Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals supplies: associated physics and future alternatives. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).
Liang, J. et al. Optically probing the uneven interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. 12, 041005 (2022).
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition steel dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).
Meng, P. et al. Sliding induced a number of polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).
Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).
Liang, J. et al. Shear strain-induced two-dimensional slip avalanches in rhombohedral MoS2. Nano Lett. 23, 7228–7235 (2023).
Yang, D. et al. Non-volatile electrical polarization switching by way of area wall launch in 3R-MoS2 bilayer. Nat. Commun. 14, 1389 (2024).
Ko, Okay. et al. Operando electron microscopy investigation of polar area dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).
Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by native management of dislocations networks. Adv. Mater. 35, 2207816 (2023).
Ji, J., Yu, G., Xu, C. & Xiang, H. J. Basic concept for bilayer stacking ferroelectricity. Phys. Rev. Lett. 130, 146801 (2023).
Wang, L. et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 629, 74–79 (2024).
Bennett, D. Concept of polar domains in moiré heterostructures. Bodily Evaluate B 105, 235445 (2022).
Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. NPJ 2D Mater. Appl. 6, 7 (2022).
Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable community mannequin for electrically tunable ferroelectric area construction in twistronic bilayers of two-dimensional semiconductors. Nano Lett. 22, 1534–1540 (2022).
Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron–antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).
Yang, D. et al. Spontaneous-polarization-induced photovoltaic impact in rhombohedrally stacked MoS2. Nat. Photonics 16, 469–474 (2022).
Wu, J. et al. Ultrafast response of spontaneous photovoltaic impact in 3R-MoS2-based heterostructures. Sci. Adv. 8, eade3759 (2022).
Dong, Y. et al. Big bulk piezophotovoltaic impact in 3R-MoS2. Nat. Nanotechnol. 18, 36–41 (2023).
Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).
Mak, Okay. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically skinny MoS2: a brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Mak, Okay. F. et al. Tightly sure trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional supplies. Nat. Commun. 8, 15251 (2017).
Wang, G. et al. Colloquium: excitons in atomically skinny transition steel dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Leisgang, N. et al. Big Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).
Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical choice guidelines in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).
Robert, C. et al. Measurement of the spin-forbidden darkish excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).
Zhao, Y. C. et al. Interlayer exciton complexes in bilayer MoS2. Bodily Evaluate B 105, L041411 (2022).
Lin, Okay.-Q. et al. Ultraviolet interlayer excitons in bilayer WSe2. Nat. Nanotechnol. 19, 196–201 (2023).
Klein, J. et al. Stark impact spectroscopy of mono- and few-layer MoS2. Nano Lett. 16, 1554–1559 (2016).
Abraham, N., Watanabe, Okay., Taniguchi, T. & Majumdar, Okay. Anomalous Stark shift of excitonic complexes in monolayer WS2. Bodily Evaluate B 103, 075430 (2021).
Tagantsev, A. Okay., Stolichnov, I., Colla, E. L. & Setter, N. Polarization fatigue in ferroelectric movies: primary experimental findings, phenomenological situations, and microscopic options. J. Appl. Phys. 90, 1387–1402 (2001).
Yang, S. M., Kim, T. H., Yoon, J. G. & Noh, T. W. Nanoscale remark of time-dependent area wall pinning because the origin of polarization fatigue. Adv. Funct. Mater. 22, 2310–2317 (2012).
Genenko, Y. A., Glaum, J., Hoffmann, M. J. & Albe, Okay. Mechanisms of growing old and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52–82 (2015).
Ievlev, A. V. et al. Non-conventional mechanism of ferroelectric fatigue by way of cation migration. Nat. Commun. 10, 3064 (2019).
Bian, R. et al. Creating fatigue-resistant ferroelectrics utilizing interlayer sliding switching. Science 385, 57–62 (2024).
Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99–104 (2024).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Liang, J. et al. Supply knowledge for resolving polarization switching pathways of sliding ferroelectricity in trilayer 3R-MoS2. Figshare https://doi.org/10.6084/m9.figshare.28244258.v1 (2025).