-2.8 C
United States of America
Thursday, January 23, 2025

Salt-in-presalt electrolyte options for high-potential non-aqueous sodium metallic batteries


  • Choi, J. W. et al. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Vaalma, C. et al. A value and useful resource evaluation of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article 

    Google Scholar
     

  • Lee, B. et al. Sodium metallic anodes: rising options to dendrite progress. Chem. Rev. 119, 5416–5460 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Superior intermediate-temperature Na–S battery. Vitality Environ. Sci. 6, 299–306 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Superior intermediate temperature sodium-nickel chloride batteries with ultra-high power density. Nat. Commun. 7, 10683 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, T. et al. Realizing full solid-solution response in excessive sodium content material P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. 132, 14619–14624 (2020).

    Article 

    Google Scholar
     

  • Usiskin, R. et al. Fundamentals, standing and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, C. et al. Rational design of layered oxide supplies for sodium-ion batteries. Science 370, 708–711 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Constructing a past concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries. Angew. Chem. 134, e202200410 (2022).

    Article 

    Google Scholar
     

  • Li, Y. et al. Interfacial engineering to attain an power density of over 200 Wh kg1 in sodium batteries. Nat. Vitality 7, 511–519 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ni, Q. et al. Anode-free rechargeable sodium-metal batteries. Batteries 8, 272 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, T. et al. Anode-free sodium metallic batteries as rising stars for lithium-ion alternate options. iScience 26, 105982 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery protected, inexperienced, and long-lasting. Adv. Vitality Mater. 7, 1701189 (2017).

    Article 

    Google Scholar
     

  • Xu, G. L. et al. Challenges in growing electrodes, electrolytes, and diagnostics instruments to know and advance sodium-ion batteries. Adv. Vitality Mater. 8, 1702403 (2018).

    Article 

    Google Scholar
     

  • Che, H. et al. Electrolyte design methods and analysis progress for room-temperature sodium-ion batteries. Vitality Environ. Sci. 10, 1075–1101 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Crucial results of electrolyte recipes for Li and Na metallic batteries. Chem 7, 2312–2346 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Electrolyte design for Li-ion batteries beneath excessive working circumstances. Nature 614, 694–700 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, Y. et al. Visualizing the expansion means of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15, 883–890 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Probing the Na metallic strong electrolyte interphase through cryo-transmission electron microscopy. Nat. Commun. 12, 3066 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seh, Z. W. et al. A extremely reversible room-temperature sodium metallic anode. ACS Cent. Sci. 1, 449–455 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, R. et al. Enabling room temperature sodium metallic batteries. Nano Vitality 30, 825–830 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhuang, R. et al. Fluorinated porous frameworks allow strong anode-less sodium metallic batteries. Sci. Adv. 9, eadh8060 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Sturdy anode-free sodium metallic batteries enabled by synthetic sodium formate interface. Adv. Vitality Mater. 13, 2204125 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Choudhury, S. et al. Designing strong–liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X. et al. Bridging the immiscibility of an all-fluoride hearth extinguishant with highly-fluorinated electrolytes towards protected sodium metallic batteries. Vitality Environ. Sci. 13, 1788–1798 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Flattening the kinetic obstacles in direction of fast-charging and low-temperature sodium metallic batteries. Vitality Environ. Sci. 14, 4936–4947 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Okay. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shkrob, I. A. et al. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118, 19661–19671 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Extraordinarily steady sodium metallic batteries enabled by localized high-concentration electrolytes. ACS Vitality Lett. 3, 315–321 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Excessive power density Na-metal batteries enabled by a tailor-made carbonate-based electrolyte. Vitality Environ. Sci. 15, 3360–3368 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ignat’ev, N. V. et al. Comparative fluorination of N,N-dialkylamidosulfonyl halides. J. Fluor. Chem. 74, 181–184 (1995).

    Article 

    Google Scholar
     

  • Fu, S.-T. et al. N,N-Dialkyl perfluoroalkanesulfonamides: synthesis, characterization and properties. J. Fluor. Chem. 147, 56–64 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Vitality Environ. Sci. 13, 212–220 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li metallic batteries enabled by a sulfonamide-based electrolyte. Nat. Vitality 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Monolithic strong–electrolyte interphases fashioned in fluorinated orthoformate-based electrolytes decrease Li depletion and pulverization. Nat. Vitality 4, 796–805 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Suo, L. et al. “Water-in-salt” electrolyte permits high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suo, L. et al. A brand new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, S. et al. Acyclic and cyclic alkyl and ether-functionalised sulfonium ionic liquids primarily based on the [TFSI] and [FSI] anions as potential electrolytes for electrochemical functions. ChemPhysChem 19, 3226–3236 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shin, W. et al. A facile potential maintain methodology for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 61, e202115909 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Q. et al. Excessive-performance sodium metallic anodes enabled by a bifunctional potassium salt. Angew. Chem. 57, 9069–9072 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, L. et al. The chemical evolution of strong electrolyte interface in sodium metallic batteries. Sci. Adv. 8, eabm4606 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holoubek, J. et al. Tailoring electrolyte solvation for Li metallic batteries cycled at ultra-low temperature. Nat. Vitality 6, 303–313 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 60, 4090–4097 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Towards a steady sodium metallic anode in carbonate electrolyte: a compact, inorganic alloy interface. J. Phys. Chem. Lett. 10, 707–714 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune, J. et al. Controlling floor part transition and chemical reactivity of O3-layered metallic oxide cathodes for high-performance Na-ion batteries. ACS Vitality Lett. 5, 1718–1725 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Stabilizing electrode–electrolyte interfaces to understand high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte. Vitality Environ. Sci. 14, 6030–6040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Vitality 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pu, X. et al. Constructing the strong fluorinated electrode–electrolyte interface in rechargeable batteries: from fundamentals to functions. Electrochem. Vitality Rev. 7, 21 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Ultrahigh Coulombic effectivity electrolyte permits Li||SPAN batteries with superior biking efficiency. Mater. In the present day 42, 17–28 (2021).

    Article 

    Google Scholar
     

  • Xu, X. et al. A room-temperature sodium-sulfur battery with excessive capability and steady biking efficiency. Nat. Commun. 9, 3870 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Vitality Storage Mater. 23, 8–16 (2019).

    Article 

    Google Scholar
     

  • Zhang, C.-P. et al. Dedication of pKa values of fluoroalkanesulfonamides and investigation of their nucleophilicity. J. Fluor. Chem. 131, 761–766 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Willcott, M. R. MestRe Nova. JACS 131, 13180 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. A brief historical past of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles