US Division of Power. Gasoline cells applied sciences workplace multi-year analysis, growth, and demonstration plan (2017); https://www.power.gov/websites/prod/recordsdata/2014/12/f19/fcto_myrdd_full_document.pdf
Satyapal, S. Hydrogen and gas cell program overview (US Division of Power, 2019); https://www.hydrogen.power.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf
Cullen, D. A. et al. New roads and challenges for gas cells in heavy-duty transportation. Nat. Power 6, 462–474 (2021).
North American Council for Freight Effectivity. Making sense of industrial quality hydrogen gas cell tractors (2020); https://nacfe.org/wp-content/uploads/2020/12/NACFE-Steerage-on-Hydrogen-Gasoline-Cell-Tractors-FINAL-121620.pdf
US Division of Power. Common annual car miles traveled by main car class (2020); https://afdc.power.gov/knowledge/10309
US Environmental Safety Company. Quick info on transportation greenhouse gasoline emissions (2019); https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
Davis, S. C. & Boundy. R. G. Transportation Power Knowledge E book: Version 40 (Oak Ridge Nationwide Laboratory, 2020).
Marcinkoski, J. et al. Hydrogen Class 8 lengthy haul truck targets (US Division of Power, 2019); https://www.hydrogen.power.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Standing=Grasp
Eudy, L. & Put up, M. Gasoline Cell Buses In U.S. Transit Fleets: Present Standing 2020 Report No. NREL/TP-5400-75583 (Nationwide Renewable Power Laboratory, 2021).
James, B., Huya-Kouadio, J., Houchins, C. & Desantis, D. Ultimate SA 2018 transportation gas cell price evaluation—2020-01-23 (2018); https://www.power.gov/websites/prod/recordsdata/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf
Hua, T. et al. Standing of hydrogen gas cell electrical buses worldwide. J. Energy Sources 269, 975–993 (2014).
Kodama, Ok., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in making use of extremely energetic Pt-based nanostructured catalysts for oxygen discount reactions to gas cell autos. Nat. Nanotechnol. 16, 140–147 (2021).
Kurtz, J., Sprik, S., Saur, G. & Onorato, S. Gasoline Cell Electrical Automobile Sturdiness and Gasoline Cell Efficiency Report No. NREL/TP-5400-73011 (Nationwide Renewable Power Laboratory, 2019).
Lohse-Busch, H. et al. Automotive gas cell stack and system effectivity and gas consumption primarily based on car testing on a chassis dynamometer at minus 18 °C to optimistic 35 °C temperatures. Int. J. Hydrogen Power 45, 861–872 (2020).
Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).
Escudero-Escribano, M. et al. Tuning the exercise of Pt alloy electrocatalysts by the use of the lanthanide contraction. Science 352, 73–76 (2016).
Zhang, L. et al. Platinum-based nanocages with subnanometer-thick partitions and well-defined, controllable aspects. Science 349, 412–416 (2015).
Li, W., Chen, Z., Xu, L. & Yan, Y. An answer-phase synthesis methodology to extremely energetic Pt-Co/C electrocatalysts for proton trade membrane gas cell. J. Energy Sources 195, 2534–2540 (2010).
Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metallic–natural frameworks for oxygen discount. Nano Lett. 18, 4163–4171 (2018).
He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with glorious oxygen discount response exercise. J. Am. Chem. Soc. 138, 1494–1497 (2016).
Chung, D. Y. et al. Extremely sturdy and energetic PtFe nanocatalyst for electrochemical oxygen discount response. J. Am. Chem. Soc. 137, 15478–15485 (2015).
Han, B. et al. Report exercise and stability of dealloyed bimetallic catalysts for proton trade membrane gas cells. Power Environ. Sci. 8, 258–266 (2015).
Qiao, Z. et al. Atomically dispersed single iron websites for selling Pt and Pt3Co gas cell catalysts: efficiency and sturdiness enhancements. Power Environ. Sci. 14, 4948–4960 (2021).
Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for gas cells. Science 374, 459–464 (2021).
Li, J. et al. Onerous-magnet L10-CoPt nanoparticles advance gas cell catalysis. Joule 3, 124–135 (2019).
Track, T.-W. et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic gas cell catalysts. Nat. Commun. 13, 6521 (2022).
Gao, C., Lyu, F. & Yin, Y. Encapsulated metallic nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).
Zhao, Z. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for extremely sturdy gas cell operation below demanding ultralow-Pt-loading circumstances. Nat. Nanotechnol. 17, 968–975 (2022).
Ji, S. G., Kwon, H. C., Kim, T.-H., Sim, U. & Choi, C. H. Does the encapsulation technique of Pt nanoparticles with carbon layers actually guarantee each extremely energetic and sturdy electrocatalysis in gas cells? ACS Catal. 12, 7317–7325 (2022).
Tang, H. et al. Low Pt loading for high-performance gas cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat. Commun. 13, 7577 (2022).
Chen, M. et al. Excessive-platinum-content catalysts on atomically dispersed and nitrogen coordinated single manganese web site carbons for heavy-duty gas cells. J. Electrochem. Soc. 169, 034510 (2022).
Ko, M., Padgett, E., Yarlagadda, V., Kongkanand, A. & Muller, D. A. Revealing the nanostructure of mesoporous gas cell catalyst helps for sturdy, high-power efficiency. J. Electrochem. Soc. 168, 024512 (2021).
US Division of Power. M2FCT: Million Mile Gasoline Cell Truck Consortium FC339, (2021); https://www.hydrogen.power.gov/docs/hydrogenprogramlibraries/pdfs/review21/fc339_weber_2021_o-pdf.pdf
Wang, X., Hu, L., Neyerlin, Ok. C. & Ahluwalia, R. Ok. Baselining exercise and stability of ORR catalysts and electrodes for proton trade membrane gas cells for heavy-duty functions. J. Electrochem. Soc. 170, 024503 (2023).
Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts through robust coupling results between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).
Liang, J. et al. Steel bond power regulation permits large-scale synthesis of intermetallic nanocrystals for sensible gas cells. Nat. Mater. 23, 1259–1267 (2024).
Stariha, S. et al. Latest advances in catalyst accelerated stress checks for polymer electrolyte membrane gas cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Kongkanand, A. & Mathias, M. F. The precedence and problem of high-power efficiency of low-platinum proton-exchange membrane gas cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
Barbir, F. in PEM Gasoline Cells (ed. Barbir, F.) 33–72 (Tutorial Press, 2005).
Harrison, Ok. W., Hoskin, R. R. A. & Martin, G. D. Hydrogen manufacturing: fundamentals and case research summaries (Nationwide Renewable Power Laboratory, 2010); https://www.nrel.gov/docs/fy10osti/47302.pdf
Jang, J. et al. Boosting gas cell sturdiness below shut-down/start-up circumstances utilizing a hydrogen oxidation-selective metallic–carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 11, 27735–27742 (2019).
Granqvist, C. G. & Buhrman, R. A. Dimension distributions for supported metallic catalysts: coalescence development versus Ostwald ripening. J. Catal. 42, 477–479 (1976).
Borup, R. L. & Weber, A. Z. FC-PAD: Gasoline Cell Efficiency And Sturdiness Consortium Report No. LA-UR-19-22970 (2018).
Padgett, E. et al. Editors’ alternative—connecting gas cell catalyst nanostructure and accessibility utilizing quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018).
Peng, B. et al. Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for extremely sturdy gas cells. Nat. Catal. 7, 818–828 (2024).
Garrick, T. R., Moylan, T. E., Yarlagadda, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM gas cells utilizing Co displacement. J. Electrochem. Soc. 164, F60 (2017).
Yamada, H., Kato, H. & Kodama, Ok. Cell efficiency and sturdiness of Pt/C cathode catalyst lined by dopamine derived carbon skinny layer for polymer electrolyte gas cells. J. Electrochem. Soc. 167, 084508 (2020).
Lin, L.-C., Cheng, Y.-S., Liao, W.-C., Huang, Y.-H. & Pan, Y.-T. Transient loss and restoration of platinum gas cell cathode catalyst at excessive voltage effectivity regimes. J. Electrochem. Soc. 168, 054503 (2021).
Garrick, T. R., Moylan, T. E., Carpenter, M. Ok. & Kongkanand, A. Editors’ alternative—electrochemically energetic floor space measurement of aged Pt alloy catalysts in PEM gas cells by Co stripping. J. Electrochem. Soc. 164, F55 (2017).