19.3 C
United States of America
Thursday, March 27, 2025

Pt catalyst protected by graphene nanopockets permits lifetimes of over 200,000 h for heavy-duty gas cell functions


  • US Division of Power. Gasoline cells applied sciences workplace multi-year analysis, growth, and demonstration plan (2017); https://www.power.gov/websites/prod/recordsdata/2014/12/f19/fcto_myrdd_full_document.pdf

  • Satyapal, S. Hydrogen and gas cell program overview (US Division of Power, 2019); https://www.hydrogen.power.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf

  • Cullen, D. A. et al. New roads and challenges for gas cells in heavy-duty transportation. Nat. Power 6, 462–474 (2021).

    Article 
    CAS 

    Google Scholar
     

  • North American Council for Freight Effectivity. Making sense of industrial quality hydrogen gas cell tractors (2020); https://nacfe.org/wp-content/uploads/2020/12/NACFE-Steerage-on-Hydrogen-Gasoline-Cell-Tractors-FINAL-121620.pdf

  • US Division of Power. Common annual car miles traveled by main car class (2020); https://afdc.power.gov/knowledge/10309

  • US Environmental Safety Company. Quick info on transportation greenhouse gasoline emissions (2019); https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

  • Davis, S. C. & Boundy. R. G. Transportation Power Knowledge E book: Version 40 (Oak Ridge Nationwide Laboratory, 2020).

  • Marcinkoski, J. et al. Hydrogen Class 8 lengthy haul truck targets (US Division of Power, 2019); https://www.hydrogen.power.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Standing=Grasp

  • Eudy, L. & Put up, M. Gasoline Cell Buses In U.S. Transit Fleets: Present Standing 2020 Report No. NREL/TP-5400-75583 (Nationwide Renewable Power Laboratory, 2021).

  • James, B., Huya-Kouadio, J., Houchins, C. & Desantis, D. Ultimate SA 2018 transportation gas cell price evaluation—2020-01-23 (2018); https://www.power.gov/websites/prod/recordsdata/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf

  • Hua, T. et al. Standing of hydrogen gas cell electrical buses worldwide. J. Energy Sources 269, 975–993 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kodama, Ok., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in making use of extremely energetic Pt-based nanostructured catalysts for oxygen discount reactions to gas cell autos. Nat. Nanotechnol. 16, 140–147 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtz, J., Sprik, S., Saur, G. & Onorato, S. Gasoline Cell Electrical Automobile Sturdiness and Gasoline Cell Efficiency Report No. NREL/TP-5400-73011 (Nationwide Renewable Power Laboratory, 2019).

  • Lohse-Busch, H. et al. Automotive gas cell stack and system effectivity and gas consumption primarily based on car testing on a chassis dynamometer at minus 18 °C to optimistic 35 °C temperatures. Int. J. Hydrogen Power 45, 861–872 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Tuning the exercise of Pt alloy electrocatalysts by the use of the lanthanide contraction. Science 352, 73–76 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Platinum-based nanocages with subnanometer-thick partitions and well-defined, controllable aspects. Science 349, 412–416 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Chen, Z., Xu, L. & Yan, Y. An answer-phase synthesis methodology to extremely energetic Pt-Co/C electrocatalysts for proton trade membrane gas cell. J. Energy Sources 195, 2534–2540 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metallic–natural frameworks for oxygen discount. Nano Lett. 18, 4163–4171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with glorious oxygen discount response exercise. J. Am. Chem. Soc. 138, 1494–1497 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, D. Y. et al. Extremely sturdy and energetic PtFe nanocatalyst for electrochemical oxygen discount response. J. Am. Chem. Soc. 137, 15478–15485 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Report exercise and stability of dealloyed bimetallic catalysts for proton trade membrane gas cells. Power Environ. Sci. 8, 258–266 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Z. et al. Atomically dispersed single iron websites for selling Pt and Pt3Co gas cell catalysts: efficiency and sturdiness enhancements. Power Environ. Sci. 14, 4948–4960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for gas cells. Science 374, 459–464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Onerous-magnet L10-CoPt nanoparticles advance gas cell catalysis. Joule 3, 124–135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Track, T.-W. et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic gas cell catalysts. Nat. Commun. 13, 6521 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, C., Lyu, F. & Yin, Y. Encapsulated metallic nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for extremely sturdy gas cell operation below demanding ultralow-Pt-loading circumstances. Nat. Nanotechnol. 17, 968–975 (2022).

  • Ji, S. G., Kwon, H. C., Kim, T.-H., Sim, U. & Choi, C. H. Does the encapsulation technique of Pt nanoparticles with carbon layers actually guarantee each extremely energetic and sturdy electrocatalysis in gas cells? ACS Catal. 12, 7317–7325 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Low Pt loading for high-performance gas cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat. Commun. 13, 7577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. Excessive-platinum-content catalysts on atomically dispersed and nitrogen coordinated single manganese web site carbons for heavy-duty gas cells. J. Electrochem. Soc. 169, 034510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ko, M., Padgett, E., Yarlagadda, V., Kongkanand, A. & Muller, D. A. Revealing the nanostructure of mesoporous gas cell catalyst helps for sturdy, high-power efficiency. J. Electrochem. Soc. 168, 024512 (2021).

    Article 
    CAS 

    Google Scholar
     

  • US Division of Power. M2FCT: Million Mile Gasoline Cell Truck Consortium FC339, (2021); https://www.hydrogen.power.gov/docs/hydrogenprogramlibraries/pdfs/review21/fc339_weber_2021_o-pdf.pdf

  • Wang, X., Hu, L., Neyerlin, Ok. C. & Ahluwalia, R. Ok. Baselining exercise and stability of ORR catalysts and electrodes for proton trade membrane gas cells for heavy-duty functions. J. Electrochem. Soc. 170, 024503 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts through robust coupling results between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Steel bond power regulation permits large-scale synthesis of intermetallic nanocrystals for sensible gas cells. Nat. Mater. 23, 1259–1267 (2024).

  • Stariha, S. et al. Latest advances in catalyst accelerated stress checks for polymer electrolyte membrane gas cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kongkanand, A. & Mathias, M. F. The precedence and problem of high-power efficiency of low-platinum proton-exchange membrane gas cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbir, F. in PEM Gasoline Cells (ed. Barbir, F.) 33–72 (Tutorial Press, 2005).

  • Harrison, Ok. W., Hoskin, R. R. A. & Martin, G. D. Hydrogen manufacturing: fundamentals and case research summaries (Nationwide Renewable Power Laboratory, 2010); https://www.nrel.gov/docs/fy10osti/47302.pdf

  • Jang, J. et al. Boosting gas cell sturdiness below shut-down/start-up circumstances utilizing a hydrogen oxidation-selective metallic–carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 11, 27735–27742 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Granqvist, C. G. & Buhrman, R. A. Dimension distributions for supported metallic catalysts: coalescence development versus Ostwald ripening. J. Catal. 42, 477–479 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Borup, R. L. & Weber, A. Z. FC-PAD: Gasoline Cell Efficiency And Sturdiness Consortium Report No. LA-UR-19-22970 (2018).

  • Padgett, E. et al. Editors’ alternative—connecting gas cell catalyst nanostructure and accessibility utilizing quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for extremely sturdy gas cells. Nat. Catal. 7, 818–828 (2024).

  • Garrick, T. R., Moylan, T. E., Yarlagadda, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM gas cells utilizing Co displacement. J. Electrochem. Soc. 164, F60 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, H., Kato, H. & Kodama, Ok. Cell efficiency and sturdiness of Pt/C cathode catalyst lined by dopamine derived carbon skinny layer for polymer electrolyte gas cells. J. Electrochem. Soc. 167, 084508 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L.-C., Cheng, Y.-S., Liao, W.-C., Huang, Y.-H. & Pan, Y.-T. Transient loss and restoration of platinum gas cell cathode catalyst at excessive voltage effectivity regimes. J. Electrochem. Soc. 168, 054503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garrick, T. R., Moylan, T. E., Carpenter, M. Ok. & Kongkanand, A. Editors’ alternative—electrochemically energetic floor space measurement of aged Pt alloy catalysts in PEM gas cells by Co stripping. J. Electrochem. Soc. 164, F55 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles