12 C
United States of America
Saturday, November 23, 2024

Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by lowering oxidative stress and focusing on neuroinflammation in intracerebral hemorrhage | Journal of Nanobiotechnology


  • Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral hemorrhage: pathophysiology, therapy, and future instructions. Circ Res. 2022;130:1204–29. https://doi.org/10.1161/CIRCRESAHA.121.319949.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maintain RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of harm and therapeutic targets. Lancet Neurol. 2012;11:720–31. https://doi.org/10.1016/S1474-4422(12)70104-7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of harm and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord. 2021;14:17562864211049208. https://doi.org/10.1177/17562864211049208.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sondag L, Schreuder F, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, Klijn CJM. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50. https://doi.org/10.1002/ana.25732.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane Ok, McBee N, Mayo SW, Bistran-Corridor AJ, Gandhi D, Mould WA, et al. Efficacy and security of minimally invasive surgical procedure with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, managed, open-label, blinded endpoint section 3 trial. Lancet. 2019;393:1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers. 2023;9:15. https://doi.org/10.1038/s41572-023-00424-7.

    Article 

    Google Scholar
     

  • Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: present approaches to acute administration. Lancet. 2018;392:1257–68. https://doi.org/10.1016/S0140-6736(18)31878-6.

    Article 
    PubMed 

    Google Scholar
     

  • Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN. Concentrating on secondary harm in intracerebral haemorrhage-perihaematomal oedema. Nat Rev Neurol. 2015;11:111–22. https://doi.org/10.1038/nrneurol.2014.264.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 towards intracerebral hemorrhage in mice. J Cereb Blood Circulate Metab. 2017;37:3110–23. https://doi.org/10.1177/0271678X17709186.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kearns KN, Ironside N, Park MS, Worrall BB, Southerland AM, Chen CJ, Ding D. Neuroprotective therapies for spontaneous intracerebral hemorrhage. Neurocrit Care. 2021;35:862–86. https://doi.org/10.1007/s12028-021-01311-3.

    Article 
    PubMed 

    Google Scholar
     

  • Alsbrook DL, Di Napoli M, Bhatia Ok, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23:407–31. https://doi.org/10.1007/s11910-023-01282-2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation through PGE2/EP2/NOX2 signalling and improves the end result of intracerebral haemorrhage in mice. Mind Behav Immun. 2021;91:615–26. https://doi.org/10.1016/j.bbi.2020.09.032.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao X, Ting SM, Liu CH, Solar G, Kruzel M, Roy-eilly M, Aronowski J. Neutrophil polarization by IL-27 as a therapeutic goal for intracerebral hemorrhage. Nat Commun. 2017;8:602. https://doi.org/10.1038/s41467-017-00770-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86. https://doi.org/10.1007/s12035-016-9785-6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: essential pathological mechanisms in traumatic braininjury-induced neurodegeneration. Entrance Getting old Neurosci. 2022;14: 825086. https://doi.org/10.3389/fnagi.2022.825086.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen HS, Chen X, Li WT, Shen JG. Concentrating on RNS/caveolin-1/MMP signaling cascades to guard towards cerebral ischemia-reperfusion accidents: potential utility for drug discovery. Acta Pharmacol Sin. 2018;39:669–82. https://doi.org/10.1038/aps.2018.27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Granger DN, Kvietys PR. Reperfusion harm and reactive oxygen species: the evolution of an idea. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Forman HJ, Zhang H. Concentrating on oxidative stress in illness: promise and limitations of antioxidant remedy. Nat Rev Drug Discov. 2021;20:689–709. https://doi.org/10.1038/s41573-021-00233-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic acid phenethyl ester (CAPE): biosynthesis, derivatives and formulations with neuroprotective actions. Antioxidants (Basel). 2023;12:1500. https://doi.org/10.3390/antiox12081500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Serarslan G, Altuğ E, Kontas T, Atik E, Avci G. Caffeic acid phenethyl ester accelerates cutaneous wound therapeutic in a rat mannequin and reduces oxidative stress. Clin Exp Dermatol. 2007;32:709–15. https://doi.org/10.1111/j.1365-2230.2007.02470.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pittalà V, Salerno L, Romeo G, Acquaviva R, Di Giacomo C, Sorrenti V. Therapeutic potential of caffeic acid phenethyl ester (CAPE) in diabetes. Curr Med Chem. 2018;25:4827–36. https://doi.org/10.2174/0929867324666161118120908.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a recognized inhibitor of NF-kappaB activation, on Ca2+-activated Ok+ present in pituitary GH3 cells. J Biol Chem. 2004;279:26885–92. https://doi.org/10.1074/jbc.M400356200.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic acid phenethyl ester: a assessment of its antioxidant exercise, protecting results towards ischemia-reperfusion harm and drug antagonistic reactions. Crit Rev Meals Sci Nutr. 2016;56:2183–90. https://doi.org/10.1080/10408398.2013.821967.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and neuroprotection: a assessment. Biomolecules. 2021;11:176. https://doi.org/10.3390/biom11020176.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their organic exercise. J Pharm Sci. 2015;104:144–54. https://doi.org/10.1002/jps.24278.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weng YC, Chuang ST, Lin YC, Chuang CF, Chi TC, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenylethyl amide protects towards the metabolic penalties in diabetes mellitus induced by food regimen and streptozocin. Evid Based mostly Complement Alternat Med. 2012;2012: 984780. https://doi.org/10.1155/2012/984780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory results (assessment). Exp Ther Med. 2015;9:1582–8. https://doi.org/10.3892/etm.2015.2346.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug supply: from historical past to therapeutic purposes. Nanomaterials (Basel). 2022;12:4494. https://doi.org/10.3390/nano12244494.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The historical past of nanoscience and nanotechnology: from chemical-physical purposes to nanomedicine. Molecules. 2019;25:112. https://doi.org/10.3390/molecules25010112.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malik S, Muhammad Ok, Waheed Y. Nanotechnology: a revolution in trendy business. Molecules. 2023;28:661. https://doi.org/10.3390/molecules28020661.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cha BG, Kim J. Purposeful mesoporous silica nanoparticles for bio-imaging purposes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1515. https://doi.org/10.1002/wnan.1515.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a complete assessment on synthesis and up to date advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noureddine A, Maestas-Olguin A, Tang L, Corman-Hijar JI, Olewine M, Krawchuck JA, Tsala Ebode J, Edeh C, Dang C, Negrete OA, et al. Way forward for mesoporous silica nanoparticles in nanomedicine: protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA). ACS Nano. 2023;17:16308–25. https://doi.org/10.1021/acsnano.3c07621.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan F, Feng X, Jin Y, Liu D, Yang X, Zhou G, Liu D, Li Z, Liang XJ, Zhang J. Metallic-carbenicillin framework-based nanoantibiotics with enhanced penetration and extremely environment friendly inhibition of MRSA. Biomaterials. 2017;144:155–65. https://doi.org/10.1016/j.biomaterials.2017.08.024.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu XC, Wu CZ, Hu XF, Wang TL, Jin XP, Ke SF, Wang E, Wu G. Gastrodin attenuates neuronal apoptosis and neurological deficits after experimental intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2020;29: 104483. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104483.

    Article 
    PubMed 

    Google Scholar
     

  • Qu J, Chen W, Hu R, Feng H. The harm and remedy of reactive oxygen species in intracerebral hemorrhage taking a look at mitochondria. Oxid Med Cell Longev. 2016;2016:2592935. https://doi.org/10.1155/2016/2592935.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Solar X, Wang Y, Deng X, Miao J, Zhao D, Solar Ok, Li M, Wang X, Solar W, Qin J. Building of selenium nanoparticle-loaded mesoporous silica nanoparticles with potential antioxidant and antitumor actions as a selenium complement. ACS Omega. 2022;7:44851–60. https://doi.org/10.1021/acsomega.2c04975.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yuan X, Jia Z, Li J, Liu Y, Huang Y, Gong Y, Guo X, Chen X, Cen J, Liu J. A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve progress issue for Alzheimer’s illness administration by repairing and selling neuron regeneration. J Mater Chem B. 2021;9:7835–47. https://doi.org/10.1039/d1tb01290h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu R, He Q, Li Z, Ren Y, Liao Y, Zhang Z, Dai Q, Wan C, Lengthy S, Kong L, et al. ROS-cleavable diselenide nanomedicine for NIR-controlled drug launch and on-demand synergistic chemo-photodynamic remedy. Acta Biomater. 2022;153:442–52. https://doi.org/10.1016/j.actbio.2022.09.061.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen Z, Wen H, Zhou H, Hao L, Chen H, Zhou X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin launch. Mater Sci Eng C Mater Biol Appl. 2019;105: 110073. https://doi.org/10.1016/j.msec.2019.110073.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang Ok, Wang J, Liu Z. Polydopamine coated single-walled carbon nanotubes as a flexible platform with radionuclide labeling for multimodal tumor imaging and remedy. Theranostics. 2016;6:1833–43. https://doi.org/10.7150/thno.16047.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising purposes for floor modification and superior nanomedicine. ACS Nano. 2019;13:8537–65. https://doi.org/10.1021/acsnano.9b04436.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal efficiency for tumor multimodal remedies. Adv Sci (Weinh). 2018;5:1800510. https://doi.org/10.1002/advs.201800510.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin A, Wang Y, Lin Ok, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5:522–41. https://doi.org/10.1016/j.bioactmat.2020.04.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Wang Ok, Zhang D, Ji B, Zhao D, Wang X, Zhang H, Kan Q, He Z, Solar J. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for exact therapy of breast most cancers. RSC Adv. 2019;9:9260–9. https://doi.org/10.1039/c9ra01230c.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-based drug supply nanosystems: a possible method for glioma therapy. Int J Nanomed. 2022;17:3751–75. https://doi.org/10.2147/IJN.S378217.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn(3)O(4)@PDA@Pd-SS31 nanozymes scale back oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305: 122449. https://doi.org/10.1016/j.biomaterials.2023.122449.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, et al. Bioinspired polydopamine nanoparticles as environment friendly antioxidative and anti inflammatory enhancers towards UV-induced pores and skin harm. J Nanobiotechnology. 2023;21:354. https://doi.org/10.1186/s12951-023-02107-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory melancholy remedy. J Nanobiotechnology. 2023;21:52. https://doi.org/10.1186/s12951-023-01807-4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dai S, Wei J, Zhang H, Luo P, Yang Y, Jiang X, Fei Z, Liang W, Jiang J, Li X. Intermittent fasting reduces neuroinflammation in intracerebral hemorrhage by way of the Sirt3/Nrf2/HO-1 pathway. J Neuroinflammation. 2022;19:122. https://doi.org/10.1186/s12974-022-02474-2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kastvig MH, Bøtker JP, Ge G, Andersen ML. Measurement of hydrogen peroxide vapor in powders with potassium titanium oxide oxalate loaded cellulose pellets as probes. MethodsX. 2021;8: 101405. https://doi.org/10.1016/j.mex.2021.101405.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13:420–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J. Preclinical and medical analysis on irritation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. https://doi.org/10.1038/nrneurol.2017.69.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiong XY, Liu L, Yang QW. Capabilities and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization through PGC-1α in circumstances of neuroinflammatory harm. Mind Behav Immun. 2017;64:162–72. https://doi.org/10.1016/j.bbi.2017.03.003.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Entrance Mol Neurosci. 2022;15:1013706. https://doi.org/10.3389/fnmol.2022.1013706.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han R, Lan X, Han Z, Ren H, Aafreen S, Wang W, Hou Z, Zhu T, Qian A, Han X, et al. Enhancing outcomes in intracerebral hemorrhage by way of microglia/macrophage-targeted IL-10 supply with phosphatidylserine liposomes. Biomaterials. 2023;301: 122277. https://doi.org/10.1016/j.biomaterials.2023.12227.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized nanomaterials able to crossing the blood-brain barrier. ACS Nano. 2024;18:1820–45. https://doi.org/10.1021/acsnano.3c10674.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yuan J, Li L, Yang Q, Ran H, Wang J, Hu Ok, Pu W, Huang J, Wen L, Zhou L, et al. Focused therapy of ischemic stroke by bioactive nanoparticle-derived eactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano. 2021;15:16076–94. https://doi.org/10.1021/acsnano.1c04753.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding S, Khan AI, Cai X, Track Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug supply methods. Mater Right now (Kidlington). 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maintain RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Mind endothelial cell junctions after cerebral hemorrhage: adjustments, mechanisms and therapeutic targets. J Cereb Blood Circulate Metab. 2018;38:1255–75. https://doi.org/10.1177/0271678X18774666.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor focusing on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles