14.3 C
United States of America
Sunday, November 24, 2024

Self-cleaning electrode for secure synthesis of alkaline-earth steel peroxides


  • Hu, H. et al. Chemoreactive nanotherapeutics by steel peroxide based mostly nanomedicine. Adv. Sci. 8, 2000494 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L.-H. et al. An inverse-breathing encapsulation system for cell supply. Sci. Adv. 7, eabd5835 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, X. et al. Self-triggered thermoelectric nanoheterojunction for most cancers catalytic and immunotherapy. Nat. Commun. 14, 5140 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, M. et al. Attenuation of pharmaceutically energetic compounds in aqueous answer by UV/CaO2 course of: influencing elements, degradation mechanism and pathways. Water Res. 164, 114922 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Calcium-overload-mediated tumor remedy by calcium peroxide nanoparticles. Chem 5, 2171–2182 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, S., Zhang, X. & Xue, Y. Utility of calcium peroxide in water and soil therapy: a evaluation. J. Hazard. Mater. 337, 163–177 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Q. et al. Enhancing the therapy of waste activated sludge utilizing calcium peroxide. Water Res. 187, 116440 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Y., Zhou, X., Zhang, Y., Zhang, W. & Chen, J. Efficiency and properties of nanoscale calcium peroxide for toluene removing. Chemosphere 91, 717–723 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rastinfard, A., Nazarpak, M. H. & Moztarzadeh, F. Managed chemical synthesis of CaO2 particles coated with polyethylene glycol: characterization of crystallite measurement and oxygen launch kinetics. RSC Adv. 8, 91–101 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shen, S. et al. Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes to be used as a biodegradable bacteriostatic agent. Small 15, 1902118 (2019).

    Article 

    Google Scholar
     

  • Khodaveisi, J. et al. Synthesis of calcium peroxide nanoparticles as an revolutionary reagent for in situ chemical oxidation. J. Hazard. Mater. 192, 1437–1440 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dan, M. et al. Methods and challenges on selective electrochemical hydrogen peroxide manufacturing: catalyst and response medium design. Chem. Catal. 2, 1919–1960 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xia, C. et al. Confined native oxygen fuel promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xia, C., Kim, J. Y. & Wang, H. Beneficial observe to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 3, 605–607 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 options as much as 20% by weight utilizing a stable electrolyte. Science 366, 226–231 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Understanding exercise tendencies in electrochemical water oxidation to kind hydrogen peroxide. Nat. Commun. 8, 701 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Metastable hexagonal section SnO2 nanoribbons with energetic edge websites for environment friendly hydrogen peroxide electrosynthesis in impartial media. Angew. Chem. Int. Ed. 62, e202218924 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vol’Nov, I. Y. I. Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals (Plenum Press, 1966).

  • Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 manufacturing. Nat. Mater. 19, 436–442 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Excessive-efficiency oxygen discount to hydrogen peroxide catalysed by oxidized carbon supplies. Nat. Catal. 1, 156–162 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Selective hydrogen peroxide conversion tailor-made by floor, interface, and machine engineering. Joule 5, 1432–1461 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, Ok. et al. Ultrahigh resistance of hexagonal boron nitride to mineral scale formation. Nat. Commun. 13, 4523 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. et al. Quick and secure electrochemical manufacturing of H2O2 by electrode structure engineering. ACS Maintain. Chem. Eng. 9, 7120–7129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. et al. Triphase photocatalytic CO2 discount over silver-decorated titanium oxide at a fuel–water boundary. Angew. Chem. Int. Ed. 61, e202200802 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen discount response. Adv. Mater. 28, 7155–7161 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Extremely environment friendly electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by pure air diffusion. Nat. Commun. 11, 1731 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, Y. et al. Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv. Mater. 21, 3799–3803 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Atomic Co adorned free-standing graphene electrode meeting for environment friendly hydrogen peroxide manufacturing in acid. Vitality Environ. Sci. 15, 1172–1182 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S., Liu, Ok., Yao, X. & Jiang, L. Bioinspired surfaces with superwettability: new perception on idea, design, and functions. Chem. Rev. 115, 8230–8293 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by making a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Yoreo, J. J. et al. Crystallization by particle attachment in artificial, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Ok.-J., Tse, E. C. M., Shang, C. & Guo, Z. Nucleation and progress in answer synthesis of nanostructures—from fundamentals to superior functions. Prog. Mater. Sci. 123, 100821 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Newby, B.-m. Z., Chaudhury, M. Ok. & Brown, H. R. Macroscopic proof of the impact of interfacial slippage on adhesion. Science 269, 1407–1409 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, L. et al. An anti-electrowetting carbon movie electrode with self-sustained aeration for industrial H2O2 electrosynthesis. Vitality Environ. Sci. 17, 1754–5692 (2024).

    Article 

    Google Scholar
     

  • Dhyani, A. et al. Design and functions of surfaces that management the accretion of matter. Science 373, eaba5010 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golovin, Ok., Dhyani, A., Thouless, M. D. & Tuteja, A. Low–interfacial toughness supplies for efficient large-scale deicing. Science 364, 371–375 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Bioinspired superhydrophobic surfaces, inhibiting or selling microbial contamination? Mater. In the present day 67, 468–494 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Water spider-inspired nanofiber coating with sustainable scale repellency by way of air-replenishing technique. Adv. Mater. 35, 2209796 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Enhancement of waste activated sludge dewaterability utilizing calcium peroxide pre-oxidation and chemical re-flocculation. Water Res. 103, 170–181 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y., Zhang, B.-T., Zhao, L., Guo, G. & Lin, J.-M. Examine on the technology mechanism of reactive oxygen species on calcium peroxide by chemiluminescence and UV-visible spectra. Luminescence 22, 575–580 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y., Li, M., Solar, C. & Zhang, X. Microbubble-enhanced water activation by chilly plasma. Chem. Eng. J. 446, 137318 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. & Koper, M. T. M. Tuning the interfacial response atmosphere for CO2 electroreduction to CO in mildly acidic media. J. Am. Chem. Soc. 146, 5242–5251 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fick, A. V. On liquid diffusion. Lond. Edinb. Dublin Philos. Magazine. J. Sci. 10, 30–39 (1855).

    Article 

    Google Scholar
     

  • Resta, R. Faraday regulation, oxidation numbers, and ionic conductivity: the position of topology. J. Chem. Phys. 155, 244503 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles