6.7 C
United States of America
Sunday, March 9, 2025

Overcoming ice: cutting-edge supplies and superior methods for efficient cryopreservation of biosample | Journal of Nanobiotechnology


  • Zuchowicz N, Liu Y, Monroe WT, Tiersch TR. An automatic modular open-technology system to measure and regulate focus of aquatic sperm samples for cryopreservation. SLAS Technol. 2023;28:43–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han Z, Sharma A, Gao Z, Carlson TW, O’Sullivan MG, Finger EB, et al. Diffusion restricted cryopreservation of tissue with radiofrequency heated steel varieties. Adv Healthc Mater. 2020;9:2000796.

    Article 
    CAS 

    Google Scholar
     

  • Onofre J, Baert Y, Faes Ok, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Replace. 2016;22:744–61.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar Y, Li Y, Zong Y, Mehaisen GMK, Chen J. Poultry genetic heritage cryopreservation and reconstruction: development and future challenges. J Anim Sci Biotechnol. 2022;13:115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu D-Y, Track W-H, Pang W-Ok, Yoon S-J, Rahman MS. Pang M-G. Freezability biomarkers in bull epididymal spermatozoa. Sci Rep. 2019;9:12797.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yánez-Ortiz I, Catalán J, Rodríguez-Gil JE, Miró J, Yeste M. Advances in sperm cryopreservation in cattle: cattle, horse, pig and sheep. Anim Reprod Sci. 2022;246:106904.

    Article 
    PubMed 

    Google Scholar
     

  • López A, Ducolomb Y, Casas E, Retana-Márquez S, Betancourt M, Casillas F. Results of Porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity throughout early embryo growth in vitro. Entrance Cell Dev Biol. 2021;9:636765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopeika J, Thornhill A, Khalaf Y. The impact of cryopreservation on the genome of gametes and embryos: ideas of cryobiology and important appraisal of the proof. Hum Reprod Replace. 2015;21:209–27.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Murray KA, Gibson MI. Chemical approaches to cryopreservation. Nat Rev Chem. 2022;6:579–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Z, Zheng X, Wang J. Bioinspired Ice-Binding supplies for tissue and organ cryopreservation. J Am Chem Soc. 2022;144:5685–701.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Argyle CE, Harper JC, Davies MC. Oocyte cryopreservation: the place are we now? Hum Reprod Replace. 2016;22:440–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Truong TT, Gardner DK. Antioxidants improve blastocyst cryosurvival and viability post-vitrification. Hum Reprod. 2020;35:12–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arav A. Cryopreservation by directional freezing and vitrification specializing in massive tissues and organs. Cells. 2022;11:1072.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dou M, Lu C, Rao W. Bioinspired supplies and know-how for superior cryopreservation. Traits Biotechnol. 2022;40:93–106.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Petersen A, Schneider H, Rau G, Glasmacher B. A brand new method for freezing of aqueous options beneath lively management of the nucleation temperature. Cryobiology. 2006;53:248–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate crimson blood cell Lysis throughout freezing, transient warming and thawing. Sci Rep. 2016;6:23619.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Casillas F, Ducolomb Y, López A, Betancourt M. Impact of Porcine immature oocyte vitrification on oocyte-cumulus cell hole junctional intercellular communication. Porc Well being Manag. 2020;6:37.

    Article 

    Google Scholar
     

  • Trapphoff T, Dieterle S. Cryopreservation of ovarian and testicular tissue and the affect on epigenetic sample. IJMS. 2023;24:11061.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mark C, Czerwinski T, Roessner S, Mainka A, Hörsch F, Heublein L, et al. Cryopreservation impairs 3-D migration and cytotoxicity of pure killer cells. Nat Commun. 2020;11:5224.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Len JS, Koh WSD, Tan S-X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39:BSR20191601.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu X, Xu Y, Liu F, Pan Y, Miao L, Zhu Q, et al. The feasibility of antioxidants avoiding oxidative damages from reactive oxygen species in cryopreservation. Entrance Chem. 2021;9:648684.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee E, Baiz CR. How cryoprotectants work: hydrogen-bonding in low-temperature vitrified options. Chem Sci. 2022;13:9980–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng C-Y. DMSO induces dehydration close to lipid membrane surfaces. Biophys J. 2015;109:330–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim Ok, Lee S-E. Mixed toxicity of dimethyl sulfoxide (DMSO) and vanadium in the direction of zebrafish embryos (Danio rerio): Sudden synergistic impact by DMSO. Chemosphere. 2021;270:129405.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lemieux JM, Wu G, Morgan JA, Kacena MA. DMSO regulates osteoclast growth in vitro. Vitro CellDevBiol-Animal. 2011;47:260–7.

    Article 
    CAS 

    Google Scholar
     

  • Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S et al. DMSO induces drastic modifications in human mobile processes and epigenetic panorama in vitro. Sci Rep. 2019;9.

  • Valeria P, Cristian DSF, Fiammetta P. B. Impact of Media with Completely different Glycerol Concentrations on Sheep Purple Blood Cells’ Viability In Vitro. Animals [Internet]. 2021;11. Out there from: https://kns.cnki.internet/kcms2/article/summary?v=PAev8JwjQit9zKjQLAnKmu1JeMq75O-zClIw529gnHamaTmW2jBlmB_LgLr2TKYhX5OHhAyI4YAV1U5b8EvvIA48pNNyfLIZtL0aDxskuJ1iLVWFNWP-ClPIyzIiH7tiiQxJdh-S90imBoAxOeuCFg==%26;uniplatform=NZKPTpercent26;language=gb

  • Zou CG, Agar NS, Jones GL. Haemolysis of human and sheep crimson blood cells in glycerol media: the impact of pH and the function of band 3. Comp Biochem Physiol Mol Integr Physiol. 2000;127:347–53.

    Article 
    CAS 

    Google Scholar
     

  • Finest BP. Cryoprotectant toxicity: details, points, and questions. Rejuven Res. 2015;18:422–36.

    Article 

    Google Scholar
     

  • Peter Mazur. Cryobiology: the freezing of organic techniques. Science. 1970;168:939–49.

    Article 

    Google Scholar
     

  • Chen F, Zhang W, Wu W, Jin Y, Cen L, Kretlow JD, et al. Cryopreservation of tissue-engineered epithelial sheets in Trehalose. Biomaterials. 2011;32:8426–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang S, Wang T, Wen D, Hou J, Li H. Protecting impact of Rhodiola rosea polysaccharides on cryopreserved Boar sperm. Carbohydr Polym. 2016;135:44–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guerreiro BM, Freitas F, Lima JC, Silva JC, Dionísio M, Reis MAM. Demonstration of the cryoprotective properties of the fucose-containing polysaccharide FucoPol. Carbohydr Polym. 2020;245:116500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Patel M, Park JK, Jeong B. Rediscovery of poly(ethylene glycol)s as a cryoprotectant for mesenchymal stem cells. Biomater Res. 2023;27:17.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deller RC, Vatish M, Mitchell DA, Gibson MI. Artificial polymers allow non-vitreous mobile cryopreservation by decreasing ice crystal progress throughout thawing. Nat Commun. 2014;5:3244.

    Article 
    PubMed 

    Google Scholar
     

  • Diaz-Dussan D, Peng Y-Y, Sengupta J, Zabludowski R, Adam MK, Acker JP, et al. Trehalose-Based mostly polyethers for cryopreservation and Three-Dimensional cell scaffolds. Biomacromolecules. 2020;21:1264–73.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chopra P, Nayak D, Nanda A, Ashe S, Rauta PR, Nayak B. Fabrication of poly(vinyl alcohol)-Carrageenan scaffolds for cryopreservation: impact of composition on cell viability. Carbohydr Polym. 2016;147:509–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jaskiewicz JJ, Sandlin RD, Swei AA, Widmer G, Toner M, Tzipori S. Cryopreservation of infectious Cryptosporidium parvum oocysts. Nat Commun. 2018;9:2883.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanic M, Ward Ok, Tawfik H, Seemann R, Baulin V, Guo Y, et al. Apatite nanoparticles strongly enhance crimson blood cell cryopreservation by mediating Trehalose supply by way of enhanced membrane permeation. Biomaterials. 2017;140:138–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yao X, Jovevski JJ, Todd MF, Xu R, Li Y, Wang J, et al. Nanoparticle-Mediated intracellular safety of pure killer cells avoids cryoinjury and retains potent antitumor capabilities. Adv Sci. 2020;7:1902938.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Wang H, Stewart S, Jiang B, Ou W, Zhao G, et al. Chilly-Responsive nanoparticle allows intracellular supply and speedy launch of Trehalose for Natural-Solvent-Free cryopreservation. Nano Lett. 2019;19:9051–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yeh Y, Feeney RE. Antifreeze proteins: buildings and mechanisms of perform. Chem Rev. 1996;96:601–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Ok, Wang C, Ma J, Shi G, Yao X, Fang H, et al. Janus impact of antifreeze proteins on ice nucleation. Proc Natl Acad Sci USA. 2016;113:14739–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Farag H, Peters B. Engulfment avalanches and thermal hysteresis for antifreeze proteins on supercooled ice. J Phys Chem B. 2023;127:5422–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Davies PL. Ice-binding proteins: a outstanding variety of buildings for stopping and beginning ice progress. Trands Biochem Sci. 2014;39:548–55.

    Article 
    CAS 

    Google Scholar
     

  • Qin Q, Zhao L, Liu Z, Liu T, Qu J, Zhang X, et al. Bioinspired L -Proline oligomers for the cryopreservation of oocytes by way of controlling ice progress. ACS Appl Mater Interfaces. 2020;12:18352–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • El Assal R, Abou-Elkacem L, Tocchio A, Pasley S, Matosevic S, Kaplan DL, et al. Bioinspired preservation of pure killer cells for Most cancers immunotherapy. Adv Sci. 2019;6:1802045.

    Article 

    Google Scholar
     

  • Han W, Zhong L, Zhang J, Li Y, Li N, Wang Z, et al. Profiling the morphology results of MoS 2 nanomaterials on ice suppression and speedy rewarming for cryopreservation. ACS Appl Nano Mater. 2024;7:12783–94.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Zhang J, Li Y, Liu B, Yu J, Li N, et al. Probing the scale impact of graphene oxide nanosheets on ice crystal regulation and Laser-Assisted speedy rewarming. ACS Appl Mater Interfaces. 2024;16:33149–58.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao Y, Chang T, Fang C, Zhang Y, Liu H, Zhao G. Inhibition Impact of Ti3C2Tx MXene on Ice Crystals Mixed with Laser-Mediated Heating Facilitates Excessive-Efficiency Cryopreservation. ACS Nano. 2022;16:8837–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao Y, Hassan M, Cheng Y, Chen Z, Wang M, Zhang X, et al. Multifunctional Picture- and magnetoresponsive graphene Oxide–Fe 3 O 4 Nanocomposite–Alginate hydrogel platform for ice recrystallization Inhibition. ACS Appl Mater Interfaces. 2019;11:12379–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng Y, Yu Y, Zhang Y, Zhao G, Zhao Y. Chilly-Responsive nanocapsules allow the Sole‐Cryoprotectant‐Trehalose cryopreservation of Β Cell–Laden hydrogels for diabetes remedy. Small. 2019;15:1904290.

    Article 
    CAS 

    Google Scholar
     

  • Geng H, Liu X, Shi G, Bai G, Ma J, Chen J, et al. Graphene oxide restricts progress and recrystallization of ice crystals. Angew Chem Int Ed. 2017;56:997–1001.

    Article 
    CAS 

    Google Scholar
     

  • Zhu W, Guo J, Agola JO, Croissant JG, Wang Z, Shang J, et al. Steel–Natural framework Nanoparticle-Assisted cryopreservation of crimson blood cells. J Am Chem Soc. 2019;141:7789–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chang T, Moses OA, Tian C, Wang H, Track L, Zhao G. Synergistic ice Inhibition impact enhances speedy freezing cryopreservation with low focus of cryoprotectants. Adv Sci. 2021;8:2003387.

    Article 
    CAS 

    Google Scholar
     

  • Georgiou PG, Marton HL, Baker AN, Congdon TR, Whale TF, Gibson MI. Polymer Self-Meeting induced enhancement of ice recrystallization Inhibition. J Am Chem Soc. 2021;143:7449–61.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee C, Lee Y, Jung WH, Kim T-Y, Kim T, Kim D-N, et al. Peptide-DNA Origami as a cryoprotectant for cell preservation. Sci Adv. 2022;8:eadd0185.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hou Y, Solar X, Dou M, Lu C, Liu J, Rao W. Cellulose nanocrystals facilitate Needle-like ice crystal progress and modulate molecular focused ice crystal nucleation. Nano Lett. 2021;21:4868–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang B, Li W, Stewart S, Ou W, Liu B, Comizzoli P, et al. Sand-mediated ice seeding allows serum-free low-cryoprotectant cryopreservation of human induced pluripotent stem cells. Bioactive Mater. 2021;6:4377–88.

    Article 
    CAS 

    Google Scholar
     

  • Hou LX, Ju H, Hao XP, Zhang H, Zhang L, He Z, et al. Intrinsic Anti-Freezing and distinctive phosphorescence of glassy hydrogels with ultrahigh stiffness and toughness at low temperatures. Adv Mater. 2023;35:2300244.

    Article 
    CAS 

    Google Scholar
     

  • Wu S, Liu Z, Gong C, Li W, Xu S, Wen R, et al. Spider-silk-inspired sturdy and hard hydrogel fibers with anti-freezing and water retention properties. Nat Commun. 2024;15:4441.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang X, Ma X, Hou T, Guo Ok, Yin J, Wang Z, et al. Inorganic salts induce thermally reversible and Anti-Freezing cellulose hydrogels. Angew Chem Int Ed. 2019;58:7366–70.

    Article 
    CAS 

    Google Scholar
     

  • Yukun Jian S, Handschuh-Wang J, Zhang W, Lu X, Zhou T, Chen. Biomimetic anti-freezing polymeric hydrogels: conserving soft-wet supplies lively in chilly environments. Mater Horiz. 2021;8:351–69.

  • Niki E. Lipid oxidation that’s, and isn’t, inhibited by vitamin E: consideration about physiological capabilities of vitamin E. Free Radic Biol Med. 2021;176:1–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo S, Yang J, Qin J, Qazi IH, Pan B, Zang S, et al. Melatonin promotes in vitro maturation of Vitrified-Warmed mouse germinal vesicle oocytes, doubtlessly by decreasing oxidative stress by means of the Nrf2 pathway. Animals. 2021;11:2324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hai E, Li B, Zhang J, Zhang J. Sperm freezing harm: the function of regulated cell loss of life. Cell Demise Discov. 2024;10:239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du T, Su H, Cao D, Meng Q, Zhang M, Liu Z, et al. Mitochondria-targeted antioxidant mitoquinone mitigates vitrification-induced harm in mouse ovarian tissue by sustaining mitochondrial homeostasis by way of the p38 MAPK pathway. Eur J Med Res. 2024;29:593.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu Z, Li R, Fan X, Lv Y, Zheng Y, Hoque SAM, et al. Resveratrol improves Boar sperm high quality by way of 5 ′ AMP-Activated protein kinase activation throughout cryopreservation. Oxidative Med Cell Longev. 2019;2019:1–15.

    Article 

    Google Scholar
     

  • Berjis A, Muthumani D, Aguilar OA, Pomp O, Johnson O, Finck AV, et al. Pretreatment with IL-15 and IL-18 rescues pure killer cells from granzyme B-mediated apoptosis after cryopreservation. Nat Commun. 2024;15:3937.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar TC, Liu XC, Yang SH, Track LL, Zhou SJ, Deng SL, et al. Melatonin inhibits oxidative stress and apoptosis in cryopreserved ovarian tissues by way of Nrf2/HO-1 signaling pathway. Entrance Mol Biosci. 2020;7:163.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li X, Wang L, Liu H, Fu J, Zhen L, Li Y, et al. C60 fullerenes suppress reactive oxygen species toxicity harm in Boar sperm. Nano-Micro Lett. 2019;11:104.

    Article 

    Google Scholar
     

  • Zhang X, Chen L, Liu W, Shen J, Solar H, Liang J, et al. 5-Aminolevulinate improves metabolic restoration and cell survival of the liver following chilly preservation. Theranostics. 2022;12:2908–27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kim JH, Choi JI, Che YH, Sung SH, Lee H, Lee S, et al. Enhancing viability of human embryonic stem cells throughout cryopreservation by way of RGD-REP-Mediated activation of FAK/AKT/FoxO3a signaling pathway. Tissue Eng Regen Med. 2023;20:1133–43.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat Rev Mol Cell Biol. 2020;21:363–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu Z, Li R, Lv Y, Zeng W. Melatonin protects rabbit spermatozoa from cryo-damage by way of lowering oxidative stress. Cryobiology. 2019;88:1–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Appiah MO, He B, Lu W, Wang J. Antioxidative impact of melatonin on cryopreserved hen semen. Cryobiology. 2019;89:90–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deng S-L, Solar T-C, Yu Ok, Wang Z-P, Zhang B-L, Zhang Y, et al. Melatonin reduces oxidative harm and upregulates warmth shock protein 90 expression in cryopreserved human semen. Free Radic Biol Med. 2017;113:347–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee AR, Hong Ok, Choi SH, Park C, Park JK, Lee JI, et al. Anti-apoptotic regulation contributes to the profitable nuclear reprogramming utilizing cryopreserved oocytes. Stem Cell Rep. 2019;12:545–56.

    Article 
    CAS 

    Google Scholar
     

  • Gangwar C, Kharche SD, Ranjan R, Kumar S, Goel AK, Jindal SK, et al. Impact of vitamin C supplementation on freezability of barbari Buck semen. Small Ruminant Res. 2015;129:104–7.

    Article 

    Google Scholar
     

  • Yue D, Yan L, Luo H, Xu X, Jin X. Impact of vitamin E supplementation on semen high quality and the testicular cell membranal and mitochondrial antioxidant skills in Aohan fine-wool sheep. Anim Reprod Sci. 2010;118:217–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Figueroa E, Farias JG, Lee-Estevez M, Valdebenito I, Risopatrón J, Magnotti C, et al. Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media improve sperm perform and fertility fee in Atlantic salmon (Salmo salar). Aquaculture. 2018;493:1–8.

    Article 
    CAS 

    Google Scholar
     

  • Brito DC, Brito AB, Scalercio SRRA, Percário S, Miranda MS, Rocha RM, et al. Vitamin E-analog trolox prevents Endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella). Cell Tissue Res. 2014;355:471–80.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grey JE, Starmer J, Lin VS, Dickinson BC, Magnuson T. Mitochondrial Hydrogen Peroxide and Faulty Ldl cholesterol Efflux Stop In Vitro Fertilization by Cryopreserved Inbred Mouse Sperm1. Biology of Replica [Internet]. 2013 [cited 2025 Jan 27];89. Out there from: https://tutorial.oup.com/biolreprod/article-lookup/doi/https://doi.org/10.1095/biolreprod.113.109157

  • Banihani S, Agarwal A, Sharma R, Bayachou M. Cryoprotective impact of L -carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia. 2014;46:637–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu H, Jia C, Cheng W, Zhang T, Tao R, Ma Y, et al. The impact of L-Carnitine additive throughout In vitro maturation on the vitrification of pig oocytes. Cell Reprogramming. 2020;22:198–207.

    Article 
    CAS 

    Google Scholar
     

  • Truong TT, Gardner DK. Antioxidants improve blastocyst cryosurvival and viability post-vitrification.

  • Zhang L, Xue X, Yan J, Yan L-Y, Jin X-H, Zhu X-H, et al. L-proline: a extremely efficient cryoprotectant for mouse oocyte vitrification. Sci Rep. 2016;6:26326.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng Y, Liu X, Jian X, Zhang Y, Hou Y, Hou S, et al. A novel cryopreservation resolution for adipose tissue based mostly on Metformin. Stem Cell Res Ther. 2025;16:20.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Giaretta E, Spinaci M, Bucci D, Tamanini C, Galeati G. Results of Resveratrol on vitrified Porcine oocytes. Oxidative Med Cell Longev. 2013;2013:1–7.

    Article 

    Google Scholar
     

  • Davoodian N, Kadivar A, Ahmadi E, Nazari H, Mehrban H. Quercetin impact on the effectivity of ovine oocyte vitrification at GV stage. Theriogenology. 2021;174:53–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiang D-C, Jia B-Y, Fu X-W, Guo J-X, Hong Q-H, Quan G-B, et al. Function of Astaxanthin as an environment friendly antioxidant on the in vitro maturation and vitrification of Porcine oocytes. Theriogenology. 2021;167:13–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chavas C, Sapanidou VG, Feidantsis Ok, Lavrentiadou SN, Mavrogianni D, Zarogoulidou I, et al. Therapy with pterostilbene ameliorates the antioxidant standing of bovine spermatozoa and modulates cell loss of life pathways. Antioxidants. 2024;13:1437.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li Z, Lin Q, Liu R, Xiao W, Liu W. Protecting results of ascorbate and catalase on human spermatozoa throughout cryopreservation. J Androl. 2010;31:437–44.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruiz-Conca M, Vendrell M, Sabés‐Alsina M, Mogas T, Lopez‐Bejar M. Coenzyme Q10 supplementation throughout in vitro maturation of bovine oocytes (Bos taurus) helps to protect oocyte integrity after vitrification. Reprod Domest Anim. 2017;52:52–4.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumar P, Wang M, Isachenko E, Rahimi G, Mallmann P, Wang W, et al. Unraveling subcellular and ultrastructural modifications throughout vitrification of human spermatozoa: impact of a Mitochondria-Focused antioxidant and a permeable cryoprotectant. Entrance Cell Dev Biol. 2021;9:672862.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Zhang Y, Bai H, Liu J, Li J, Wu B. Mitochondria-targeted antioxidant MitoTEMPO improves the post-thaw sperm high quality. Cryobiology. 2018;80:26–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang J, Cai N, Zhai H, Zhang J, Zhu Y, Zhang L. Pure zwitterionic betaine allows cells to outlive ultrarapid cryopreservation. Sci Rep. 2016;6:37458.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kuroda Ok. A easy overview of toxicity of ionic liquids and designs of biocompatible ionic liquids. New J Chem. 2022;46:20047–52.

    Article 
    CAS 

    Google Scholar
     

  • Kato Y, Uto T, Tanaka D, Ishibashi Ok, Kobayashi A, Hazawa M, et al. Artificial zwitterions as environment friendly non-permeable cryoprotectants. Commun Chem. 2021;4:151.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng X, Zhang C, Cao H, Zhou X, Liu Z, Wang J. Zinc cations uniquely stabilize cell membrane for cell cryopreservation. Nano Lett. 2023;23:9920–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rajan R, Hayashi F, Nagashima T, Matsumura Ok. Towards a molecular Understanding of the mechanism of cryopreservation by polyampholytes: cell membrane interactions and hydrophobicity. Biomacromolecules. 2016;17:1882–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ishizaki T, Takeuchi Y, Ishibashi Ok, Gotoh N, Hirata E, Kuroda Ok. Cryopreservation of tissues by slow-freezing utilizing an rising zwitterionic cryoprotectant. Sci Rep. 2023;13:37.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bryant SJ, Brown SJ, Martin AV, Arunkumar R, Raju R, Elbourne A, et al. Cryopreservation of mammalian cells utilizing protic ionic liquid options. J Colloid Interface Sci. 2021;603:491–500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kuroda Ok, Komori T, Ishibashi Ok, Uto T, Kobayashi I, Kadokawa R, et al. Non-aqueous, zwitterionic solvent in its place for dimethyl sulfoxide within the life sciences. Commun Chem. 2020;3:163.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sharma A, Rao JS, Han Z, Gangwar L, Namsrai B, Gao Z, et al. Vitrification and nanowarming of kidneys. Adv Sci. 2021;8:2101691.

    Article 
    CAS 

    Google Scholar
     

  • Chiu-Lam A, Staples E, Pepine CJ, Rinaldi C. Perfusion, cryopreservation, and nanowarming of entire hearts utilizing colloidally secure magnetic cryopreservation agent options. Sci Adv. 2021;7:eabe3005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Ring HL, Sharma A, Namsrai B, Tran N, Finger EB, et al. Preparation of scalable Silica-Coated Iron oxide nanoparticles for nanowarming. Adv Sci. 2020;7:1901624.

    Article 
    CAS 

    Google Scholar
     

  • Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, et al. Improved tissue cryopreservation utilizing inductive heating of magnetic nanoparticles. Sci Transl Med. 2017;9:eaah4586.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Z, Rao JS, Gangwar L, Namsrai B-E, Pasek-Allen JL, Etheridge ML, et al. Vitrification and nanowarming allow long-term organ cryopreservation and life-sustaining kidney transplantation in a rat mannequin. Nat Commun. 2023;14:3407.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tian C, Shen L, Gong C, Cao Y, Shi Q, Zhao G. Microencapsulation and nanowarming allows vitrification cryopreservation of mouse preantral follicles. Nat Commun. 2022;13:7515.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li B, Zhang L, Yin Y, Chen A, Lou J, Mooney DJ et al. Stiff hydrogel encapsulation retains mesenchymal stem cell stemness for regenerative medication. Matter. 2024.

  • Yao J, Shen L, Chen Z, Zhang B, Zhao G. Hydrogel microencapsulation enhances cryopreservation of crimson blood cells with Trehalose. ACS Biomater Sci Eng. 2022;8:2066–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmad HF, Sambanis A. Cryopreservation results on Recombinant myoblasts encapsulated in adhesive alginate hydrogels. Acta Biomater. 2013;9:6814–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • El Assal R, Guven S, Gurkan UA, Gozen I, Shafiee H, Dalbeyler S, et al. Bio-Impressed Cryo‐Ink preserves crimson blood cell phenotype and performance throughout nanoliter vitrification. Adv Mater. 2014;26:5815–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurruchaga H, Saenz Del Burgo L, Hernandez RM, Orive G, Selden C, Fuller B, et al. Advances within the sluggish freezing cryopreservation of microencapsulated cells. J Managed Launch. 2018;281:119–38.

    Article 
    CAS 

    Google Scholar
     

  • Akiyama Y, Shinose M, Watanabe H, Yamada S, Kanda Y. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc Natl Acad Sci USA. 2019;116:7738–43.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gryshkov O, Mutsenko V, Tarusin D, Khayyat D, Naujok O, Riabchenko E, et al. Coaxial alginate hydrogels: from Self-Assembled 3D mobile constructs to Lengthy-Time period storage. IJMS. 2021;22:3096.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhan L, Guo S, Kangas J, Shao Q, Shiao M, Khosla Ok, et al. Conduction cooling and plasmonic heating dramatically improve droplet vitrification volumes for cell cryopreservation. Adv Sci. 2021;8:2004605.

    Article 
    CAS 

    Google Scholar
     

  • Ravanbakhsh H, Luo Z, Zhang X, Maharjan S, Mirkarimi HS, Tang G, et al. Freeform cell-laden Cryobioprinting for shelf-ready tissue fabrication and storage. Matter. 2022;5:573–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin X, Chen Z, Shen L, Liu H, Ouyang X, Zhao G. Core–Shell microfiber encapsulation allows Glycerol-Free cryopreservation of RBCs with excessive hematocrit. Nano-Micro Lett. 2024;16:3.

    Article 
    CAS 

    Google Scholar
     

  • Guo Z, Zuchowicz N, Bouwmeester J, Joshi AS, Neisch AL, Smith Ok, et al. Conduction-Dominated cryomesh for organism vitrification. Adv Sci. 2024;11:2303317.

    Article 
    CAS 

    Google Scholar
     

  • Zhan L, Li M, Hays T, Bischof J. Cryopreservation technique for Drosophila melanogaster embryos. Nat Commun. 2021;12:2412.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhan L, Rao JS, Sethia N, Slama MQ, Han Z, Tobolt D, et al. Pancreatic islet cryopreservation by vitrification achieves excessive viability, perform, restoration and medical scalability for transplantation. Nat Med. 2022;28:798–808.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhan L, Han Z, Shao Q, Etheridge ML, Hays T, Bischof JC. Speedy joule heating improves vitrification based mostly cryopreservation. Nat Commun. 2022;13:6017.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rubinsky B, Perez PA, Carlson ME. The thermodynamic ideas of isochoric cryopreservation. Cryobiology. 2005;50:121–38.

    Article 
    PubMed 

    Google Scholar
     

  • Wan Lili PPMJ, Anshal LCG, Bradley W, Clemens Mark P. Preservation of rat hearts in subfreezing temperature isochoric situations to– 8°C and 78 mpa. Biochem Biophys Res Commun. 2018;496:852–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Powell-Palm MJ, Charwat V, Charrez B, Siemons B, Healy KE, Rubinsky B. Isochoric supercooled preservation and revival of human cardiac microtissues. Commun Biol. 2021;4:1118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell-Palm MJ, Zhang Y, Aruda J, Rubinsky B. Isochoric situations allow excessive subfreezing temperature pancreatic islet preservation with out osmotic cryoprotective brokers. Cryobiology. 2019;86:130–3.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Powell-Palm MJ, Henley EM, Consiglio AN, Lager C, Chang B, Perry R, et al. Cryopreservation and revival of Hawaiian stony corals utilizing isochoric vitrification. Nat Commun. 2023;14:4859.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Y, Powell-Palm MJ, Wang J, Bilbao-Sainz C, McHugh T, Rubinsky B. Evaluation of worldwide vitality financial savings within the frozen meals business made attainable by transitioning from typical isobaric freezing to isochoric freezing. Renew Maintain Vitality Rev. 2021;151:111621.

    Article 

    Google Scholar
     

  • Bai G, Gao D, Liu Z, Zhou X, Wang J. Probing the important nucleus measurement for ice formation with graphene oxide nanosheets. Nature. 2019;576:437–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao Y, Han D, Tao Y, Feng F, Han G, Hou B et al. Leveraging macromolecular isomerism for section complexity in Janus nanograins. ACS Cent Sci. 2023.

  • Liu Z, Cao H, Fan Y, Wang Y, Wang J. Sturdy Inhibition of ice progress by biomimetic crowding coacervates. Angew Chem Int Ed. 2023;62:e202311047.

    Article 
    CAS 

    Google Scholar
     

  • Stevens CA, Bachtiger F, Kong X-D, Abriata LA, Sosso GC, Gibson MI, et al. A minimalistic Cyclic ice-binding peptide from phage show. Nat Commun. 2021;12:2675.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang P, Li J, Solar J, Li Y, Liu Ok, Wang F, et al. Bioengineered protein fibers with Anti-Freezing mechanical behaviors. Adv Funct Mater. 2022;32:2209006.

    Article 
    CAS 

    Google Scholar
     

  • Tian J, Walayat N, Ding Y, Liu J. The function of trifunctional cryoprotectants within the frozen storage of aquatic meals: latest developments and future suggestions. Comp Rev Meals Sci Meals Secure. 2022;21:321–39.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Xiao X, Siddika S, Shamsi M, Frey E, Qian W, et al. Glassy gels toughened by solvent. Nature. 2024;631:313–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu D, Cao Y, Jiang P, Wang Y, Lu Y, Ji Z, et al. Powerful, clear, and slippery PVA hydrogel led by syneresis. Small. 2023;19:2206819.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Solar S, Dong G, Lengthy F, Butcher JT. Tender, sturdy, powerful, and sturdy protein-based fiber hydrogels. Proc Natl Acad Sci USA. 2023;120:e2213030120.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He Q, Liao Y, Zhang J, Yao X, Zhou W, Hong Y et al. All-in‐One gel system for entire process of Stem‐Cell amplification and tissue engineering. Small. 2020;16.

  • Gao S, Niu Q, Wang Y, Ren L, Chong J, Zhu Ok, et al. A dynamic Membrane-Energetic glycopeptide for enhanced safety of human crimson blood cells towards Freeze‐Stress. Adv Healthc Mater. 2023;12:2202516.

    Article 
    CAS 

    Google Scholar
     

  • Özsoylu D, Isık T, Demir MM, Schöning MJ, Wagner T. Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site purposes. Biosens Bioelectron. 2021;177:112983.

    Article 
    PubMed 

    Google Scholar
     

  • Farooq U, Haider Z, Liang XM, Memon Ok, Hossain SMC, Zheng Y, et al. Floor-Acoustic‐Wave‐Based mostly Lab‐on‐Chip for speedy transport of cryoprotectants throughout cell membrane for cryopreservation with considerably improved cell viability. Small. 2019;15:1805361.

    Article 

    Google Scholar
     

  • Kim M, Lee C, Jeon Ok, Lee JY, Kim Y-J, Lee JG, et al. Harnessing a paper-folding mechanism for reconfigurable DNA Origami. Nature. 2023;619:78–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou L, Lei Q, Guo J, Gao Y, Shi J, Yu H, et al. Lengthy-term entire blood DNA preservation by cost-efficient cryosilicification. Nat Commun. 2022;13:6265.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xin Y, Kielar C, Zhu S, Sikeler C, Xu X, Möser C, et al. Cryopreservation DNA Origami Nanostruct Small. 2020;16:1905959.

  • Hanson BM, Kim JG, Suarez SI, Ackerman BK, Comito CE, Pangasnan R, et al. Embryology outcomes after oocyte vitrification with super-cooled slush nitrogen are just like outcomes with typical liquid nitrogen: a randomized managed trial. Fertil Steril. 2022;117:106–14.

    Article 
    PubMed 

    Google Scholar
     

  • Huang H, He X, Yarmush ML. Superior applied sciences for the preservation of mammalian biospecimens. Nat Biomed Eng. 2021;5:793–804.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles