14.3 C
United States of America
Thursday, March 13, 2025

Quantum-enabled microwave-to-optical transduction by way of silicon nanomechanics


  • Kimble, H. J. The quantum web. Nature 453, 1023 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kurizki, G. et al. Quantum applied sciences with hybrid programs. Proc. Natl Acad. Sci. USA 112, 3866 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the highway forward. Science 362, eaam9288 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Awschalom, D. et al. Growth of quantum interconnects (QuICs) for next-generation data applied sciences. PRX Quantum 2, 017002 (2021).

    Article 

    Google Scholar
     

  • Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of benefit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Quantum-enabled millimetre wave to optical transduction utilizing impartial atoms. Nature 615, 614–619 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Floor code quantum computing by lattice surgical procedure. New J. Phys. 14, 123011 (2012).

    Article 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and environment friendly conversion between microwave and optical gentle. Nat. Phys. 10, 321 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS 

    Google Scholar
     

  • Sahu, R. et al. Entangling microwaves with gentle. Science 380, 718 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, T. P. et al. Cryogenic microwave-to-optical conversion utilizing a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).

    Article 

    Google Scholar
     

  • Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for environment friendly microwave-to-optical transduction. Optica 7, 1714 (2020).

    Article 

    Google Scholar
     

  • Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion within the quantum floor state. Phys. Rev. A 103, 053504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and lightweight with thin-film lithium niobate. Nat. Commun. 12, 1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 1 (2020).

    Article 

    Google Scholar
     

  • Rochman, J., Xie, T., Bartholomew, J. G., Schwab, Ok. C. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1 (2023).

    Article 

    Google Scholar
     

  • Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at single photon stage with spins. Preprint at https://arxiv.org/abs/2407.08879 (2024).

  • Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291 (2020).

    Article 

    Google Scholar
     

  • Arnold, G. et al. Changing microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 1 (2020).


    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. 19, 1423 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Weaver, M. J. et al. An built-in microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meesala, S. et al. Non-classical microwave-optical photon pair technology with a chip-scale transducer. Nat. Phys. 20, 871–877 (2024).

  • Meesala, S. et al. Quantum entanglement between optical and microwave photonic qubits. Phys. Rev. X 14, 031055 (2024).

  • Scigliuzzo, M. et al. Phononic loss in superconducting resonators on piezoelectric substrates. New J. Phys. 22, 053027 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    Article 

    Google Scholar
     

  • Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326 (2023).

    Article 
    CAS 

    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article 

    Google Scholar
     

  • Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation protect. Appl. Phys. Lett. 101, 081115 (2012).

  • Zhao, H., Bozkurt, A. & Mirhosseini, M. Electro-optic transduction in silicon by way of gigahertz-frequency nanomechanics. Optica 10, 790 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bretz-Sullivan, T. M. et al. Excessive kinetic inductance NbTiN superconducting transmission line resonators within the very skinny movie restrict. Appl. Phys. Lett. 121, 052602 (2022).

  • Shearrow, A. et al. Atomic layer deposition of titanium nitride for quantum circuits. Appl. Phys. Lett. 113, 212601 (2018).

  • Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators by way of wi-fi management of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

  • Lobo, R. P. S. M. et al. Photoinduced time-resolved electrodynamics of superconducting metals and alloys. Phys. Rev. B 72, 024510 (2005).

    Article 

    Google Scholar
     

  • Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator close to its quantum floor state of movement. Phys. Rev. X 5, 041002 (2015).


    Google Scholar
     

  • Stockill, R. et al. Gallium phosphide as a piezoelectric platform for quantum optomechanics. Phys. Rev. Lett. 123, 163602 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H. et al. Two-dimensional optomechanical crystal cavity with excessive quantum cooperativity. Nat. Commun. 11, 1 (2020).

    Article 

    Google Scholar
     

  • Ramp, H. et al. Elimination of thermomechanical noise in piezoelectric optomechanical crystals. Phys. Rev. Lett. 123, 093603 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalaee, M. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Forsch, M. et al. Microwave-to-optics conversion utilizing a mechanical oscillator in its quantum floor state. Nat. Phys. 16, 69 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Joe, G. D. et al. Excessive Q-factor diamond optomechanical resonators with silicon emptiness facilities at millikelvin temperatures. Nano Lett. 24, 6831–6837 (2024).

  • Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krastanov, S. et al. Optically heralded entanglement of superconducting programs in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, C., Han, X. & Jiang, L. Microwave and optical entanglement for quantum transduction with electro-optomechanics. Phys. Rev. Appl. 18, 054061 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, J. et al. Low-loss interconnects for modular superconducting quantum processors. Nat. Electron. 6, 235 (2023).

    Article 

    Google Scholar
     

  • Kolvik, J., Burger, P., Frey, J. & Laer, R. V. Clamped and sideband-resolved silicon optomechanical crystals. Optica 10, 913 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sonar, S. et al. Excessive-efficiency low-noise optomechanical crystal photon-phonon transducers. Optica 12, 99–104 (2025).

  • Mayor, F. M. et al. A two-dimensional optomechanical crystal for quantum transduction. Preprint at https://arxiv.org/abs/2406.14484 (2024).

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 90 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, T. et al. Nanophotonic rare-earth quantum reminiscence with optically managed retrieval. Science 357, 1392 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safavi-Naeini, A. H. Quantum Optomechanics with Silicon Nanostructures. PhD thesis, California Institute of Expertise (2013).

  • Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Knowledge for “Quantum-enabled microwave-to-optical transduction by way of silicon nanomechanics”. Zenodo https://doi.org/10.5281/zenodo.14743911 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles