Wang YH, Yan ZZ, Luo SD, Hu JJ, Wu M, Zhao J, Liu WF, Li C, Liu KX. Intestine microbiota-derived succinate aggravates acute lung damage after intestinal ischaemia/reperfusion in mice. Euro Resp J. 2023. https://doi.org/10.1183/13993003.00840-2022.
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H, Zhang X. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung damage. Cell Dying Differ. 2020;27:2635–50.
Herold S, Becker C, Ridge KM, Budinger GR. Influenza virus-induced lung damage: pathogenesis and implications for therapy. Eur Respir J. 2015;45:1463–78.
Yamashita M, Niisato M, Kawasaki Y, Karaman S, Robciuc MR, Shibata Y, Ishida Y, Nishio R, Masuda T, Sugai T, Ono M, Tuder RM, Alitalo Okay, Yamauchi Okay. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung damage. Euro Resp J. 2022. https://doi.org/10.1183/13993003.00880-2021.
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral respiratory pathogens and lung damage. Clin Microbiol Rev. 2021. https://doi.org/10.1128/CMR.00103-20.
Xia L, Zhang C, Lv N, Liang Z, Ma T, Cheng H, Xia Y, Shi L. AdMSC-derived exosomes alleviate acute lung damage through transferring mitochondrial element to enhance homeostasis of alveolar macrophages. Theranostics. 2022;12:2928–47.
Guo Y, Liu Y, Zhao S, Xu W, Li Y, Zhao P, Wang D, Cheng H, Ke Y, Zhang X. Oxidative stress-induced FABP5 S-glutathionylation protects towards acute lung damage by suppressing irritation in macrophages. Nat Commun. 2021;12:7094.
Park I, Kim M, Choe Okay, Music E, Web optimization H, Hwang Y, Ahn J, Lee SH, Lee JH, Jo YH, Kim Okay, Koh GY, Kim P. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung damage. The Euro Resp J. 2019. https://doi.org/10.1183/13993003.00786-2018.
Yuan R, Li Y, Han S, Chen X, Chen J, He J, Gao H, Yang Y, Yang S, Yang Y. Fe-Curcumin nanozyme-mediated reactive oxygen species scavenging and anti-inflammation for acute lung damage. ACS Cent Sci. 2022;8:10–21.
Lengthy G, Gong R, Wang Q, Zhang D, Huang C. Function of launched mitochondrial DNA in acute lung damage. Entrance Immunol. 2022;13: 973089.
Morrison T, Jackson M, Cunningham E, Kissenpfennig A, McAuley D, O’Kane C, Krasnodembskaya A. Mesenchymal stromal cells modulate macrophages in clinically related lung damage fashions by extracellular vesicle mitochondrial switch. Am J Respir Crit Care Med. 2017;196:1275–86.
Huang W, Wen L, Tian H, Jiang J, Liu M, Ye Y, Gao J, Zhang R, Wang F, Li H, Shen L, Peng F, Tu Y. Self-propelled proteomotors with lively cell-free mtDNA clearance for enhanced remedy of sepsis-associated acute lung damage. Adv Sci. 2023;10: e2301635.
Zmijewski J, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal G, Abraham E. Mitochondrial respiratory advanced I regulates neutrophil activation and severity of lung damage. Am J Respir Crit Care Med. 2008;178:168–79.
Yan J, Tang Z, Li Y, Wang H, Hsu J, Shi M, Fu Z, Ji X, Cai W, Ni D, Qu J. Molybdenum nanodots for acute lung damage remedy. ACS Nano. 2023;17:23872–88.
Wang Okay, Rong G, Gao Y, Wang M, Solar J, Solar H, Liao X, Wang Y, Li Q, Gao W, Cheng Y. Fluorous-tagged peptide nanoparticles ameliorate acute lung damage through lysosomal stabilization and irritation inhibition in pulmonary macrophages. Small. 2022;18: e2203432.
Chabot F, Mitchell J, Gutteridge J, Evans T. Reactive oxygen species in acute lung damage. Eur Respir J. 1998;11:745–57.
Chen G, Music X, Wang B, You G, Zhao J, Xia S, Zhang Y, Zhao L, Zhou H. Carboxyfullerene nanoparticles alleviate acute hepatic damage in extreme hemorrhagic shock. Biomaterials. 2017;112:72–81.
Seeley E, Rosenberg P, Matthay M. Calcium flux and endothelial dysfunction throughout acute lung damage: a STIMulating goal for remedy. J Clin Investig. 2013;123:1015–8.
Ji H, Zhang C, Xu F, Mao Q, Xia R, Chen M, Wang W, Lv S, Li W, Shi X. Inhaled pro-efferocytic nanozymes promote decision of acute lung damage. Adv Sci. 2022;9: e2201696.
Imai Y, Kuba Okay, Neely G, Yaghubian-Malhami R, Perkmann T, van Bathroom G, Ermolaeva M, Veldhuizen R, Leung Y, Wang H, Liu H, Solar Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris J, Slutsky A, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder C, Penninger J. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung damage. Cell. 2008;133:235–49.
Bos L, Ware L. Acute respiratory misery syndrome: causes, pathophysiology, and phenotypes. Lancet. 2022;400:1145–56.
Brower R, Matthay M, Morris A, Schoenfeld D, Thompson B, Wheeler A. Air flow with decrease tidal volumes as in contrast with conventional tidal volumes for acute lung damage and the acute respiratory misery syndrome. N Engl J Med. 2000;342:1301–8.
Fan E, Brodie D, Slutsky A. Acute respiratory misery syndrome: advances in prognosis and therapy. JAMA. 2018;319:698–710.
Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra I, Mittermaier M, Mache C, Chua R, Knoll R, Timm S, Brumhard S, Krammer T, Zauber H, Hiller A, Pascual-Reguant A, Mothes R, Bülow R, Schulze J, Leipold A, Djudjaj S, Erhard F, Geffers R, Pott F, Kazmierski J, Radke J, Pergantis P, Baßler Okay, Conrad C, Aschenbrenner A, Sawitzki B, Landthaler M, Wyler E, Horst D, Hippenstiel S, Hocke A, Heppner F, Uhrig A, Garcia C, Machleidt F, Herold S, Elezkurtaj S, Thibeault C, Witzenrath M, Cochain C, Suttorp N, Drosten C, Goffinet C, Kurth F, Schultze J, Radbruch H, Ochs M, Eils R, Müller-Redetzky H, Hauser A, Luecken M, Theis F, Conrad C, Wolff T, Boor P, Selbach M, Saliba A, Sander L. SARS-CoV-2 an infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021;184:6243-6261.e6227.
Wiedemann H, Wheeler A, Bernard G, Thompson B, Hayden D, deBoisblanc B, Connors A, Hite R, Harabin A. Comparability of two fluid-management methods in acute lung damage. New England J Med. 2006;354:2564–75.
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral respiratory pathogens and lung damage. Clin Microbiol Rev. 2021;34(3):10–28.
Mirchandani A, Jenkins S, Bain C, Sanchez-Garcia M, Lawson H, Coelho P, Murphy F, Griffith D, Zhang A, Morrison T, Ly T, Arienti S, Sadiku P, Watts E, Dickinson R, Reyes L, Cooper G, Clark S, Lewis D, Kelly V, Spanos C, Musgrave Okay, Delaney L, Harper I, Scott J, Parkinson N, Rostron A, Baillie J, Clohisey S, Pridans C, Campana L, Lewis P, Simpson A, Dockrell D, Schwarze J, Hirani N, Ratcliffe P, Pugh C, Kranc Okay, Forbes S, Whyte M, Walmsley S. Hypoxia shapes the immune panorama in lung damage and promotes the persistence of irritation. Nat Immunol. 2022;23:927–39.
Salazar-Puerta A, Rincon-Benavides M, Cuellar-Gaviria T, Aldana J, Vasquez Martinez G, Ortega-Pineda L, Das D, Dodd D, Spencer C, Deng B, McComb D, Englert J, Ghadiali S, Zepeda-Orozco D, Wold L, Gallego-Perez D, Higuita-Castro N. Engineered extracellular vesicles derived from dermal fibroblasts attenuate irritation in a murine mannequin of acute lung damage. Adv Mater. 2023;35: e2210579.
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled lipid nanoparticles alleviate established pulmonary fibrosis. Small. 2023;19: e2300545.
Chen Okay, Zhang Z, Fang Z, Zhang J, Liu Q, Dong W, Liu Y, Wang Y, Wang J. Aged-signal-eliciting nanoparticles stimulated macrophage-mediated programmed elimination of inflammatory neutrophils. ACS Nano. 2023;17:13903–16.
Fei Q, Shalosky E, Barnes R, Shukla V, Xu S, Ballinger M, Farkas L, Lee R, Ghadiali S, Englert J. Macrophage-targeted lipid nanoparticle supply of microRNA-146a to mitigate hemorrhagic shock-induced acute respiratory misery syndrome. ACS Nano. 2023;17:16539–52.
Dahmer M, Yang G, Zhang M, Quasney M, Sapru A, Weeks H, Sinha P, Curley M, Delucchi Okay, Calfee C, Flori H. Identification of phenotypes in paediatric sufferers with acute respiratory misery syndrome: a latent class evaluation, the lancet. Respir Med. 2022;10:289–97.
Madl A, Plummer L, Carosino C, Pinkerton Okay. Nanoparticles, lung damage, and the function of oxidant stress. Annu Rev Physiol. 2014;76:447–65.