Choi, J. W. et al. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).
Vaalma, C. et al. A value and useful resource evaluation of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).
Lee, B. et al. Sodium metallic anodes: rising options to dendrite progress. Chem. Rev. 119, 5416–5460 (2019).
Lu, X. et al. Superior intermediate-temperature Na–S battery. Vitality Environ. Sci. 6, 299–306 (2013).
Li, G. et al. Superior intermediate temperature sodium-nickel chloride batteries with ultra-high power density. Nat. Commun. 7, 10683 (2016).
Jin, T. et al. Realizing full solid-solution response in excessive sodium content material P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. 132, 14619–14624 (2020).
Usiskin, R. et al. Fundamentals, standing and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).
Zhao, C. et al. Rational design of layered oxide supplies for sodium-ion batteries. Science 370, 708–711 (2020).
Lu, Z. et al. Constructing a past concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries. Angew. Chem. 134, e202200410 (2022).
Li, Y. et al. Interfacial engineering to attain an power density of over 200 Wh kg–1 in sodium batteries. Nat. Vitality 7, 511–519 (2022).
Ni, Q. et al. Anode-free rechargeable sodium-metal batteries. Batteries 8, 272 (2022).
Yang, T. et al. Anode-free sodium metallic batteries as rising stars for lithium-ion alternate options. iScience 26, 105982 (2023).
Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery protected, inexperienced, and long-lasting. Adv. Vitality Mater. 7, 1701189 (2017).
Xu, G. L. et al. Challenges in growing electrodes, electrolytes, and diagnostics instruments to know and advance sodium-ion batteries. Adv. Vitality Mater. 8, 1702403 (2018).
Che, H. et al. Electrolyte design methods and analysis progress for room-temperature sodium-ion batteries. Vitality Environ. Sci. 10, 1075–1101 (2017).
Zheng, X. et al. Crucial results of electrolyte recipes for Li and Na metallic batteries. Chem 7, 2312–2346 (2021).
Xu, J. et al. Electrolyte design for Li-ion batteries beneath excessive working circumstances. Nature 614, 694–700 (2023).
Xiang, Y. et al. Visualizing the expansion means of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15, 883–890 (2020).
Han, B. et al. Probing the Na metallic strong electrolyte interphase through cryo-transmission electron microscopy. Nat. Commun. 12, 3066 (2021).
Seh, Z. W. et al. A extremely reversible room-temperature sodium metallic anode. ACS Cent. Sci. 1, 449–455 (2015).
Cao, R. et al. Enabling room temperature sodium metallic batteries. Nano Vitality 30, 825–830 (2016).
Zhuang, R. et al. Fluorinated porous frameworks allow strong anode-less sodium metallic batteries. Sci. Adv. 9, eadh8060 (2023).
Wang, C. et al. Sturdy anode-free sodium metallic batteries enabled by synthetic sodium formate interface. Adv. Vitality Mater. 13, 2204125 (2023).
Choudhury, S. et al. Designing strong–liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).
Zheng, X. et al. Bridging the immiscibility of an all-fluoride hearth extinguishant with highly-fluorinated electrolytes towards protected sodium metallic batteries. Vitality Environ. Sci. 13, 1788–1798 (2020).
Zheng, X. et al. Flattening the kinetic obstacles in direction of fast-charging and low-temperature sodium metallic batteries. Vitality Environ. Sci. 14, 4936–4947 (2021).
Xu, Okay. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
Shkrob, I. A. et al. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118, 19661–19671 (2014).
Zheng, J. et al. Extraordinarily steady sodium metallic batteries enabled by localized high-concentration electrolytes. ACS Vitality Lett. 3, 315–321 (2018).
Chen, J. et al. Excessive power density Na-metal batteries enabled by a tailor-made carbonate-based electrolyte. Vitality Environ. Sci. 15, 3360–3368 (2022).
Ignat’ev, N. V. et al. Comparative fluorination of N,N-dialkylamidosulfonyl halides. J. Fluor. Chem. 74, 181–184 (1995).
Fu, S.-T. et al. N,N-Dialkyl perfluoroalkanesulfonamides: synthesis, characterization and properties. J. Fluor. Chem. 147, 56–64 (2013).
Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Vitality Environ. Sci. 13, 212–220 (2020).
Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li metallic batteries enabled by a sulfonamide-based electrolyte. Nat. Vitality 6, 495–505 (2021).
Cao, X. et al. Monolithic strong–electrolyte interphases fashioned in fluorinated orthoformate-based electrolytes decrease Li depletion and pulverization. Nat. Vitality 4, 796–805 (2019).
Suo, L. et al. “Water-in-salt” electrolyte permits high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Suo, L. et al. A brand new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).
Murphy, S. et al. Acyclic and cyclic alkyl and ether-functionalised sulfonium ionic liquids primarily based on the [TFSI]− and [FSI]− anions as potential electrolytes for electrochemical functions. ChemPhysChem 19, 3226–3236 (2018).
Shin, W. et al. A facile potential maintain methodology for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 61, e202115909 (2022).
Shi, Q. et al. Excessive-performance sodium metallic anodes enabled by a bifunctional potassium salt. Angew. Chem. 57, 9069–9072 (2018).
Gao, L. et al. The chemical evolution of strong electrolyte interface in sodium metallic batteries. Sci. Adv. 8, eabm4606 (2022).
Holoubek, J. et al. Tailoring electrolyte solvation for Li metallic batteries cycled at ultra-low temperature. Nat. Vitality 6, 303–313 (2021).
Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 60, 4090–4097 (2021).
Zheng, X. et al. Towards a steady sodium metallic anode in carbonate electrolyte: a compact, inorganic alloy interface. J. Phys. Chem. Lett. 10, 707–714 (2019).
Tune, J. et al. Controlling floor part transition and chemical reactivity of O3-layered metallic oxide cathodes for high-performance Na-ion batteries. ACS Vitality Lett. 5, 1718–1725 (2020).
Xue, W. et al. Stabilizing electrode–electrolyte interfaces to understand high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte. Vitality Environ. Sci. 14, 6030–6040 (2021).
Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Vitality 7, 718–725 (2022).
Pu, X. et al. Constructing the strong fluorinated electrode–electrolyte interface in rechargeable batteries: from fundamentals to functions. Electrochem. Vitality Rev. 7, 21 (2024).
Liu, H. et al. Ultrahigh Coulombic effectivity electrolyte permits Li||SPAN batteries with superior biking efficiency. Mater. In the present day 42, 17–28 (2021).
Xu, X. et al. A room-temperature sodium-sulfur battery with excessive capability and steady biking efficiency. Nat. Commun. 9, 3870 (2018).
Wu, J. et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Vitality Storage Mater. 23, 8–16 (2019).
Zhang, C.-P. et al. Dedication of pKa values of fluoroalkanesulfonamides and investigation of their nucleophilicity. J. Fluor. Chem. 131, 761–766 (2010).
Willcott, M. R. MestRe Nova. JACS 131, 13180 (2009).
Sheldrick, G. M. A brief historical past of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).