4.2 C
United States of America
Saturday, December 28, 2024

PDGFR-α shRNA-polyplex for uveal melanoma remedy by way of EMT mediated vasculogenic mimicry interfering | Journal of Nanobiotechnology


  • Zhang J, Liu S, Ye Q, Pan J. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene dependancy and reduces liver metastasis in uveal melanoma. Mol Most cancers. 2019;18(1):140. https://doi.org/10.1186/s12943-019-1070-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, Coupland SE, Roose JP, Bastian BC. RasGRP3 mediates MAPK pathway activation in GNAQ Mutant Uveal Melanoma. Most cancers Cell. 2017;31(5):685–e6966. https://doi.org/10.1016/j.ccell.2017.04.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong L, You S, Zhang Q, Osuka S, Devi NS, Kaluz S, Ferguson JH, Yang H, Chen G, Wang B, Grossniklaus HE, Van Meir EG. Arylsulfonamide 64B inhibits Hypoxia/HIF-Induced expression of c-Met and CXCR4 and reduces major Tumor Development and Metastasis of Uveal Melanoma. Clin Most cancers Res. 2019;25(7):2206–18. https://doi.org/10.1158/1078-0432.CCR-18-1368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q, Fan X. ZNNT1 lengthy noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 2020;16(7):1186–99. https://doi.org/10.1080/15548627.2019.1659614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, Hess JM, Uzunangelov V, Walter V, Danilova L, Lichtenberg TM, Kucherlapati M, Kimes PK, Tang M, Penson A, Babur O, Akbani R, Bristow CA, Hoadley KA, Iype L, Chang MT, Community TR, Cherniack AD, Benz C, Mills GB, Verhaak RGW, Griewank KG, Felau I, Zenklusen JC, Gershenwald JE, Schoenfield L, Lazar AJ, Abdel-Rahman MH, Roman-Roman S, Stern MH, Cebulla CM, Williams MD, Jager MJ, Coupland SE, Esmaeli B, Kandoth C, Woodman SE. Integrative evaluation identifies 4 molecular and medical subsets in Uveal Melanoma. Most cancers Cell. 2017;32(2):204–e22015. https://doi.org/10.1016/j.ccell.2017.07.003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathivet T, Bouleti C, Van Woensel M, Stanchi F, Verschuere T, Phng LK, Dejaegher J, Balcer M, Matsumoto Ok, Georgieva PB, Belmans J, Sciot R, Stockmann C, Mazzone M, De Vleeschouwer S, Gerhardt H. Dynamic stroma reorganization drives blood vessel dysmorphia throughout glioma progress. EMBO Mol Med. 2017;9(12):1629–45. https://doi.org/10.15252/emmm.201607445.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linkous A, Geng L, Lyshchik A, Hallahan DE, Yazlovitskaya EM. Cytosolic phospholipase A2: concentrating on most cancers by the tumor vasculature. Clin Most cancers Res. 2009;15(5):1635–44. https://doi.org/10.1158/1078-0432.CCR-08-1905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mak MP, Tong P, Diao L, Cardnell RJ, Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J, Wistuba II, Heymach JV, Weinstein JN, Coombes KR, Wang J, Byers LA. A Affected person-Derived, Pan-cancer EMT signature identifies world molecular alterations and Immune Goal Enrichment following epithelial-to-mesenchymal transition. Clin Most cancers Res. 2016;22(3):609–20. https://doi.org/10.1158/1078-0432.CCR-15-0876.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, De Clercq S, Minguijón E, Balsat C, Sokolow Y, Dubois C, De Cock F, Scozzaro S, Sopena F, Lanas A, D’Haene N, Salmon I, Marine J-C, Voet T, Sotiropoulou PA, Blanpain C. Identification of the tumour transition states occurring throughout EMT. Nature. 2018;556(7702):463–8. https://doi.org/10.1038/s41586-018-0040-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and remedy resistance throughout carcinomas. Pharmacol Ther. 2019;194:161–84. https://doi.org/10.1016/j.pharmthera.2018.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen T, Cai LD, Liu YH, Li S, Gan WJ, Li XM, Wang JR, Guo PD, Zhou Q, Lu XX, Solar LN, Li JM. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal most cancers by epigenetically suppressing autophagy. J Hematol Oncol. 2018;11(1):95. https://doi.org/10.1186/s13045-018-0638-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang XG, Zhu LC, Wang YJ, Li YY, Wang D. Present advance of therapeutic brokers in medical trials probably concentrating on Tumor plasticity. Entrance Oncol. 2019;9:887. https://doi.org/10.3389/fonc.2019.00887.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a brand new goal in anticancer drug discovery. Nat Rev Drug Discov. 2016;15(5). https://doi.org/10.1038/nrd.2015.13. 311 – 25.

  • Lakshmikanthan S, Sobczak M, Chun C, Henschel A, Dargatz J, Ramchandran R, Chrzanowska-Wodnicka M. Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin alphavbeta(3). Blood. 2011;118(7):2015–26. https://doi.org/10.1182/blood-2011-04-349282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stahl PJ, Chan TR, Shen YI, Solar G, Gerecht S, Yu SM. Capillary Community-Like Group of endothelial cells in PEGDA Scaffolds Encoded with angiogenic alerts by way of Triple Helical hybridization. Adv Funct Mater. 2014;24(21):3213–25. https://doi.org/10.1002/adfm.201303217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, Chen Q, Lai X, Zhu C, Chen C, Zhao X, Deng R, Xu M, Yuan H, Wang Y, Yu J, Huang J. SUMOylation of Grb2 enhances the ERK exercise by growing its binding with Sos1. Mol Most cancers. 2014;13:95. https://doi.org/10.1186/1476-4598-13-95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boosani CS, Mannam AP, Cosgrove D, Silva R, Hodivala-Dilke KM, Keshamouni VG, Sudhakar A. Regulation of COX-2 mediated signaling by alpha3 kind IV noncollagenous area in tumor angiogenesis. Blood. 2007;110(4):1168–77. https://doi.org/10.1182/blood-2007-01-066282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR. Inhibitory impact of melatonin on hypoxia-induced vasculogenic mimicry by way of suppressing epithelial-mesenchymal transition (EMT) in breast most cancers stem cells. Eur J Pharmacol. 2020;881:173282. https://doi.org/10.1016/j.ejphar.2020.173282.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reece KM, Richardson ED, Cook dinner KM, Campbell TJ, Pisle ST, Holly AJ, Venzon DJ, Liewehr DJ, Chau CH, Value DK, Figg WD. Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor exercise by disrupting the HIF-1alpha/p300 advanced in a preclinical mannequin of prostate most cancers. Mol Most cancers. 2014;13:91. https://doi.org/10.1186/1476-4598-13-91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee D, Yu JS, Ha JW, Lee SR, Lee BS, Kim JC, Kim JK, Kang KS, Kim KH. Antitumor potential of Withanolide glycosides from Ashwagandha (Withania somnifera) on apoptosis of Human Hepatocellular Carcinoma Cells and tube formation in human umbilical vein endothelial cells. Antioxid (Basel). 2022;11(9):1761. https://doi.org/10.3390/antiox11091761.

    Article 
    CAS 

    Google Scholar
     

  • Moser JC, Pulido JS, Dronca RS, McWilliams RR, Markovic SN, Mansfield AS. The Mayo Clinic expertise with the usage of kinase inhibitors, ipilimumab, bevacizumab, and native therapies within the remedy of metastatic uveal melanoma. Melanoma Res. 2015;25(1):59–63. https://doi.org/10.1097/CMR.0000000000000125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piperno-Neumann S, Diallo A, Etienne-Grimaldi MC, Bidard FC, Rodrigues M, Plancher C, Mariani P, Cassoux N, Decaudin D, Asselain B, Servois V. Part II trial of Bevacizumab in Mixture with Temozolomide as First-Line remedy in sufferers with metastatic uveal melanoma. Oncologist. 2016;21(3):281–2. https://doi.org/10.1634/theoncologist.2015-0501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fane ME, Ecker BL, Kaur A, Marino GE, Alicea GM, Douglass SM, Chhabra Y, Webster MR, Marshall A, Colling R, Espinosa O, Coupe N, Maroo N, Campo L, Middleton MR, Corrie P, Xu X, Karakousis GC, Weeraratna AT. sFRP2 supersedes VEGF as an age-related driver of Angiogenesis in Melanoma, affecting response to Anti-VEGF remedy in older sufferers. Clin Most cancers Res. 2020;26(21):5709–19. https://doi.org/10.1158/1078-0432.CCR-20-0446.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francis JH, Kim J, Lin A, Folberg R, Iyer S, Abramson DH. Development of Uveal Melanoma following Intravitreal Bevacizumab. Ocul Oncol Pathol. 2017;3(2):117–21. https://doi.org/10.1159/000450859.

    Article 
    PubMed 

    Google Scholar
     

  • Kang X, Xu E, Wang X, Qian L, Yang Z, Yu H, Wang C, Ren C, Wang Y, Lu X, Xia X, Guan W, Qiao T. Tenascin-c knockdown suppresses vasculogenic mimicry of gastric most cancers by inhibiting ERK- triggered EMT. Cell Demise Dis. 2021;12(10):890. https://doi.org/10.1038/s41419-021-04153-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onnis B, Fer N, Rapisarda A, Perez VS, Melillo G. Autocrine manufacturing of IL-11 mediates tumorigenicity in hypoxic most cancers cells. J Clin Make investments. 2013;123(4):1615–29. https://doi.org/10.1172/JCI59623.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The connection between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med. 2016;20(9):1761–9. https://doi.org/10.1111/jcmm.12851.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z, Yang Y, Wang F, Kleinerman ES. Neuronal repressor REST controls ewing sarcoma progress and metastasis by affecting vascular pericyte protection and vessel perfusion. Cancers. 2020;12(6):1405. https://doi.org/10.3390/cancers12061405

  • Manzat Saplacan RM, Balacescu L, Gherman C, Chira RI, Craiu A, Mircea PA, Lisencu C, Balacescu O. The function of PDGFs and PDGFRs in Colorectal Most cancers. Mediators Inflamm. 2017;2017:4708076. https://doi.org/10.1155/2017/4708076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ. PDGFRs are vital for PI3K/Akt activation and negatively regulated by mTOR. J Clin Make investments. 2007;117(3):730–8. https://doi.org/10.1172/jci28984.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo G, Baldwin JR, Luffer-Atlas D, Ilaria RL Jr., Conti I, Heathman M, Cronier DM. Inhabitants Pharmacokinetic modeling of Olaratumab, an Anti-PDGFRalpha Human monoclonal antibody, in sufferers with Superior and/or metastatic Most cancers. Clin Pharmacokinet. 2018;57(3):355–65. https://doi.org/10.1007/s40262-017-0562-0.

  • Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and destiny specification require PDGF receptor signaling. Circ Res. 2011;108(12):e15–26. https://doi.org/10.1161/CIRCRESAHA.110.235531.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug goal. Mol Facets Med. 2018;62:75–88. https://doi.org/10.1016/j.mam.2017.11.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang J, Gao ZY, Zhang LY, Wang CY. Over-expression of JAZF1 promotes cardiac microvascular endothelial cell proliferation and angiogenesis by way of activation of the akt signaling pathway in rats with myocardial ischemia-reperfusion. Cell Cycle. 2019;18(14):1619–34. https://doi.org/10.1080/15384101.2019.1629774.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu T, Zhao M, Zhou Y. Tumor-targeted supply of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater. 2021;6(5):1330–40. https://doi.org/10.1016/j.bioactmat.2020.10.019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Powell JE, Lim CKW, Krishnan R, McCallister TX, Saporito-Magrina C, Zeballos MA, McPheron GD, Gaj T. Focused gene silencing within the nervous system with CRISPR-Cas13. Sci Adv. 2022;8(3):eabk2485. https://doi.org/10.1126/sciadv.abk2485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittrup A, Lieberman J. Pulling down illness: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9). https://doi.org/10.1038/nrg3978. 543 – 52.

  • Wang C, Liu Q, Zhang Z, Wang Y, Zheng Y, Hao J, Zhao X, Liu Y, Shi L. Tumor focused supply of siRNA by a nano-scale quaternary polyplex for most cancers remedy. Chem Eng J. 2021;425:130590. https://doi.org/10.1016/j.cej.2021.130590.

    Article 
    CAS 

    Google Scholar
     

  • Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, Sheyn D, Ben-David S, Tawackoli W, Pelled G, Ferrara KW, Gazit D. Multiparameter analysis of in vivo gene supply utilizing ultrasound-guided, microbubble-enhanced sonoporation. J Management Launch. 2016;223:157–64. https://doi.org/10.1016/j.jconrel.2015.12.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Li Y, Jin S, Xu J, Wang PC, Liang XJ, Zhang X. Engineered biomaterials for growth of nucleic acid vaccines. Biomater Res. 2015;19:5. https://doi.org/10.1186/s40824-014-0025-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene remedy medical trials worldwide to 2017: an replace. J Gene Med. 2018;20(5):e3015. https://doi.org/10.1002/jgm.3015.

    Article 
    PubMed 

    Google Scholar
     

  • Finer M, Glorioso J. A quick account of viral vectors and their promise for gene remedy. Gene Ther. 2017;24(1):1–2. https://doi.org/10.1038/gt.2016.71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung YK, Kim SW. Latest advances within the growth of gene supply methods. Biomater Res. 2019;23:8. https://doi.org/10.1186/s40824-019-0156-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for Gene Remedy: translational and medical Outlook. Annu Rev Biomed Eng. 2015;17:63–89. https://doi.org/10.1146/annurev-bioeng-071813-104938.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Chen H, Zheng D, Zhang H, Deng L, Cui W, Zhang Y, Santos HA, Shen H. Gene-Hydrogel Microenvironment regulates Extracellular Matrix Metabolism Steadiness in Nucleus Pulposus. Adv Sci (Weinh). 2020;7(1):1902099. https://doi.org/10.1002/advs.201902099.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malloggi C, Pezzoli D, Magagnin L, De Nardo L, Mantovani D, Tallarita E, Candiani G. Comparative analysis and optimization of off-the-shelf cationic polymers for gene supply functions. Polym Chem. 2015;6(35):6325–39. https://doi.org/10.1039/c5py00915d.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Wang H, Zhao P, Chen Z, Lin Q. Hyperbranched-star PEI-g-PEG as a nonviral vector with environment friendly uptake and hypotoxicity for retinoblastoma gene remedy utility. Colloid Interface Sci Commun. 2022;50:100647. https://doi.org/10.1016/j.colcom.2022.100647.

    Article 
    CAS 

    Google Scholar
     

  • Smith N, Bade AN, Soni D, Gautam N, Alnouti Y, Herskovitz J, Ibrahim IM, Wojtkiewicz MS, Dyavar Shetty BL, McMillan J, Gendelman HE, Edagwa B. An extended performing nanoformulated lamivudine ProTide. Biomaterials. 2019;223:119476. https://doi.org/10.1016/j.biomaterials.2019.119476.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam HY, McGinn A, Kim PH, Kim SW, Bull DA. Main cardiomyocyte-targeted bioreducible polymer for environment friendly gene supply to the myocardium. Biomaterials. 2010;31(31):8081–7. https://doi.org/10.1016/j.biomaterials.2010.07.025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu T, Zhang C, Yan H, Luo Y, Kong R, Wen P, Ye Z, Chen J, Feng J, Liu F, Wu JY, Yan X. CD146 acts as a novel receptor for netrin-1 in selling angiogenesis and vascular growth. Cell Res. 2015;25(3):275–87. https://doi.org/10.1038/cr.2015.15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Qiu T, Wu J, Yang Y, Wright GD, Wu M, Ge R. Extracellular anti-angiogenic proteins increase an endosomal protein trafficking pathway to achieve mitochondria and execute apoptosis in HUVECs. Cell Demise Differ. 2018;25(11):1905–20. https://doi.org/10.1038/s41418-018-0092-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho JH, Kim MJ, Kim KJ, Kim JR. POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) inhibits endothelial cell senescence by a p53 dependent pathway. Cell Demise Differ. 2012;19(4):703–12. https://doi.org/10.1038/cdd.2011.142.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Zhu X, Jia X, Hou W, Zhou G, Ma Z, Yu B, Pi Y, Zhang X, Wang J, Wang G. Phosphorylation of Msx1 promotes cell proliferation by the Fgf9/18-MAPK signaling pathway throughout embryonic limb growth. Nucleic Acids Res. 2020;48(20):11452–67. https://doi.org/10.1093/nar/gkaa905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu S, Huang H, Liu D, Wen S, Shen L, Lin Q. Augmented mobile uptake and homologous concentrating on of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety enchancment. Bioact Mater. 2022;15:469–81. https://doi.org/10.1016/j.bioactmat.2022.02.019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O’Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid a impairs the antiinflammatory properties of HDL. J Clin Make investments. 2016;126(1). https://doi.org/10.1172/JCI83475. 266 – 81.

  • Wang Y, Newman MR, Ackun-Farmmer M, Baranello MP, Sheu TJ, Puzas JE, Benoit DSW. Fracture-targeted supply of beta-catenin agonists by way of peptide-functionalized nanoparticles augments Fracture Therapeutic. ACS Nano. 2017;11(9):9445–58. https://doi.org/10.1021/acsnano.7b05103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, He M, Nie C, He M, Pan Q, Liu C, Hu Y, Chen T, Chu X. Biomineralized metal-organic framework nanoparticles allow a primer alternate reaction-based DNA machine to work in residing cells for imaging and gene remedy. Chem Sci. 2020;11(27):7092–101. https://doi.org/10.1039/d0sc00339e.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu XL, Singh HP, Wang L, Qi DL, Poulos BK, Abramson DH, Jhanwar SC, Cobrinik D. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature. 2014;514(7522):385–8. https://doi.org/10.1038/nature13813.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorne CA, Chen IW, Sanman LE, Cobb MH, Wu LF, Altschuler SJ. Enteroid Monolayers reveal an Autonomous WNT and BMP Circuit Controlling Intestinal Epithelial Development and Group. Dev Cell. 2018;44(5):624–e6334. https://doi.org/10.1016/j.devcel.2018.01.024.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and remedy. Nanomed (Lond). 2011;6(4):715–28. https://doi.org/10.2217/nnm.11.19.

    Article 
    CAS 

    Google Scholar
     

  • Merkel OM. Can pulmonary RNA supply enhance our pandemic preparedness? J Managed Launch. 2022;345:549–56. https://doi.org/10.1016/j.jconrel.2022.03.039.

    Article 
    CAS 

    Google Scholar
     

  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle supply of most cancers medication. Annu Rev Med. 2012;63. https://doi.org/10.1146/annurev-med-040210-162544. 185 – 98.

  • Hakeem A, Zahid F, Zhan G, Yi P, Yang H, Gan L, Yang X. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin launch. Int J Nanomed Quantity. 2018;13:1029–40. https://doi.org/10.2147/ijn.S146955.

    Article 
    CAS 

    Google Scholar
     

  • Fan B, Kang L, Chen L, Solar P, Jin M, Wang Q, Bae YH, Huang W, Gao Z. S Theranostics. 2017;7(2):357–76. https://doi.org/10.7150/thno.16855.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, Wang J, Cheng D, Shuai X. Synergistic MicroRNA remedy in liver fibrotic rat utilizing MRI-Seen nanocarrier concentrating on hepatic stellate cells. Adv Sci. 2019;6(5). https://doi.org/10.1002/advs.201801809.

  • Natarajan S, Foreman KM, Soriano MI, Rossen NS, Shehade H, Fregoso DR, Eggold JT, Krishnan V, Dorigo O, Krieg AJ, Heilshorn SC, Sinha S, Fuh KC, Rankin EB. Collagen Reworking within the hypoxic tumor-mesothelial area of interest promotes ovarian Most cancers Metastasis. Most cancers Res. 2019;79(9):2271–84. https://doi.org/10.1158/0008-5472.Can-18-2616.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su M, Xu X, Wei W, Gao S, Wang X, Chen C, Zhang Y. Involvement of human chorionic gonadotropin in regulating vasculogenic mimicry and hypoxia-inducible factor-1α expression in ovarian most cancers cells. Most cancers Cell Int. 2016;16(1). https://doi.org/10.1186/s12935-016-0327-0.

  • Chen G, Nakamura I, Dhanasekaran R, Iguchi E, Tolosa EJ, Romecin PA, Vera RE, Almada LL, Miamen AG, Chaiteerakij R, Zhou M, Asiedu MK, Moser CD, Han S, Hu C, Banini BA, Oseini AM, Chen Y, Fang Y, Yang D, Shaleh HM, Wang S, Wu D, Tune T, Lee J-S, Thorgeirsson SS, Chevet E, Shah VH, Fernandez-Zapico ME, Roberts LR. Transcriptional Induction of Periostin by a sulfatase 2–TGFβ1–SMAD signaling Axis mediates Tumor Angiogenesis in Hepatocellular Carcinoma. Most cancers Res. 2017;77(3):632–45. https://doi.org/10.1158/0008-5472.Can-15-2556.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo D, Wang Y, Zhang M, Li H, Zhao D, Li H, Chen X, Jin C, Han B. SOCS5 knockdown suppresses metastasis of hepatocellular carcinoma by ameliorating HIF-1alpha-dependent mitochondrial harm. Cell Demise Dis. 2022;13(11):918. https://doi.org/10.1038/s41419-022-05361-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na T-Y, Schecterson L, Mendonsa AM, Gumbiner BM. The practical exercise of E-cadherin controls tumor cell metastasis at a number of steps. Proc Natl Acad Sci. 2020;117(11):5931–7. https://doi.org/10.1073/pnas.1918167117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles