6.8 C
United States of America
Monday, February 3, 2025

Resolving polarization switching pathways of sliding ferroelectricity in trilayer 3R-MoS2


  • Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals supplies: associated physics and future alternatives. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Optically probing the uneven interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. 12, 041005 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition steel dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, P. et al. Sliding induced a number of polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Shear strain-induced two-dimensional slip avalanches in rhombohedral MoS2. Nano Lett. 23, 7228–7235 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. et al. Non-volatile electrical polarization switching by way of area wall launch in 3R-MoS2 bilayer. Nat. Commun. 14, 1389 (2024).

    Article 

    Google Scholar
     

  • Ko, Okay. et al. Operando electron microscopy investigation of polar area dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by native management of dislocations networks. Adv. Mater. 35, 2207816 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ji, J., Yu, G., Xu, C. & Xiang, H. J. Basic concept for bilayer stacking ferroelectricity. Phys. Rev. Lett. 130, 146801 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 629, 74–79 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, D. Concept of polar domains in moiré heterostructures. Bodily Evaluate B 105, 235445 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. NPJ 2D Mater. Appl. 6, 7 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable community mannequin for electrically tunable ferroelectric area construction in twistronic bilayers of two-dimensional semiconductors. Nano Lett. 22, 1534–1540 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron–antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. Spontaneous-polarization-induced photovoltaic impact in rhombohedrally stacked MoS2. Nat. Photonics 16, 469–474 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Ultrafast response of spontaneous photovoltaic impact in 3R-MoS2-based heterostructures. Sci. Adv. 8, eade3759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y. et al. Big bulk piezophotovoltaic impact in 3R-MoS2. Nat. Nanotechnol. 18, 36–41 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, Okay. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically skinny MoS2: a brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Mak, Okay. F. et al. Tightly sure trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional supplies. Nat. Commun. 8, 15251 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. Colloquium: excitons in atomically skinny transition steel dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Leisgang, N. et al. Big Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical choice guidelines in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Article 

    Google Scholar
     

  • Robert, C. et al. Measurement of the spin-forbidden darkish excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. C. et al. Interlayer exciton complexes in bilayer MoS2. Bodily Evaluate B 105, L041411 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Okay.-Q. et al. Ultraviolet interlayer excitons in bilayer WSe2. Nat. Nanotechnol. 19, 196–201 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Klein, J. et al. Stark impact spectroscopy of mono- and few-layer MoS2. Nano Lett. 16, 1554–1559 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abraham, N., Watanabe, Okay., Taniguchi, T. & Majumdar, Okay. Anomalous Stark shift of excitonic complexes in monolayer WS2. Bodily Evaluate B 103, 075430 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tagantsev, A. Okay., Stolichnov, I., Colla, E. L. & Setter, N. Polarization fatigue in ferroelectric movies: primary experimental findings, phenomenological situations, and microscopic options. J. Appl. Phys. 90, 1387–1402 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. M., Kim, T. H., Yoon, J. G. & Noh, T. W. Nanoscale remark of time-dependent area wall pinning because the origin of polarization fatigue. Adv. Funct. Mater. 22, 2310–2317 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Genenko, Y. A., Glaum, J., Hoffmann, M. J. & Albe, Okay. Mechanisms of growing old and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52–82 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ievlev, A. V. et al. Non-conventional mechanism of ferroelectric fatigue by way of cation migration. Nat. Commun. 10, 3064 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, R. et al. Creating fatigue-resistant ferroelectrics utilizing interlayer sliding switching. Science 385, 57–62 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99–104 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Supply knowledge for resolving polarization switching pathways of sliding ferroelectricity in trilayer 3R-MoS2. Figshare https://doi.org/10.6084/m9.figshare.28244258.v1 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles