Kimble, H. J. The quantum web. Nature 453, 1023 (2008).
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).
Kurizki, G. et al. Quantum applied sciences with hybrid programs. Proc. Natl Acad. Sci. USA 112, 3866 (2015).
Han, X. et al. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).
Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the highway forward. Science 362, eaam9288 (2018).
Awschalom, D. et al. Growth of quantum interconnects (QuICs) for next-generation data applied sciences. PRX Quantum 2, 017002 (2021).
Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of benefit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).
Kumar, A. et al. Quantum-enabled millimetre wave to optical transduction utilizing impartial atoms. Nature 615, 614–619 (2023).
Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).
Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Floor code quantum computing by lattice surgical procedure. New J. Phys. 14, 123011 (2012).
Andrews, R. W. et al. Bidirectional and environment friendly conversion between microwave and optical gentle. Nat. Phys. 10, 321 (2014).
Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).
Sahu, R. et al. Entangling microwaves with gentle. Science 380, 718 (2023).
Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).
McKenna, T. P. et al. Cryogenic microwave-to-optical conversion utilizing a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).
Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for environment friendly microwave-to-optical transduction. Optica 7, 1714 (2020).
Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion within the quantum floor state. Phys. Rev. A 103, 053504 (2021).
Xu, Y. et al. Bidirectional interconversion of microwave and lightweight with thin-film lithium niobate. Nat. Commun. 12, 1 (2021).
Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 1 (2020).
Rochman, J., Xie, T., Bartholomew, J. G., Schwab, Ok. C. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1 (2023).
Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at single photon stage with spins. Preprint at https://arxiv.org/abs/2407.08879 (2024).
Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291 (2020).
Arnold, G. et al. Changing microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 1 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).
Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. 19, 1423 (2023).
Weaver, M. J. et al. An built-in microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166 (2024).
Meesala, S. et al. Non-classical microwave-optical photon pair technology with a chip-scale transducer. Nat. Phys. 20, 871–877 (2024).
Meesala, S. et al. Quantum entanglement between optical and microwave photonic qubits. Phys. Rev. X 14, 031055 (2024).
Scigliuzzo, M. et al. Phononic loss in superconducting resonators on piezoelectric substrates. New J. Phys. 22, 053027 (2020).
Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).
Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326 (2023).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation protect. Appl. Phys. Lett. 101, 081115 (2012).
Zhao, H., Bozkurt, A. & Mirhosseini, M. Electro-optic transduction in silicon by way of gigahertz-frequency nanomechanics. Optica 10, 790 (2023).
Bretz-Sullivan, T. M. et al. Excessive kinetic inductance NbTiN superconducting transmission line resonators within the very skinny movie restrict. Appl. Phys. Lett. 121, 052602 (2022).
Shearrow, A. et al. Atomic layer deposition of titanium nitride for quantum circuits. Appl. Phys. Lett. 113, 212601 (2018).
Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators by way of wi-fi management of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).
Lobo, R. P. S. M. et al. Photoinduced time-resolved electrodynamics of superconducting metals and alloys. Phys. Rev. B 72, 024510 (2005).
Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator close to its quantum floor state of movement. Phys. Rev. X 5, 041002 (2015).
Stockill, R. et al. Gallium phosphide as a piezoelectric platform for quantum optomechanics. Phys. Rev. Lett. 123, 163602 (2019).
Ren, H. et al. Two-dimensional optomechanical crystal cavity with excessive quantum cooperativity. Nat. Commun. 11, 1 (2020).
Ramp, H. et al. Elimination of thermomechanical noise in piezoelectric optomechanical crystals. Phys. Rev. Lett. 123, 093603 (2019).
Kalaee, M. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334 (2019).
Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845 (2019).
Forsch, M. et al. Microwave-to-optics conversion utilizing a mechanical oscillator in its quantum floor state. Nat. Phys. 16, 69 (2020).
Joe, G. D. et al. Excessive Q-factor diamond optomechanical resonators with silicon emptiness facilities at millikelvin temperatures. Nano Lett. 24, 6831–6837 (2024).
Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).
Krastanov, S. et al. Optically heralded entanglement of superconducting programs in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).
Zhong, C., Han, X. & Jiang, L. Microwave and optical entanglement for quantum transduction with electro-optomechanics. Phys. Rev. Appl. 18, 054061 (2022).
Niu, J. et al. Low-loss interconnects for modular superconducting quantum processors. Nat. Electron. 6, 235 (2023).
Kolvik, J., Burger, P., Frey, J. & Laer, R. V. Clamped and sideband-resolved silicon optomechanical crystals. Optica 10, 913 (2023).
Sonar, S. et al. Excessive-efficiency low-noise optomechanical crystal photon-phonon transducers. Optica 12, 99–104 (2025).
Mayor, F. M. et al. A two-dimensional optomechanical crystal for quantum transduction. Preprint at https://arxiv.org/abs/2406.14484 (2024).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 90 (2013).
Zhong, T. et al. Nanophotonic rare-earth quantum reminiscence with optically managed retrieval. Science 357, 1392 (2017).
Safavi-Naeini, A. H. Quantum Optomechanics with Silicon Nanostructures. PhD thesis, California Institute of Expertise (2013).
Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Knowledge for “Quantum-enabled microwave-to-optical transduction by way of silicon nanomechanics”. Zenodo https://doi.org/10.5281/zenodo.14743911 (2025).