-4.1 C
United States of America
Wednesday, January 22, 2025

Out-of-plane coordination of iridium single atoms with natural molecules and cobalt–iron hydroxides to spice up oxygen evolution response


  • Chu, S. & Majumdar, A. Alternatives and challenges for a sustainable vitality future. Nature 488, 294–303 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Seitz, L. C. et al. A extremely lively and secure IrOx/SrIrO3 catalyst for the oxygen evolution response. Science 353, 1011–1014 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, S. et al. Oxygen-evolving catalytic atoms on steel carbides. Nat. Mater. 20, 1240 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, Okay. et al. Dynamic active-site era of atomic iridium stabilized on nanoporous steel phosphides for water oxidation. Nat. Commun. 11, 2701 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tobias, R., Nhan, N. H., Detre, T., Robert, S. & Peter, S. Electrocatalytic oxygen evolution response in acidic environments—response mechanisms and catalysts. Adv. Vitality Mater. 7, 1601275 (2017).

    Article 

    Google Scholar
     

  • Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 skinny movie electrodes in acidic and alkaline electrolytes: a comparative examine on exercise and stability. Catal. Immediately 262, 170–180 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Z. et al. Anion insertion enhanced electrodeposition of strong steel hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9, 2373 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Ligand modulation of lively websites to advertise electrocatalytic oxygen evolution. Adv. Mater. 34, 2200270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Environment friendly oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, C. J. et al. A evaluation of modulation methods for enhancing catalytic efficiency of transition steel phosphides for oxygen evolution response. Appl. Catal. B Environ. 325, 122313 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Batool, M., Hameed, A. & Nadeem, M. A. Current developments on iron and nickel-based transition steel nitrides for general water splitting: a important evaluation. Coord. Chem. Rev. 480, 215029 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mohili, R., Hemanth, N. R., Jin, H., Lee, Okay. & Chaudhari, N. Rising excessive entropy steel sulphides and phosphides for electrochemical water splitting. J. Mater. Chem. A 11, 10463–10472 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. et al. Iridium single atoms included in Co3O4 effectively catalyze the oxygen evolution in acidic circumstances. Nat. Commun. 13, 7754 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dincă, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that features underneath benign circumstances. Proc. Natl Acad. Sci. USA 107, 10337 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, J., Buss, D. H., Harms, H.-J. & Glemser, O. The electrochemical habits of optimistic cobalt/aluminum and cobalt/iron hydroxide electrodes. J. Electrochem. Soc. 137, 173–178 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Benson, P., Briggs, G. W. D. & Wynne-Jones, W. F. Okay. The cobalt hydroxide electrode—I. Construction and section transitions of the hydroxides. Electrochim. Acta 9, 275–276 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Benson, P., Briggs, G. W. D. & Wynne-Jones, W. F. Okay. The cobalt hydroxide electrode—II. Electrochemical habits. Electrochim. Acta 9, 281–288 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Babar, P. et al. Cobalt iron hydroxide as a treasured metal-free bifunctional electrocatalyst for environment friendly general water splitting. Small 14, 1702568 (2018).

    Article 

    Google Scholar
     

  • Wu, J. et al. Establishing electrocatalysts with composition gradient distribution by solubility product concept: amorphous/crystalline CoNiFe-LDH hole nanocages. Adv. Funct. Mater. 33, 2300808 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Enkhtuvshin, E. et al. Floor reconstruction of Ni–Fe layered double hydroxide inducing chloride ion blocking supplies for excellent general seawater splitting. Adv. Funct. Mater. 33, 2214069 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Excessive-density cationic defects coupling with native alkaline-enriched setting for environment friendly and secure water oxidation. Angew. Chem. Int. Ed. 62, e2022178 (2023).


    Google Scholar
     

  • Arshad, F. et al. Microwave-assisted development of spherical core-shell NiFe LDH@CuxO nanostructures for electrocatalytic water oxidation response. Int. J. Hydrog. Vitality 48, 4719–4727 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Environment friendly electrocatalysis for oxygen evolution: W-doped NiFe nanosheets with oxygen vacancies constructed by facile electrodeposition and corrosion. Chem. Eng. J. 452, 139104 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cui, H. et al. Synergistic digital interplay between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution response. Uncommon Met. 41, 2606–2615 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. J. et al. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with excessive catalytic exercise and corrosion resistance for seawater oxidation. J. Vitality Chem. 81, 82–92 (2023).

    Article 

    Google Scholar
     

  • Li, P. et al. Boosting oxygen evolution of single-atomic ruthenium by means of digital coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, P. et al. Engineering single-atomic ruthenium catalytic websites on faulty nickel-iron layered double hydroxide for general water splitting. Nat. Commun. 12, 4587 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mu, X. et al. Breaking the symmetry of single-atom catalysts permits a particularly low vitality barrier and excessive stability for large-current-density water splitting. Vitality Environ. Sci. 15, 4048 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Pinpointing the axial ligand impact on platinum single-atom-catalyst in direction of environment friendly alkaline hydrogen evolution response. Nat. Commun. 13, 6875 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, X. et al. Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Vitality Environ. Sci. 16, 502–512 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Axial phosphate coordination in Co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, 2206107 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Sub-nanometer-scale fantastic regulation of interlayer distance in Ni-Co layered double hydroxides resulting in high-rate supercapacitors. Nano Vitality 76, 105026 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Perception into the decay mechanism of biking capacitance for layered double hydroxides at subnanometer scale. Chem. Commun. 58, 9124–9127 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Balancing loading mass and gravimetric capacitance of NiCo−layered double hydroxides to realize ultrahigh areal efficiency for versatile supercapacitors. Adv. Powder Mater. 3, 100151 (2024).

    Article 

    Google Scholar
     

  • Li, N. et al. Identification of the active-layer constructions for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass exercise. J. Am. Chem. Soc. 143, 18001–18009 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Enhancing water oxidation of Ru single atoms by way of oxygen-coordination bonding with NiFe layered double hydroxide. ACS Catal. 13, 2771–2779 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Vitality Mater. 11, 2002816 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duan, X. et al. Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH in direction of extremely environment friendly and sustained water oxidation. Chem. Eng. J. 466, 136962 (2022).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated general water splitting by intermediate modulation. Nanoscale 12, 9669–9679 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia, C. et al. Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for environment friendly oxygen evolution. Nano Res. 15, 10014–10020 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Y., Ku, J., Fu, W., Wang, L. & Chen, H. Inductive impact between atomically dispersed iridium and transition-metal hydroxide nanosheets permits extremely environment friendly oxygen evolution response. Chem. Eng. J. 395, 125149 (2020).

    Article 
    CAS 

    Google Scholar
     

  • He, Q. et al. Confining high-valence iridium single websites onto nickel oxyhydroxide for sturdy oxygen evolution. Nano Lett. 22, 3832–3839 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Selectively anchoring single atoms on particular websites of helps for improved oxygen evolution. Nat. Commun. 13, 2473 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of exercise for oxygen evolution response. J. Am. Chem. Soc. 140, 3876–3879 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J., Li, Z., Zhan, F. & Shao, M. Part engineering of cobalt hydroxide towards cation intercalation. Chem. Sci. 12, 1756–1761 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nørskov, J. Okay., Abild-Pedersen, F., Studt, F. & Thomas, B. Density practical concept in floor chemistry and catalysis. PNAS 108, 937–943 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Q. et al. Subnanometric Ru clusters with upshifted d band heart enhance efficiency for alkaline hydrogen evolution response. Nat. Commun. 13, 3958 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, H. et al. A sodium-ion-conducted uneven electrolyzer to decrease the operation voltage for direct seawater electrolysis. Nat. Commun. 14, 3934 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles