo03993a.

    Article 
    PubMed 

    Google Scholar
     

  • Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, Peng LH. Plant exosomes as novel nanoplatforms for MicroRNA switch stimulate neural differentiation of stem cells in Vitro and in vivo. Nano Lett. 2021;21(19):8151–59. https://doi.org/10.1021/acs.nanolett.1c02530.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, Li S, Qiu Q, Lee H, Wang J. Anti-glioma impact of ginseng-derived exosomes-like nanoparticles by energetic blood-brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnol. 2023;21(1):253. https://doi.org/10.1186/s12951-023-02006-x.

    Article 
    CAS 

    Google Scholar
     

  • Cao M, Yan H, Han X, Weng L, Wei Q, Solar X, Lu W, Wei Q, Ye J, Cai X, Hu C, Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma development. J Immunother Most cancers. 2019;7(1):326. https://doi.org/10.1186/s40425-019-0817-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaram Ok, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Service provider ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2020;23(2):100869. https://doi.org/10.1016/j.isci.2020.100869.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic method for the prevention and remedy of inflammatory bowel illness and colitis-associated most cancers. Biomaterials. 2016. https://doi.org/10.1016/j.biomaterials.2016.06.018. 101(321 – 40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, Mcclain CJ, Zhang HG. Ginger-derived nanoparticles shield towards alcohol-induced liver harm. J Extracell Vesicles. 2015;4:28713. https://doi.org/10.3402/jev.v4.28713.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis development by inhibiting oxidative stress by way of the Nrf2 pathway. Nanomed (Lond). 2024;19(28):2357–73. https://doi.org/10.1080/17435889.2024.2403324.

    Article 

    Google Scholar
     

  • Zhao WJ, Bian YP, Wang QH, Yin F, Yin L, Zhang YL, Liu JH. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver illness by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022;43(3):645–58. https://doi.org/10.1038/s41401-021-00681-w.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG. Grape exosome-like nanoparticles induce intestinal stem cells and shield mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://doi.org/10.1038/mt.2013.64.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lei C, Mu J, Teng Y, He L, Xu F, Zhang X, Sundaram Ok, Kumar A, Sriwastva MK, Lawrenz MB, Zhang L, Yan J, Feng W, Mcclain CJ, Zhang X, Zhang HG. Lemon Exosome-like nanoparticles-manipulated Probiotics shield mice from C. D Iff an infection. iScience. 2020;23(10):101571. https://doi.org/10.1016/j.isci.2020.101571.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, Zito G, Flugy A, Manno M, Di Bella MA, De Leo G, Alessandro R. Citrus limon-derived nanovesicles inhibit most cancers cell proliferation and suppress CML xenograft development by inducing TRAIL-mediated cell demise. Oncotarget. 2015;6(23):19514–27. https://doi.org/10.18632/oncotarget.4004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, Solar W, Zhao E, Wang M, Reis RL, Kundu SC, Shi X, Xiao B. Mulberry Biomass-Derived Nanomedicines Mitigate Colitis by means of Improved Infected Mucosa Accumulation and Intestinal Microenvironment Modulation. Analysis (Wash D C). 2023; 6(0188. https://doi.org/10.34133/analysis.0188

  • Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, Lee CH, Lee SH, Kim JE, Lee S, Kim HM, Kim HW, Kim J, Website positioning W, Kwon HJ, Track BJ, Kim DK, Baek MC, Cho YE. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and stop osteoporosis in mice. J Management Launch. 2023;355. https://doi.org/10.1016/j.jconrel.2023.01.071. (184 – 98.

  • Bian YP. Garlic-derived Exosomes-likeNanoparticles Attenuate InflammationResponse within the White Adipose of Excessive-fatDiet-fed C57BL/6 Mice. 2021.

  • Sundaram Ok, Mu J, Kumar A, Behera J, Lei C, Sriwastva MK, Xu F, Dryden GW, Zhang L, Chen S, Yan J, Zhang X, Park JW, Service provider ML, Tyagi N, Teng Y, Zhang HG. Garlic exosome-like nanoparticles reverse high-fat food plan induced weight problems by way of the intestine/mind axis. Theranostics. 2022;12(3):1220–46. https://doi.org/10.7150/thno.65427.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, Yu R, Track L, Zhu J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory impact by way of TNF-α/NF-κB/PU.1 axis. J Nanobiotechnol. 2023;21(1):160. https://doi.org/10.1186/s12951-023-01919-x.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, Luo L, Wang C, Zeng L, Xiao B. Pure exosome-like nanovesicles from edible tea flowers suppress metastatic breast most cancers by way of ROS technology and microbiota modulation. Acta Pharm Sin B. 2022;12(2):907–23. https://doi.org/10.1016/j.apsb.2021.08.016.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, Tian CM, Yao J, Wang LS, Nie YQ, Li DF. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis by way of facilitating double-positive CD4(+)CD8(+)T cells enlargement. J Nanobiotechnol. 2023;21(1):309. https://doi.org/10.1186/s12951-023-02065-0.

    Article 
    CAS 

    Google Scholar
     

  • Kim JS, Eom JY, Kim HW, Ko JW, Hong EJ, Kim MN, Kim J, Kim DK, Kwon HJ, Cho YE. Hemp sprout-derived exosome-like nanovesicles as hepatoprotective brokers attenuate liver fibrosis. Biomater Sci. 2024;12(20):5361–71. https://doi.org/10.1039/d4bm00812j.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from recent Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung harm and intestine dysbiosis. Biomed Pharmacother. 2023;165:115007. https://doi.org/10.1016/j.biopha.2023.115007.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, Sundaram Ok, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Service provider ML, Egilmez NK, Zhang HG. Exosome-like nanoparticles from Mulberry bark forestall DSS-induced colitis by way of the AhR/COPS8 pathway. EMBO Rep. 2022;23(3):e53365. https://doi.org/10.15252/embr.202153365.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li JH, Xu J, Huang C, Hu JX, Xu HM, Guo X, Zhang Y, Xu JK, Peng Y, Zhang Y, Zhu MZ, Zhou YL, Nie YQ. Houttuynia cordata-derived Exosome-Like nanoparticles mitigate colitis in mice by way of inhibition of the NLRP3 signaling pathway and modulation of the intestine microbiota. Int J Nanomed. 2024;19. https://doi.org/10.2147/ijn.S493434. (13991 – 4018.

  • Zhang W, Track Q, Bi X, Cui W, Fang C, Gao J, Li J, Wang X, Qu Ok, Qin X, An X, Zhang C, Zhang X, Yan F, Wu G. Preparation of Pueraria lobata Root-Derived Exosome-Like nanovesicles and analysis of their results on Mitigating Alcoholic Intoxication and selling Alcohol Metabolism in mice. Int J Nanomed. 2024;19:4907–21. https://doi.org/10.2147/ijn.S462602.

    Article 

    Google Scholar
     

  • Kawada Ok, Ishida T, Morisawa S, Jobu Ok, Higashi Y, Aizawa F, Yagi Ok, Izawa-Ishizawa Y, Niimura T, Abe S, Goda M, Miyamura M, Ishizawa Ok. Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced irritation in murine microglial cells. Entrance Pharmacol. 2024;15:1302055. https://doi.org/10.3389/fphar.2024.1302055.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Xia J, Zhu Y, Dong M, Wang J. Establishing Salvia miltiorrhiza-derived exosome-like nanoparticles and elucidating their function in Angiogenesis. Molecules. 2024;29(7). https://doi.org/10.3390/molecules29071599.

  • Li S, Zhang R, Wang A, Li Y, Zhang M, Kim J, Zhu Y, Wang Q, Zhang Y, Wei Y, Wang J. Panax notoginseng: derived exosome-like nanoparticles attenuate ischemia reperfusion harm by way of altering microglia polarization. J Nanobiotechnol. 2023;21(1):416. https://doi.org/10.1186/s12951-023-02161-1.

    Article 
    CAS 

    Google Scholar
     

  • Bazzo GC, Pezzini BR, Stulzer HK. Eutectic mixtures as an method to reinforce solubility, dissolution charge and oral bioavailability of poorly water-soluble medication. Int J Pharm. 2020;588:119741. https://doi.org/10.1016/j.ijpharm.2020.119741.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Couillaud BM, Espeau P, Mignet N, Corvis Y. Cutting-edge of Pharmaceutical Strong types: from Crystal Property Points to nanocrystals Formulation. ChemMedChem. 2019;14(1):8–23. https://doi.org/10.1002/cmdc.201800612.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan D, Xuan B, Wang C, Lengthy R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Enhancing the Physicochemical and Biopharmaceutical properties of energetic Pharmaceutical components Derived from Conventional Chinese language Drugs by means of Cocrystal Engineering. Pharmaceutics. 2021;13(12). https://doi.org/10.3390/pharmaceutics13122160.

  • Guo M, Solar X, Chen J, Cai T. Pharmaceutical cocrystals: a overview of preparations, physicochemical properties and functions. Acta Pharm Sin B. 2021;11(8):2537–64. https://doi.org/10.1016/j.apsb.2021.03.030.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kendall T, Stratford S, Patterson AR, Lunt RA, Cruickshank D, Bonnaud T, Scott CD. An industrial perspective on co-crystals: screening, identification and improvement of the much less utilised stable kind in drug discovery and improvement. Prog Med Chem. 2021;60:345–442. https://doi.org/10.1016/bs.pmch.2021.05.001.

    Article 
    PubMed 

    Google Scholar
     

  • Malwade CR, Qu H. Course of Analytical Expertise for crystallization of energetic Pharmaceutical components. Curr Pharm Des. 2018;24(21):2456–72. https://doi.org/10.2174/1381612824666180629111632.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Manchanda D, Kumar A, Nanda A. Latest developments in Pharmaceutical cocrystals, Preparation strategies, and their functions. Curr Pharm Des. 2021;27(44):4477–95. https://doi.org/10.2174/1381612827666210415104411.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nugrahani I, Jessica MA. Amino acids because the potential Co-former for Co-crystal Growth: a overview. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113279.

  • Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R, Nanocrystals. An outline of fabrication, characterization and therapeutic functions in drug supply. Curr Pharm Des. 2018;24(43):5129–46. https://doi.org/10.2174/1381612825666190215121148.

  • Pi J, Wang S, Li W, Kebebe D, Zhang Y, Zhang B, Qi D, Guo P, Li N, Liu Z. A nano-cocrystal technique to enhance the dissolution charge and oral bioavailability of baicalein. Asian J Pharm Sci. 2019;14(2):154–64. https://doi.org/10.1016/j.ajps.2018.04.009.

    Article 
    PubMed 

    Google Scholar
     

  • Shete G, Pawar YB, Thanki Ok, Jain S, Bansal AK. Oral bioavailability and pharmacodynamic exercise of hesperetin nanocrystals generated utilizing a novel bottom-up expertise. Mol Pharm. 2015;12(4):1158–70. https://doi.org/10.1021/mp5008647.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shi-Ying J, Jin H, Shi-Xiao J, Qing-Yuan L, Jin-Xia B, Chen HG, Rui-Sheng L, Wei W, Hai-Lengthy Y. Characterization and analysis in vivo of baicalin-nanocrystals ready by an ultrasonic-homogenization-fluid mattress drying methodology. Chin J Nat Med. 2014;12(1):71–80. https://doi.org/10.1016/s1875-5364(14)60012-1.

    Article 
    PubMed 

    Google Scholar
     

  • Tiwari S, Kumar V, Randhawa S, Verma SK. Preparation and characterization of extracellular vesicles. Am J Reprod Immunol. 2021;85(2):e13367. https://doi.org/10.1111/aji.13367.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong S, Liu W, Zhou Y, Mo Y, Liu Y, Chen X, Pan H, Yuan D, Wang Q, Chen T. Enhancement of oral bioavailability and anti-parkinsonian efficacy of resveratrol by means of a nanocrystal formulation. Asian J Pharm Sci. 2020;15(4):518–28. https://doi.org/10.1016/j.ajps.2019.04.003.

    Article 
    PubMed 

    Google Scholar
     

  • Shuang Zhao SZ, Mu X. Analysis progress of nanomedicine. Tianjin Pharm. 2020;32(02):57–61.


    Google Scholar
     

  • Liu CZ, Chang JH, Zhang L, Xue HF, Liu XG, Liu P, Fu Q. Preparation and analysis of Diosgenin nanocrystals to enhance oral bioavailability. AAPS PharmSciTech. 2017;18(6):2067–76. https://doi.org/10.1208/s12249-016-0684-y.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Ok, Chen C, Huang Q, Li C, Fu X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant exercise and adsorption capability. Int J Biol Macromol. 2022;208:196–207. https://doi.org/10.1016/j.ijbiomac.2022.03.082.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai MM, Zhang YY, Wang SH, Sheng HG. Analysis progress in nanocrystal drug preparation expertise. China Powder Sci Technol. 2019;25(05):56–62. https://doi.org/10.13732/j.issn.1008-5548.2019.05.010.

    Article 

    Google Scholar
     

  • Liu J, Xu YY, Li M, Qian H. Analysis progress of nanomedicine. Pharm Clin Res. 2020;28(01):51–5. https://doi.org/10.13664/j.cnki.pcr.2020.01.014.

    Article 

    Google Scholar
     

  • Li Y, Wang Y, Yue PF, Hu PY, Wu ZF, Yang M, Yuan HL. A novel high-pressure precipitation tandem homogenization expertise for drug nanocrystals manufacturing – a case research with ursodeoxycholic acid. Pharm Dev Technol. 2014;19(6):662–70. https://doi.org/10.3109/10837450.2013.819015.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chadha Ok, Karan M, Chadha R, Bhalla Y, Vasisht Ok. Is failure of Cocrystallization truly a failure? Eutectic formation in Cocrystal Screening of Hesperetin. J Pharm Sci. 2017;106(8):2026–36. https://doi.org/10.1016/j.xphs.2017.04.038.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Desai PP, Patravale VB. Curcumin Cocrystal Micelles-Multifunctional nanocomposites for Administration of neurodegenerative illnesses. J Pharm Sci. 2018;107(4):1143–56. https://doi.org/10.1016/j.xphs.2017.11.014.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang D, Wang H, Liu Q, Yuan P, Chen T, Zhang L, Yang S, Zhou Z, Lu Y, Du G. Structural panorama on a collection of rhein: Berberine cocrystal salt solvates: the formation, dissolution elucidation from experimental and theoretical investigations. Chin Chem Lett. 2022;33(6):3207–11. https://doi.org/10.1016/j.cclet.2021.10.012.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Pi J, Zhang Y, Ma X, Zhang B, Wang S, Qi D, Li N, Guo P, Liu Z. A technique to enhance the oral availability of baicalein: the baicalein-theophylline cocrystal. Fitoterapia. 2018;129:85–93. https://doi.org/10.1016/j.fitote.2018.06.018.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu L, Li Y, Zhang M, Zhang Y, Lou B. A drug-drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2022;111(1):82–7. https://doi.org/10.1016/j.xphs.2021.06.021.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Y, Yang F, Zhao X, Wang S, Yang Q, Zhang X. Crystal construction, solubility, and pharmacokinetic research on a Hesperetin Cocrystal with Piperine as Coformer. Pharmaceutics. 2022;14(1). https://doi.org/10.3390/pharmaceutics14010094.

  • Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, Zhang Y, Ma A, Li L, Zhou Z. Luteolin cocrystals: characterization, analysis of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol. 2019;50. https://doi.org/10.1016/j.jddst.2019.02.004. (248 – 54.

  • Mannava MKC, Suresh Ok, Kumar Bommaka M, Bhavani Konga D, Nangia A. Curcumin-Artemisinin Coamorphous Strong: Xenograft Mannequin Preclinical Examine. Pharmaceutics. 2018;10(1). https://doi.org/10.3390/pharmaceutics10010007.

  • Mctague H, Rasmuson ÅC. Nucleation of the Theophylline:salicylic acid 1:1 Cocrystal. Cryst Progress Des. 2021;21(5):2711–19. https://doi.org/10.1021/acs.cgd.0c01594.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mohapatra TK, Moharana AK, Swain RP, Subudhi BB. Coamorphisation of acetyl salicylic acid and curcumin for enhancing dissolution, anti-inflammatory impact and minimizing gastro toxicity. J Drug Deliv Sci Technol. 2021;61:102119. https://doi.org/10.1016/j.jddst.2020.102119.

    Article 
    CAS 

    Google Scholar
     

  • Paulazzi AR, Alves BO, Zilli GaL, Dos Santos AE, Petry F, Soares KD, Danielli LJ, Pedroso J, Apel MA, Aguiar GPS, Siebel AM, Oliveira JV, Müller LG. Curcumin and n-acetylcysteine cocrystal produced with supercritical solvent: characterization, solubility, and preclinical analysis of antinociceptive and anti inflammatory actions. Inflammopharmacology. 2022;30(1):327–41. https://doi.org/10.1007/s10787-021-00917-5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rathi N, Paradkar A, Gaikar VG. Polymorphs of Curcumin and its Cocrystals with Cinnamic Acid. J Pharm Sci. 2019;108(8):2505–16. https://doi.org/10.1016/j.xphs.2019.03.014.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sathisaran I, Devidas Bhatia D, Vishvanath Dalvi S. New curcumin-trimesic acid cocrystal and anti-invasion exercise of curcumin multicomponent solids towards 3D tumor fashions. Int J Pharm. 2020;587:119667. https://doi.org/10.1016/j.ijpharm.2020.119667.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suresh Ok, Mannava MKC, Nangia A. A novel curcumin–artemisinin coamorphous stable: bodily properties and pharmacokinetic profile. RSC Adv. 2014;4(102):58357–61. https://doi.org/10.1039/C4RA11935E.

    Article 
    CAS 

    Google Scholar
     

  • Tanaka R, Hattori Y, Otsuka M, Ashizawa Ok. Utility of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder expertise. Drug Dev Ind Pharm. 2020;46(2):179–87. https://doi.org/10.1080/03639045.2020.1716367.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y-N, Yin H-M, Zhang Y, Zhang D-J, Su X, Kuang H-X. Preparation of a 1:1 cocrystal of genistein with 4,4′-bipyridine. J Cryst Progress. 2017;458:103–09. https://doi.org/10.1016/j.jcrysgro.2016.10.084.

    Article 
    CAS 

    Google Scholar
     

  • Zang ZY, Zhang YZ, Zhao YH, Tan XR, Wei JC, Xu AQ, Duan HF, Zhang HY, Wang PL, Huang XM, Lei HM. Analysis progress on carrier-free and carrier-supported supramoleculai nanosystems of conventional Chinese language medication anti-tumor star molecules. Acta Pharm Sinica. 2024;59(04):908–17. https://doi.org/10.16438/j.0513-4870.2023-1169.

    Article 

    Google Scholar
     

  • Hou Y, Zou L, Li Q, Chen M, Ruan H, Solar Z, Xu X, Yang J, Ma G. Supramolecular assemblies based mostly on pure small molecules: Union could be efficient. Mater At this time Bio. 2022;15:100327. https://doi.org/10.1016/j.mtbio.2022.100327.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liang Ok, Chung JE, Gao SJ, Yongvongsoontorn N, Kurisawa M. Extremely augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)-Inexperienced Tea Catechin Conjugate for Most cancers Remedy. Adv Mater. 2018;30(14):e1706963. https://doi.org/10.1002/adma.201706963.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang J, Qiao W, Li X, Zhao H, Zhang H, Dong A, Yang X. A directed co-assembly of natural small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy. J Mater Chem B. 2021;9(4):1040–48. https://doi.org/10.1039/d0tb02071k.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhi Ok, Wang J, Zhao H, Yang X. Self-assembled small molecule pure product gel for drug supply: a breakthrough in new utility of small molecule pure merchandise. Acta Pharm Sin B. 2020;10(5):913–27. https://doi.org/10.1016/j.apsb.2019.09.009.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu YH, Li CZ, Solar TT, Chen DM, Xie SY. Utility of nanotechnology within the supply system and evaluation oftraditional Chinese language medication. Anim Husb Veterinary Med. 2024;56(04):125–31.


    Google Scholar
     

  • Xingxing Feng QX, Yang C, Kong L, Zhang Z. Service-free nanoparticles based mostly on self-assembly of energetic ingredientsfrom Chinese language medication. Acta Pharm Sinica. 2021;56(12):3203–11. https://doi.org/10.16438/j.0513-4870.2021-0748.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Fu L, Hu Z, Zhong Y. A mini-review on peptide-based self-assemblies and their organic functions. Nanotechnology. 2021;33(6). https://doi.org/10.1088/1361-6528/ac2fe3.

  • Özdemir Z, Šaman D, Bertula Ok, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Nonappa, Wimmer Z. Fast Self-Therapeutic and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine conjugates. Langmuir. 2021;37(8):2693–706. https://doi.org/10.1021/acs.langmuir.0c03335.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Liu S, Li H, Tian X, Li X. Tryptophan-based self-assembling peptides with bacterial flocculation and Antimicrobial properties. Langmuir. 2020;36(38):11316–23. https://doi.org/10.1021/acs.langmuir.0c01957.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chirality results on peptide self-assembly unraveled from molecules to supplies. Chem. 2018;4(8):1862–76. https://doi.org/10.1016/j.chempr.2018.05.016.

    Article 
    CAS 

    Google Scholar
     

  • Dai Y, Zhao X, Su X, Li G, Zhang A. Supramolecular meeting of C3 peptidic molecules into helical polymers. Macromol Fast Commun. 2014;35(15):1326–31. https://doi.org/10.1002/marc.201400158.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brown N, Lei J, Zhan C, Shimon LJW, Adler-Abramovich L, Wei G, Gazit E. Structural polymorphism in a self-assembled tri-aromatic peptide system. ACS Nano. 2018;12(4):3253–62. https://doi.org/10.1021/acsnano.7b07723.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin M, Li Y, Zhang Y, Xing C, Zhao C, Dou X, Zhang Z, Feng C. Solvent-controlled topological evolution from Nanospheres to Superhelices. Small. 2020;16(47):e2004756. https://doi.org/10.1002/smll.202004756.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shu W, Liu Z, Xie Y, Shi X, Qi S, Xu M, He X. Regulating the morphology and measurement of homopolypeptide self-assemblies by way of selective solvents. Mushy Matter. 2021;17(30):7118–23. https://doi.org/10.1039/d1sm00679g.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu L, Zhang M, Zhu X, Xue C, Wang HX, Liu M. Solvent-modulated chiral Self-Meeting: selective formation of Helical nanotubes, nanotwists, and vitality switch. ACS Appl Mater Interfaces. 2022;14(1):1765–73. https://doi.org/10.1021/acsami.1c20969.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang G, Zhang L, Rao H, Wang Y, Li Q, Qi W, Yang X, Su R, He Z. Position of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-ph-sensitive hydrogel. J Colloid Interface Sci. 2020;577. https://doi.org/10.1016/j.jcis.2020.05.087. (388 – 96.

  • Zheng J, Fan R, Wu H, Yao H, Yan Y, Liu J, Ran L, Solar Z, Yi L, Dang L, Gan P, Zheng P, Yang T, Zhang Y, Tang T, Wang Y. Directed self-assembly of natural small molecules into sustained launch hydrogels for treating neural irritation. Nat Commun. 2019;10(1):1604. https://doi.org/10.1038/s41467-019-09601-3.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo Z, Lin L, Hao Ok, Wang D, Liu F, Solar P, Yu H, Tang Z, Chen M, Tian H, Chen X. Helix self-assembly conduct of amino acid-modified Camptothecin Prodrugs and its Antitumor Impact. ACS Appl Mater Interfaces. 2020;12(6):7466–76. https://doi.org/10.1021/acsami.9b21311.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang X, Wang P, Li T, Tian X, Guo W, Xu B, Huang G, Cai D, Zhou F, Zhang H, Lei H. Self-assemblies based mostly on Conventional Drugs Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS Appl Mater Interfaces. 2020;12(1):227–37. https://doi.org/10.1021/acsami.9b17722.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, Cui H, Li T, Qi J, Chen H, Gao F, Tian X, Mu Y, He R, Lv S, Chu F, Xu B, Wang P, Lei H, Xu H, Wang C. Synergistic impact of Berberine-based Chinese language Drugs Assembled nanostructures on Diarrhea-Predominant irritable bowel syndrome in vivo. Entrance Pharmacol. 2020;11:1210. https://doi.org/10.3389/fphar.2020.01210.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li T, Wang P, Guo W, Huang X, Tian X, Wu G, Xu B, Li F, Yan C, Liang XJ, Lei H. Pure berberine-based Chinese language Herb Drugs assembled nanostructures with modified antibacterial utility. ACS Nano. 2019;13(6):6770–81. https://doi.org/10.1021/acsnano.9b01346.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Solar Y, Hu H. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids towards Helicobacter pylori. J Management Launch. 2020. https://doi.org/10.1016/j.jconrel.2020.09.025. 328(575 – 86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian X, Wang P, Li T, Huang X, Guo W, Yang Y, Yan M, Zhang H, Cai D, Jia X, Li F, Xu B, Ma T, Yan C, Lei H. Self-assembled pure phytochemicals for synergistically antibacterial utility from the enlightenment of conventional Chinese language medication mixture. Acta Pharm Sin B. 2020;10(9):1784–95. https://doi.org/10.1016/j.apsb.2019.12.014.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang P, Guo W, Huang G, Zhen J, Li Y, Li T, Zhao L, Yuan Ok, Tian X, Huang X, Feng Y, Lei H, Xu A. Berberine-based heterogeneous Linear supramolecules neutralized the Acute Nephrotoxicity of Aristolochic Acid by the self-assembly technique. ACS Appl Mater Interfaces. 2021;13(28):32729–42. https://doi.org/10.1021/acsami.1c06968.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jianjun Cheng XY. Self-assembly efficiency of triterpene pure small molecules and theirapplication in synergistic antitumor chemotherapy. Acta Pharm Sinica. 2021;56(08):2102–11. https://doi.org/10.16438/j.0513-4870.2021-0617.

    Article 
    CAS 

    Google Scholar
     

  • Bag BG, Majumdar R. Self-assembly of renewable Nano-sized triterpenoids. Chem Rec. 2017;17(9):841–73. https://doi.org/10.1002/tcr.201600123.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng J, Fu S, Qin Z, Han Y, Yang X. Self-assembled pure small molecule diterpene acids with favorable anticancer exercise and biosafety for synergistically enhanced antitumor chemotherapy. J Mater Chem B. 2021;9(11):2674–87. https://doi.org/10.1039/d0tb02995e.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan L, Zhang B, Xu A, Shen Z, Guo Y, Zhao R, Yao H, Shao JW. Service-Free, pure Nanodrug fashioned by the self-assembly of an Anticancer Drug for Most cancers Immune Remedy. Mol Pharm. 2018;15(6):2466–78. https://doi.org/10.1021/acs.molpharmaceut.8b00444.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a conventional Chinese language medication self-assembly nanostrategy and its utility in most cancers: a promising remedy. Chin Med. 2023;18(1):66. https://doi.org/10.1186/s13020-023-00764-2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J, Qiao W, Zhao H, Yang X. Paclitaxel and betulonic acid synergistically improve antitumor efficacy by forming co-assembled nanoparticles. Biochem Pharmacol. 2020;182:114232. https://doi.org/10.1016/j.bcp.2020.114232.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang J, Zhao H, Qiao W, Cheng J, Han Y, Yang X. Nanomedicine-Cum-Service by Co-assembly of Pure Small merchandise for synergistic enhanced antitumor with tissues protecting actions. ACS Appl Mater Interfaces. 2020;12(38):42537–50. https://doi.org/10.1021/acsami.0c12641.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang B, Jiang J, Wu P, Zou J, Le J, Lin J, Li C, Luo B, Zhang Y, Huang R, Shao J. A sensible dual-drug nanosystem based mostly on co-assembly of plant and food-derived pure merchandise for synergistic HCC immunotherapy. Acta Pharm Sin B. 2021;11(1):246–57. https://doi.org/10.1016/j.apsb.2020.07.026.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang J, Zhao H, Zhi Ok, Yang X. Exploration of the pure energetic small-molecule drug-loading course of and extremely environment friendly synergistic Antitumor Efficacy. ACS Appl Mater Interfaces. 2020;12(6):6827–39. https://doi.org/10.1021/acsami.9b18443.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Wu Q, Xie Y, Ding Y, Du WW, Sdiri M, Yang BB. Ergosterol purified from medicinal mushroom amauroderma impolite inhibits most cancers development in vitro and in vivo by up-regulating a number of tumor suppressors. Oncotarget. 2015;6(19):17832–46. https://doi.org/10.18632/oncotarget.4026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhi Ok, Zhao H, Yang X, Zhang H, Wang J, Wang J, Regenstein JM. Pure product gelators and a normal methodology for acquiring them from organisms. Nanoscale. 2018;10(8):3639–43. https://doi.org/10.1039/c7nr08368h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Paramonov SE, Jun HW, Hartgerink JD. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc. 2006;128(22):7291–8. https://doi.org/10.1021/ja060573x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Van Den Heuvel M, Prenen AM, Gielen JC, Christianen PC, Broer DJ, Löwik DW, Van Hest JC. Patterns of diacetylene-containing peptide amphiphiles utilizing polarization holography. J Am Chem Soc. 2009;131(41):15014–7. https://doi.org/10.1021/ja9054756.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe Ok, Steinmann J, Van Der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel Ok, Demarco SJ, Robinson JA. Peptidomimetic antibiotics goal outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327(5968):1010–3. https://doi.org/10.1126/science.1182749.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang J, Wu X, Chen J, Gao T, Zhang Y, Yu N. Conventional Chinese language medication polysaccharide in nano-drug supply techniques: present progress and future views. Biomed Pharmacother. 2024;173:116330. https://doi.org/10.1016/j.biopha.2024.116330.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Y, Chen J, Han Q, Luo Q, Zhang H, Wang Y. Building of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity results towards breast most cancers cells. Colloids Surf a. 2019;579:123657. https://doi.org/10.1016/j.colsurfa.2019.123657.

    Article 
    CAS 

    Google Scholar
     

  • Chen C, Zhou P, Huang C, Zeng R, Yang L, Han Z, Qu Y, Zhang C. Photothermal-promoted multi-functional twin community polysaccharide hydrogel adhesive for contaminated and vulnerable wound therapeutic. Carbohydr Polym. 2021;273:118557. https://doi.org/10.1016/j.carbpol.2021.118557.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Area-Move Fractionation in Molecular Biology and Biotechnology. Molecules. 2023;28(17). https://doi.org/10.3390/molecules28176201.

  • Liu Y, Wu S, Koo Y, Yang A, Dai Y, Khant H, Osman SR, Chowdhury M, Wei H, Li Y, Court docket Ok, Hwang E, Wen Y, Dasari SK, Nguyen M, Tang EC, Chehab EW, De Val N, Braam J, Sood AK. Characterization of and isolation strategies for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine. 2020;29:102271. https://doi.org/10.1016/j.nano.2020.102271.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu WM, Li A, Chen JJ, Solar EJ. Analysis Growth on exosome separation expertise. J Membr Biol. 2023;256(1):25–34. https://doi.org/10.1007/s00232-022-00260-y.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu L, Solar HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for most cancers analysis. J Hematol Oncol. 2020;13(1):152. https://doi.org/10.1186/s13045-020-00987-y.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu-Good J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles. 2021;10(4):e12069. https://doi.org/10.1002/jev2.12069.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. Vegetation ship small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–29. https://doi.org/10.1126/science.aar4142.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garaeva L, Kamyshinsky R, Kil Y, Varfolomeeva E, Verlov N, Komarova E, Garmay Y, Landa S, Burdakov V, Myasnikov A, Vinnikov IA, Margulis B, Guzhova I, Kagansky A, Konevega AL, Shtam T. Supply of useful exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021;11(1):6489. https://doi.org/10.1038/s41598-021-85833-y.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse intestine host cells by means of edible plant derived exosome-like nanoparticles. Mol Nutr Meals Res. 2014;58(7):1561–73. https://doi.org/10.1002/mnfr.201300729.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang HG. Focused drug supply to intestinal macrophages by bioactive nanovesicles launched from grapefruit. Mol Ther. 2014;22(3):522–34. https://doi.org/10.1038/mt.2013.190.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic actions. Asian J Pharm Sci. 2022;17(1):53–69. https://doi.org/10.1016/j.ajps.2021.05.006.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barzin M, Bagheri AM, Ohadi M, Abhaji AM, Salarpour S, Dehghannoudeh G. Utility of plant-derived exosome-like nanoparticles in drug supply. Pharm Dev Technol. 2023;28(5):383–402. https://doi.org/10.1080/10837450.2023.2202242.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu L, Li Y, Zhang M, Zhang Y, Lou B. A drug–drug Cocrystal of Dihydromyricetin and Pentoxifylline. J Pharm Sci. 2022;111(1):82–7. https://doi.org/10.1016/j.xphs.2021.06.021.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng Q, Zhang X, Zhao X, Liu J, Wang Q, Yao Y, Xiao H, Zhu Y, Zhang W, Wang L. Intranasal Supply of Pure Nanodrug Loaded Liposomes for Alzheimer’s Illness Therapy by Effectively Regulating Microglial Polarization. Small. 2024;e2405781. https://doi.org/10.1002/smll.202405781.

  • Chen J, Wu J, Mu J, Li L, Hu J, Lin H, Cao J, Gao J. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal wire restore by regulating oxidative stress microenvironment. Nanomedicine. 2023;47:102625. https://doi.org/10.1016/j.nano.2022.102625.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang D, Cao J, Jiao L, Yang S, Zhang L, Lu Y, Du G. Solubility and Stability benefits of a New Cocrystal of Berberine Chloride with Fumaric Acid. ACS Omega. 2020;5(14):8283–92. https://doi.org/10.1021/acsomega.0c00692.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brittain HG. Vibrational spectroscopic research of cocrystals and salts. 4. Cocrystal merchandise fashioned by benzylamine, α-methylbenzylamine, and their chloride salts. Cryst Progress Des. 2011;11:2500.

    Article 
    CAS 

    Google Scholar
     

  • Han N, Liu Y, Liu X, Li P, Lu Y, Du S, Wu Ok. The Managed Preparation of a carrier-free Nanoparticulate Formulation composed of Curcumin and Piperine utilizing high-gravity expertise. Pharmaceutics. 2024;16(6):808.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, Deng D. Co-assembled binary Polyphenol Pure merchandise for the Prevention and Therapy of Radiation-Induced pores and skin Harm. ACS Nano. 2024;18(40):27557–69. https://doi.org/10.1021/acsnano.4c08508.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu C, Zhai Z, Ying H, Lu L, Zhang J, Zeng Y. Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protecting results on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis. J Nanobiotechnol. 2022;20(1):123. https://doi.org/10.1186/s12951-022-01339-3.

    Article 
    CAS 

    Google Scholar
     

  • Jiang D, Li Z, Liu H, Liu H, Xia X, Xiang X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin supply: molecular docking, stability and bioactivity. Meals Chem. 2024;438:137963. https://doi.org/10.1016/j.foodchem.2023.137963.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng Q, Li L, Liu M, Huang B, Zhang N, Mehmood R, Nan Ok, Li Q, Chen W, Lin S. In situ scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye illness remedy. Chem Eng J. 2020;398:125621. https://doi.org/10.1016/j.cej.2020.125621.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Kohane DS. Exterior triggering and triggered focusing on methods for drug supply. Nat Rev Mater. 2017;2:17020.

    Article 
    CAS 

    Google Scholar
     

  • Hao L, Wang X, Zhang D, Xu Q, Track S, Wang F, Li C, Guo H, Liu Y, Zheng D, Zhang Q. Research on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharm. 2012;433(1–2). https://doi.org/10.1016/j.ijpharm.2012.05.002. 157 – 64.

  • Han M, Liu X, Guo Y, Wang Y, Wang X. Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. Int J Pharm. 2013;455(1–2):85–92. https://doi.org/10.1016/j.ijpharm.2013.07.056.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang Tian YP, Zhang Z, Zhang H, Gao X. Analysis progress on preparation expertise of nanocrystal medication. Acta Pharm Sinica. 2021;56(07):1902–10. https://doi.org/10.16438/j.0513-4870.2021-0248.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Ma Y, Xu J, Chen Y, Xie J, Yue P, Zheng Q, Yang M. Apolipoproteins adsorption and brain-targeting analysis of baicalin nanocrystals modified by mixture of Tween80 and TPGS. Colloids Surf B Biointerfaces. 2017. https://doi.org/10.1016/j.colsurfb.2017.10.009. 160(619 – 27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao Han YC, Ding Z. Analysis progress of pure polysaccharides and their nano-sized drugdelivery techniques in regulating tumor microenvironment. Acta Pharm Sinica. 2021;56(12):3212–23. https://doi.org/10.16438/j.0513-4870.2021-0396.

    Article 
    CAS 

    Google Scholar
     

  • Dong L, Xia S, Luo Y, Diao H, Zhang J, Chen J, Zhang J. Concentrating on supply oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata efficiently inhibited the expression of TNF-alpha. J Management Launch. 2009;134(3):214–20. https://doi.org/10.1016/j.jconrel.2008.11.013.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang Ok. Angelica Sinensis polysaccharide nanoparticles as a focused drug supply system for enhanced remedy of liver most cancers. Carbohydr Polym. 2019;219. https://doi.org/10.1016/j.carbpol.2019.04.041. (143 – 54.

  • Ishida T, Kawada Ok, Jobu Ok, Morisawa S, Kawazoe T, Nishimura S, Akagaki Ok, Yoshioka S, Miyamura M. Exosome-like nanoparticles derived from Allium tuberosum forestall neuroinflammation in microglia-like cells. J Pharm Pharmacol. 2023;75(10):1322–31. https://doi.org/10.1093/jpp/rgad062.

    Article 
    PubMed 

    Google Scholar
     

  • Kalarikkal SP, Sundaram GM. Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for focusing on SARS-CoV-2. Toxicol Appl Pharmacol. 2021;414:115425. https://doi.org/10.1016/j.taap.2021.115425.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram Ok, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Service provider ML, Zhang X, Mcclain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung irritation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40. https://doi.org/10.1016/j.ymthe.2021.05.005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, Zheng L. Characterization of the MicroRNA Profile of Ginger Exosome-like nanoparticles and their anti-inflammatory results in Intestinal Caco-2 cells. J Agric Meals Chem. 2022;70(15):4725–34. https://doi.org/10.1021/acs.jafc.1c07306.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Du J, Liang Z, Xu J, Zhao Y, Li X, Zhang Y, Zhao D, Chen R, Liu Y, Joshi T, Chang J, Wang Z, Zhang Y, Zhu J, Liu Q, Xu D, Jiang C. Plant-derived phosphocholine facilitates mobile uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci. 2019;62(3):309–20. https://doi.org/10.1007/s11427-017-9026-7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang R, Jia B, Su D, Li M, Xu Z, He C, Huang Y, Fan H, Chen H, Cheng F. Plant exosomes fused with engineered mesenchymal stem cell-derived nanovesicles for synergistic remedy of autoimmune pores and skin issues. J Extracell Vesicles. 2023;12(10):e12361. https://doi.org/10.1002/jev2.12361.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Park J, Solar B, Yeo Y. Albumin-coated nanocrystals for carrier-free supply of paclitaxel. J Management Launch. 2017;263:90–101. https://doi.org/10.1016/j.jconrel.2016.12.040.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang WD, Luo C, Zhang HL, Zhang CT. Characterization and efficiency of naringenin-isoniazid cocrysta. J Wuhan Univ Sci Technol. 2018;41(03):190–94.


    Google Scholar
     

  • Zhang B, Li L, Huang M, Zhao E, Li Y, Solar J, He Z, Fu C, Liu G, Solar B. Probing the influence of Floor Functionalization Module on the efficiency of Mitoxantrone Prodrug nanoassemblies: enhancing the effectiveness and security. Nano Lett. 2024;24(12):3759–67. https://doi.org/10.1021/acs.nanolett.4c00300.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pang G, Chen C, Liu Y, Jiang T, Yu H, Wu Y, Wang Y, Wang FJ, Liu Z, Zhang LW. Bioactive polysaccharide nanoparticles enhance Radiation-Induced Abscopal Impact by means of Manipulation of dendritic cells. ACS Appl Mater Interfaces. 2019;11(45):42661–70. https://doi.org/10.1021/acsami.9b16814.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, He F, Gao L, Cong M, Solar J, Xu J, Wang Y, Hu Y, Asghar S, Hu L, Qiao H. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma Cells with Higher Security Profile. Int J Nanomed. 2021;16:1575–86. https://doi.org/10.2147/ijn.S293067.

    Article 

    Google Scholar
     

  • Liu J, Xiang J, Jin C, Ye L, Wang L, Gao Y, Lv N, Zhang J, You F, Qiao H, Shi L. Medicinal plant-derived mtDNA by way of nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J Nanobiotechnol. 2023;21(1):78. https://doi.org/10.1186/s12951-023-01835-0.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Q, Feng J, Liu F, Liang Q, Xie M, Dong J, Zou Y, Ye J, Liu G, Cao Y, Guo Z, Qiao H, Zheng L, Zhao Ok. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells by way of focusing on ERα signaling. Acta Pharm Sin B. 2024;14(5):2210–27. https://doi.org/10.1016/j.apsb.2024.02.005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Yu Y, Zhang Y, Dai H, Yang Q, Wang B, Ma Q, Chen Y, Xu F, Shi X, Liu Z, Wang C. Oral administration of garlic-derived nanoparticles improves most cancers immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat Nanotechnol. 2024;19(10):1569–78. https://doi.org/10.1038/s41565-024-01722-1.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar Q, Luan L, Arif M, Li J, Dong QJ, Gao Y, Chi Z, Liu CG. Redox-sensitive nanoparticles based mostly on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide supply in inflammatory bowel illnesses. Carbohydr Polym. 2018. https://doi.org/10.1016/j.carbpol.2017.12.021. 189(352 – 59.

    Article 
    PubMed 

    Google Scholar
     

  • Luo W, Yang Z, Zheng J, Cai Z, Li X, Liu J, Guo X, Luo M, Fan X, Cheng M, Tang T, Liu J, Wang Y. Small molecule hydrogels loading small molecule medication from Chinese language Drugs for the improved remedy of traumatic mind Harm. ACS Nano. 2024;18(42):28894–909. https://doi.org/10.1021/acsnano.4c09097.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived Nano-lipids loaded with doxorubicin as a Novel Drug-delivery Strategy for Colon most cancers remedy. Mol Ther. 2016;24(10):1783–96. https://doi.org/10.1038/mt.2016.159.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jarvis M, Krishnan V, Mitragotri S, Nanocrystals. A perspective on translational analysis and medical research. Bioeng Transl Med. 2019;4(1):5–16. https://doi.org/10.1002/btm2.10122.

  • Deng YG, Lyu XL, Zhu YL, Zhang SC, Liu SJ, Zhao BX, Li GF. [Preparation of evodiamine-glycyrrhizic acid micelles with glycyrrhizic acid as carrier and their anti-hepatic fibrosis activity]. Zhongguo Zhong Yao Za Zhi. 2020;45(13):3136–43. https://doi.org/10.19540/j.cnki.cjcmm.20200424.304.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ejazi SA, Louisthelmy R, Maisel Ok. Mechanisms of Nanoparticle Transport throughout intestinal tissue: an oral supply perspective. ACS Nano. 2023;17(14):13044–61. https://doi.org/10.1021/acsnano.3c02403.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The affect of Nanoparticle properties on oral bioavailability of medicine. Int J Nanomed. 2020;15. https://doi.org/10.2147/ijn.S257269. (6295 – 310.

  • Ge N, Yan GL, Solar H, Yang L, Kong L, Solar Y, Han Y, Zhao QQ, Kang SY, Wang XJ. Model updates of methods for drug discovery based mostly on efficient constituents of conventional Chinese language medication. Acupunct Natural Med. 2023;3(3):158–179.

  • Zhu ZZ, Liao LY, Qiao HZ. Extracellular vesicle–based mostly drug supply system boosts phytochemicals’ therapeutic impact for neurodegenerative illnesses. Acupunct Natural Med. 2022;2(4):229–39.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles