3.3 C
United States of America
Sunday, March 16, 2025

Nickel-based nanomaterials: a complete evaluation of threat evaluation, toxicity mechanisms, and future methods for well being threat prevention | Journal of Nanobiotechnology


  • Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology. 2022;69:31–48.

    Article 
    CAS 

    Google Scholar
     

  • Chen XX, Cheng B, Yang YX, Cao AN, Liu JH, Du LJ, Liu Y, Zhao Y, Wang H. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small. 2013;9(9–10):1765–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu W, Shen J, Gai Z, Hong Ok, Banerjee P, Zhou S. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug supply. Biomaterials. 2011;32(36):9876–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng-Feng D, Yang L, Tang Ok, Fang W, Zhao X, Liang Q, Liú X, Yu H, Qi W, Yan Q. Ni nanoparticles/V4C3Tx MXene heterostructures for electrocatalytic nitrogen fixation. Mater Chem Entrance. 2021;5(5):2338–46.

    Article 

    Google Scholar
     

  • Jaji ND, Lee H-L, Hussin MH, Md Akil H, Zakaria MR, Othman MBH. Superior nickel nanoparticles know-how: from synthesis to purposes. Nanotechnol Rev. 2020;9(1):1456–80.

    Article 
    CAS 

    Google Scholar
     

  • Ray A, Sultana S, Paramanik L, Parida Ok. Current advances in section, dimension, and morphology-oriented nanostructured nickel phosphide for general water splitting. J Mater Chem A. 2020;8(37):19196–245.

    Article 
    CAS 

    Google Scholar
     

  • Bencko V. Nickel: a evaluation of its occupational and environmental toxicology. J Hyg Epidemiol Microbiol Immunol. 1983;27(2):237–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: a medical evaluation of immunology, epidemiology, publicity, and therapy. Contact Derm. 2019;81(4):227–41.

    Article 

    Google Scholar
     

  • Journeay WS, Goldman RH. Occupational dealing with of nickel nanoparticles: a case report. Am J Ind Med. 2014;57(9):1073–6.

    Article 
    PubMed 

    Google Scholar
     

  • Mo Y, Zhang Y, Zhang Q. The pulmonary results of nickel-containing nanoparticles: cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. Environ Sci Nano. 2024;11(5):1817–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Extra SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Assessment and analysis of the potential well being results of oxidic nickel nanoparticles. Nanomaterials. 2021;11(3):642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Kong L. Advance on toxicity of steel nickel nanoparticles. Environ Geochem Well being. 2020;42(7):2277–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai C, Zhang Z, Guo D, Zhang Q. Toxicity analysis progress of nickel oxide nanoparticles publicity within the atmosphere. Curr Pollut Rep. 2024;10(3):498–512.

    Article 
    CAS 

    Google Scholar
     

  • Meyer JS, Lyons-Darden T, Garman ER, Middleton ET, Schlekat CE. Toxicity of nanoparticulate nickel to aquatic organisms: evaluation and suggestions for enchancment of toxicity checks. Environ Toxicol Chem. 2020;39(10):1861–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Y, Zhou C, Li X, Gao Y, Zhang J. Excessive efficiency electrocatalysis for hydrogen evolution response utilizing nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim Acta. 2017;228:428–35.

    Article 
    CAS 

    Google Scholar
     

  • Zhou L, He P, Yang T, Chen S, He Q, Dong F, Jia L, Zhang H, Jia B, He X. Nanocoral-like NiSe2 modified with CeO2: a extremely energetic and sturdy electrocatalyst for hydrogen evolution in alkaline resolution. Int J Hydrog Energ. 2020;45(53):28682–95.

    Article 
    CAS 

    Google Scholar
     

  • Yu J, Ma F-X, Du Y, Wang P-P, Xu C-Y, Zhen L. In situ development of Sn-doped Ni3S2 nanosheets on Ni foam as high-performance electrocatalyst for hydrogen evolution response. ChemElectroChem. 2017;4(3):594–600.

    Article 
    CAS 

    Google Scholar
     

  • Rathore D, Ghosh S, Chowdhury J, Pande S. Fe-doped NiCo2Se4 nanorod arrays as electrocatalysts for general electrochemical water splitting. ACS Appl Nano Mater. 2023;6(4):3095–110.

    Article 
    CAS 

    Google Scholar
     

  • Zhou S, Wang H, Jin P, Wang Z, Wang X, Du X. An efficient technique for managed fabrication and self-assembled modification of template-supported silica nanosheets on a superelastic nickel-titanium alloy fiber for extremely environment friendly solid-phase microextraction. J Chromatogr A. 2018;1569:17–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman MA, Alam MS, Miah MAJ, Rahman MM, Dupin D, Ahmad H. Nanosized nickel oxide particles and modification with poly(methyl methacrylate). Polym Adv Technol. 2012;23(8):1187–93.

    Article 
    CAS 

    Google Scholar
     

  • Safronov AP, Beketov IV, Bagazeev AV, Medvedev AI, Murzakaev AM, Terziyan TV, Zubarev AY. In situ encapsulation of nickel nanoparticles in polysaccharide shells throughout their fabrication by electrical explosion of wire. Colloid J. 2023;85(4):541–53.

    Article 
    CAS 

    Google Scholar
     

  • Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, Alexander A, Rajendra Prasad N, Enoch IVMV, Dhanaraj P. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: dysprosium-induced variation in properties, in vitro chemo-photothermal habits, and antibacterial exercise. Int J Pharm. 2023;643: 123282.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yola BB, Bekerecioğlu S, Polat İ, Atar N, Yola ML. A novel electrochemical detection methodology for butylated hydroxyanisole (BHA) as an antioxidant: a BHA imprinted polymer primarily based on a nickel ferrite@graphene nanocomposite and its software. Analyst. 2023;148(16):3827–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Ok, Li B, Ren J, Chen W, Cui J, Wei W, Qu P. Ru@Ni3S2 nanorod arrays as extremely environment friendly electrocatalysts for the alkaline hydrogen evolution response. Inorg Chem Entrance. 2022;9(15):3885–97.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Zhao J, Huang T, Solar C, Chen W, Zou H, He X, Shen J, Xiao Y. Oxygen vacancy-rich nickel oxide nanoplatforms for enhanced photothermal and chemodynamic remedy fight methicillin-resistant Staphylococcus aureus. Acta Biomater. 2024;182:275–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pradiprao Khedulkar A, Dien Dang V, Pandit B, Ai Ngoc Bui T, Linh Tran H, Doong RA. Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor software. J Colloid Interface Sci. 2022;623:845–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu S, Hummel M, Gu Z, Wang Y, Wang Ok, Pathak R, Zhou Y, Jia H, Qi X, Zhao X, et al. Extremely environment friendly urea oxidation through nesting nano-nickel oxide in eggshell membrane-derived carbon. ACS Maintain Chem Eng. 2021;9(4):1703–13.

    Article 
    CAS 

    Google Scholar
     

  • Wang B, Pan J, Jiang Z, Dong Z, Zhao C, Wang J, Tune C, Zheng Y, Li C. The bimetallic iron−nickel sulfide modified g-C3N4 nano-heterojunction and its photocatalytic hydrogen manufacturing enhancement. J Alloy Compd. 2018;766:421–8.

    Article 
    CAS 

    Google Scholar
     

  • Chang X, Tian M, Zhang Q, Gao J, Li S, Solar Y. Nano nickel oxide promotes epithelial–mesenchymal transition by means of reworking development issue β1/smads signaling pathway in A549 cells. Environ Toxicol. 2020;35(12):1308–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saquib Q, Xia P, Siddiqui MA, Zhang J, Xie Y, Faisal M, Ansari SM, Alwathnani HA, Alatar AA, Al-Khedhairy AA, et al. Excessive-throughput transcriptomics: an perception on the pathways affected in HepG2 cells uncovered to nickel oxide nanoparticles. Chemosphere. 2020;244: 125488.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guha A, Ghosh D. A toxicologic evaluation of quantum dots: latest insights and future instructions. In: Barik P, Mondal S, editors. Surroundings well being views. Singapore: Springer Nature; 2022. p. 67–90.


    Google Scholar
     

  • Horie M, Nishio Ok, Fujita Ok, Kato H, Nakamura A, Kinugasa S, Endoh S, Miyauchi A, Yamamoto Ok, Murayama H, et al. Ultrafine NiO particles induce cytotoxicity in vitro by mobile uptake and subsequent Ni(II) launch. Chem Res Toxicol. 2009;22(8):1415–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Djebbi E, Bonnet D, Pringault O, Tlili Ok, Yahia MND. Results of nickel oxide nanoparticles on survival, copy, and oxidative stress biomarkers within the marine calanoid copepod Centropages ponticus underneath short-term publicity. Environ Sci Pollut Res. 2021;28(17):21978–90.

    Article 
    CAS 

    Google Scholar
     

  • Arato I, Giovagnoli S, Di Michele A, Bellucci C, Lilli C, Aglietti MC, Bartolini D, Gambelunghe A, Muzi G, Calvitti M, et al. Nickel oxide nanoparticles publicity as a threat issue for male infertility: “in vitro” results on porcine pre-pubertal sertoli cells. Entrance Endocrinol (Lausanne). 2023;14:1063916.

    Article 
    PubMed 

    Google Scholar
     

  • Nakhjiri MZ, Asadi S, Hasan A, Babadaei MMN, Vahdani Y, Rasti B, Ale-Ebrahim M, Arsalan N, Goorabjavari SVM, Haghighat S, et al. Exploring the interplay of synthesized nickel oxide nanoparticles by means of hydrothermal methodology with hemoglobin and lymphocytes: bio-thermodynamic and mobile research. J Mol Liq. 2020;317: 113893.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Bi Y, Li Ok, Tune Z, Pan C, Zhang S, Lan X, Foulkes NS, Zhao H. Nickel oxide nanoparticles induce developmental neurotoxicity in zebrafish by triggering each apoptosis and ferroptosis. Environ Sci Nano. 2023;10(2):640–55.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, Liu H, Li S, Solar Y. A metabolomic-based examine on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res-UK. 2021;10(3):579–91.

    Article 

    Google Scholar
     

  • Ahmad J, Wahab R, Siddiqui MA, Saquib Q, Ahmad N, Al-Khedhairy AA. Strontium-doped nickel oxide nanoparticles: synthesis, characterization, and cytotoxicity examine in human lung most cancers A549 cells. Biol Hint Elem Res. 2022;200(4):1598–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong C-J, Li H, Tang S, Zhang Q. Comparative mouse lung damage by nickel nanoparticles with differential floor modification. J Nanobiotechnol. 2019;17(1):1–18.

    Article 

    Google Scholar
     

  • Mo Y, Zhang Y, Mo L, Wan R, Jiang M, Zhang Q. The position of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 manufacturing in mouse major monocytes: in vitro and in vivo research. Environ Pollut. 2020;267: 115597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poornavaishnavi C, Gowthami R, Srikanth Ok, Bramhachari PV, Venkatramaiah N. Nickel nanoparticles induces cytotoxicity, cell morphology and oxidative stress in bluegill sunfish (BF-2) cells. Appl Surf Sci. 2019;483:1174–81.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Lu W, Dong J, Wu Y, Tang M, Liang G, Kong L. Research of the mechanism of mitochondrial division and mitochondrial autophagy within the male reproductive toxicity induced by nickel nanoparticles. Nanoscale. 2022;14(5):1868–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng Q, Wan Q, Liao J, Fang D, Wang L, Xiong S, Xu P, Shen X, Li Q, Zhou Y. Nickel nanoparticles have an effect on the migration and invasion of HTR-8/SVneo cells by downregulating MMP2 by means of the PI3K/AKT pathway. Toxicol In Vitro. 2022;80: 105328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava AK, Snapper DM, Zheng J, Yildrim BS, Srivastava S, Wooden SC. Analyzing the position of nickel and NiTi nanoparticles selling irritation and angiogenesis. J Immunotoxicol. 2022;19(1):61–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You DJ, Lee HY, Taylor-Simply AJ, Linder KE, Bonner JC. Intercourse variations within the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology. 2020;14(8):1058–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Vong LB, Heger Z, Zhou Y, Liang X, Adam V, Li N. PtNi nano trilobal-based nanostructure with magnetocaloric oscillation and catalytic results for pyroptosis-triggered tumor immunotherapy. Nano In the present day. 2023;49: 101769.

    Article 
    CAS 

    Google Scholar
     

  • Tsuchida D, Matsuki Y, Tsuchida J, Iijima M, Tanaka M. Allergenicity and bioavailability of nickel nanoparticles in comparison with nickel microparticles in mice. Supplies. 2023;16(5):1834.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo Y, Zhang Y, Wan R, Jiang M, Xu Y, Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary damage and fibrosis. Nanotoxicology. 2020;14(9):1175–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou S, Li H, Wang H, Wang R, Tune W, Li D, Wei C, Guo Y, He X, Deng Y. Nickel nanoparticles induced hepatotoxicity in mice through lipid-metabolism-dysfunction-regulated inflammatory damage. Molecules. 2023;28(15):5757.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatan O. Analysis of in vitro cytotoxic, genotoxic, apoptotic, and cell cycle arrest potential of iron-nickel alloy nanoparticles. Toxics. 2022;10(9):492.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan MS, Buzdar SA, Hussain R, Afzal G, Jabeen G, Javid MA, Iqbal R, Iqbal Z, Mudassir KB, Saeed S, et al. Hematobiochemical, oxidative stress, and histopathological mediated toxicity induced by nickel ferrite (NiFe2O4) nanoparticles in rabbits. Oxid Med Cell Longev. 2022;2022(1):5066167.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turkez H, Arslan ME, Sonmez E, Tatar A, Geyikoglu F, Acikyildiz M, Mardinoglu A. Security assessments of nickel boride nanoparticles on the human pulmonary alveolar cells by utilizing cell viability and gene expression analyses. Biol Hint Elem Res. 2021;199(7):2602–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Wei P, Chen X, Zhang Z, Jin Z, Liu J, Liu L. Much less is extra: organic results of NiSe2/rGO nanocomposites with low dose present new perception for threat evaluation. J Hazard Mater. 2021;415: 125605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan M, Ahmad R, Tripathy N, Khosla A, Khan MIR, Mishra P, Syed MA, Ansari WA. Fabrication of an ultra-sensitive hydrazine sensor primarily based on nano-chips formed nickel hydroxide modified electrodes. Microsyst Technol. 2022;28(1):279–86.

    Article 

    Google Scholar
     

  • Roach KA, Anderson SE, Stefaniak AB, Shane HL, Kodali V, Kashon M, Roberts JR. Floor area- and mass-based comparability of superb and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin bronchial asthma mannequin. Inhal Toxicol. 2019;31(8):299–324.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh M, Verma Y, Rana SVS. Potential toxicity of nickel nano and microparticles on the reproductive system of feminine rats-a comparative time-dependent examine. Toxicol Ind Well being. 2022;38(4):234–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh M, Verma Y, Rana SVS. Attributes of oxidative stress within the reproductive toxicity of nickel oxide nanoparticles in male rats. Environ Sci Pollut Res. 2022;29(4):5703–17.

    Article 
    CAS 

    Google Scholar
     

  • Singh M, Verma Y, Rana SVS. Hepatotoxicity induced by nickel nano and microparticles in male rat: a comparative examine. Toxicol Env Well being. 2021;13(3):251–60.

    Article 

    Google Scholar
     

  • Singh M, Verma Y, Rana SVS. Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent examine with particular reference to antioxidant defence system. Inorg Nano-Met Chem. 2022;52(9):1335–44.

    Article 
    CAS 

    Google Scholar
     

  • Nishi Ok-i, Kadoya C, Ogami A, Oyabu T, Morimoto Y, Ueno S, Myojo T. Adjustments over time in pulmonary inflammatory response in rat lungs after intratracheal instillation of nickel oxide nanoparticles. J Occup Well being. 2020;62(1):12162.

    Article 

    Google Scholar
     

  • Abdulqadir SZ, Aziz FM. Nickel nanoparticles induced nephrotoxicity in rats: affect of particle dimension. Pak Vet J. 2019;39(4):548–52.

    Article 
    CAS 

    Google Scholar
     

  • Poland CA, Byrne F, Cho W-S, Prina-Mello A, Murphy FA, Davies GL, Coey JMD, Gounko Y, Duffin R, Volkov Y, et al. Size-dependent pathogenic results of nickel nanowires within the lungs and the peritoneal cavity. Nanotoxicology. 2012;6(8):899–911.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. Results of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem. 2008;27(9):1972–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faisal S, Al-Radadi NS, Jan H, Shah SA, Shah S, Rizwan M, Afsheen Z, Hussain Z, Uddin MN, et al. Curcuma longa mediated synthesis of copper oxide, nickel oxide and cu-ni bimetallic hybrid nanoparticles: characterization and analysis for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings. 2021;11(7):849.

    Article 
    CAS 

    Google Scholar
     

  • Alsamhary Ok, Ameen F, Kha M. Biosynthesis cobalt-doped nickel nanoparticles and their toxicity in opposition to illness. Microsc Res Tech. 2024;87(2):272–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamidian Ok, Zarin A, Sarani M, Barani M, Adeli-Sardou M. Research of cytotoxic efficiency of green-synthesized Co doped NiO nanoparticles over human breast most cancers cells. Inorg Chem Commun. 2024;162: 112234.

    Article 
    CAS 

    Google Scholar
     

  • Ken DS, Sinha A. Current developments in floor modification of nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ Nanotechnol Monit Manag. 2020;14: 100344.


    Google Scholar
     

  • Cheng XM, Liu C, Cai YY, Li XZ, Zhao RR, Feng Y, Wang MF. Development and organic analysis of various nanoshell thickness Ni@SiO2 nanotubes pretty much as good protein separation carriers for bovine hemoglobin. Curr Med Chem. 2024. https://doi.org/10.2174/0109298673307793240802062318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Harm RH. Ion launch kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44(6):2169–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Liu Y, Ma L, Mao F, Jiang A, Liu D, Wang L, Jia Q, Zhou J. Artemisinin-loaded mesoporous nanoplatform for pH-responsive radical technology synergistic tumor theranostics. ACS Appl Mater. 2018;10(7):6155–67.

    Article 
    CAS 

    Google Scholar
     

  • Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, et al. In vitro and in vivo analysis of the toxicities induced by metallic nickel nano and superb particles. J Mol Hist. 2016;47(3):273–86.

    Article 
    CAS 

    Google Scholar
     

  • Samim AR, Vaseem H. Evaluation of the potential risk of nickel(II) oxide nanoparticles to fish Heteropneustes fossilis related to the adjustments in haematological, biochemical and enzymological parameters. Environ Sci Pollut Res Int. 2021;28(39):54630–46.

    Article 
    PubMed 

    Google Scholar
     

  • Mo YQ, Zhang Y, Zhang YB, Yuan JL, Mo LK, Zhang QW. Nickel nanoparticle-induced cell transformation: involvement of DNA harm and DNA restore defect by means of HIF-1 alpha/miR-210/Rad52 pathway. J Nanobiotechnol. 2021;19(1):370.

    Article 
    CAS 

    Google Scholar
     

  • Iftikhar M, Noureen A, Jabeen F, Uzair M, Rehman N, Sher EK, Katubi KM, Pine Americo-Pinheiro JH, Sher F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. Chemosphere. 2023;311: 136927.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren C, Hu X, Zhou Q. Affect of environmental components on nanotoxicity and data gaps thereof. NanoImpact. 2016;2:82–92.

    Article 

    Google Scholar
     

  • Azeem I, Wang QL, Adeel M, Shakoor N, Zain M, Khan AA, Li YB, Azeem Ok, Nadeem M, Zhu GK, et al. Assessing the mixed impacts of microplastics and nickel oxide nanomaterials on soybean development and nitrogen fixation potential. J Hazard Mater. 2024;480: 136062.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Tian X, Shu W, Yang Y, Xu J, Kan S. Mixed toxicity of polyethylene microplastics and nickel oxide nanoparticle on earthworm (Eisenia andrei): oxidative stress responses, bioavailability and joint impact. Environ Sci Pollut Res. 2024;31(24):34910–21.

    Article 
    CAS 

    Google Scholar
     

  • Ahamed M, Akhtar MJ, Alhadlaq HA. Synergistic toxicity of NiO nanoparticles and benzo a pyrene co- publicity in liver cells: position of free oxygen radicals induced oxidative stress. J King Saud Univ Sci. 2023;35(6): 102750.

    Article 

    Google Scholar
     

  • de Cogan F, Sales space A, Gough JE, Webb SJ. Spatially managed apoptosis induced by launched nickel(II) inside a magnetically responsive nanostructured biomaterial. Smooth Matter. 2013;9(7):2245–53.

    Article 

    Google Scholar
     

  • Qian Y, Zhang J, Zou J, Wang X, Meng X, Liu H, Lin Y, Chen Q, Solar L, Lin W, et al. NIR-II responsive PEGylated nickel nanoclusters for photothermal enhanced chemodynamic synergistic oncotherapy. Theranostics. 2022;12(8):3690–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson HL, Vallabani NVS, Wang X, Assenhöj M, Ljunggren S, Karlsson H, Odnevall I. Well being hazards of particles in additive manufacturing: a cross-disciplinary examine on reactivity, toxicity and occupational publicity to 2 nickel-based alloys. Sci Rep. 2023;13(1):20846.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bystrzejewska-Piotrowska G, Golimowski J, City PL. Nanoparticles: their potential toxicity, waste and environmental administration. Waste Handle. 2009;29(9):2587–95.

    Article 
    CAS 

    Google Scholar
     

  • Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a evaluation of particle toxicology following inhalation publicity. Inhal Toxicol. 2012;24:125–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips JI, Inexperienced FY, Davies JCA, Murray J. Pulmonary and systemic toxicity following publicity to nickel nanoparticles. Am J Ind Med. 2010;53(8):763–7.

    Article 
    PubMed 

    Google Scholar
     

  • Sutunkova MP, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, Shur VY, Shishkina EV, Zubarev IV, Saatkhudinova RR, et al. Poisonous results of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019;20(7):1778.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Cheng X, Wu S, Hu B, Yang C, Deng S, Shi Q. Nickel oxide nanoparticles induce apoptosis and ferroptosis in airway epithelial cells through ATF3. Environ Toxicol. 2022;37(5):1093–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce autophagy and apoptosis through HIF-1α/mTOR signaling in human bronchial epithelial cells. Environ Pollut. 2023;329: 121670.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawakami T, Miyajima A, Komoriya Ok, Kato R, Isama Ok. Impact of secondary particle dimension of nickel oxide nanoparticles on cytotoxicity in A549 cells. J Toxicol Sci. 2022;47(4):151–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McClements DJ, Xiao H. Is nano secure in meals? Establishing the components impacting the gastrointestinal destiny and toxicity of natural and inorganic food-grade nanoparticles. NPG Sci Meals. 2017;1(1):6.

    Article 

    Google Scholar
     

  • Ziarati P, Shirkhan F, Mostafidi M, Tamaskani ZM. A complete evaluation: toxicity of nanotechnology within the meals trade. J Med Discov. 2018;3(2):1–12.


    Google Scholar
     

  • Chain E, Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Leblanc JC. Replace of the danger evaluation of nickel in meals and consuming water. EFSA J. 2020;18(11): e06268.


    Google Scholar
     

  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese F. Nanoparticle dermal absorption and toxicity: a evaluation of the literature. Int Arch Occup Environ Well being. 2009;82:1043–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filon FL. Pores and skin publicity to nanoparticles and attainable sensitization threat. In: Otsuki T, Petrarca C, Di Gioacchino M, editors. Allergy and immunotoxicology in occupational well being. Singapore: Springer; 2017. p. 143–52.

    Chapter 

    Google Scholar
     

  • Crosera M, Adami G, Mauro M, Bovenzi M, Baracchini E, Filon FL. In vitro dermal penetration of nickel nanoparticles. Chemosphere. 2016;145:301–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jimenez-Lamana J, Godin S, Aragones G, Blade C, Szpunar J, Lobinski R. Nickel nanoparticles induce the synthesis of a tumor-related polypeptide in human epidermal keratinocytes. Nanomaterials. 2020;10(5):992.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin J, Zhu L, Chen M, Xu H, Wang H, Feng XQ, Zhu X, Zhou Q. The optimum selection of remedy administration route concerning intravenous, intramuscular, and subcutaneous injection. Affected person Choose Adher. 2015;9:923–42.


    Google Scholar
     

  • Hu W, Zhen W, Zhang M, Wang W, Jia X, An S, Wang Y, Guo Z, Jiang X. Growth of nickel selenide@polydopamine nanocomposites for magnetic resonance imaging guided NIR-II photothermal remedy. Adv Healthc Mater. 2021;10(23): e2101542.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou X, Ying X, Wu L, Liu L, Wang Y, He Y, Han M. Analysis progress of pure product photosensitizers in photodynamic remedy. Planta Med. 2024;90(05):368–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Y, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D. Supply, uptake, destiny, and transport of engineered nanoparticles in vegetation: a essential evaluation and knowledge evaluation. Environ Sci Nano. 2019;6(8):2311–31.

    Article 
    CAS 

    Google Scholar
     

  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties decide nanomaterial mobile uptake, transport, and destiny. Acc Chem Res. 2013;46(3):622–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumala N, Mangalampalli B, Kamal SSK, Grover P. Repeated oral dose toxicity examine of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective. J Appl Toxicol. 2019;39(7):1012–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdulqadir SZ, Aziz FM. Internalization and results on mobile ultrastructure of nickel nanoparticles in rat kidneys. Int J Nanomed. 2019;14:3995–4005.

    Article 
    CAS 

    Google Scholar
     

  • Yokota S, Nakamura Ok, Kamata R. A comparative examine of nickel nanoparticle and ionic nickel toxicities in zebrafish: histopathological adjustments and oxidative stress. J Toxicol Sci. 2019;44(11):737–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You DJ, Lee HY, Taylor-Simply AJ, Bonner JC. Synergistic induction of IL-6 manufacturing in human bronchial epithelial cells in vitro by nickel nanoparticles and lipopolysaccharide is mediated by eSTAT3 and C/EBPβ. Toxicol In Vitro. 2022;83: 105394.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013;2013(1): 942916.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nel A, Xia T, Mädler L, Li N. Poisonous potential of supplies on the nanolevel. Science. 2006;311(5761):622–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahamed M. Poisonous response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro. 2011;25(4):930–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron KS, Buchner V, Tchounwou PB. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature evaluation. Rev Environ Well being. 2011;26(2):81–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong L, Hu W, Lu C, Cheng Ok, Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective results of vitamin C in male rats. Chemosphere. 2019;218:259–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hussain MF, Naeem Ashiq M, Gulsher M, Akbar A, Iqbal F. Publicity to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from very important organs of albino mice in a sex-specific method. Biomarkers. 2020;25(8):719–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroemer G, Jäättelä M. Lysosomes and autophagy in cell demise management. Nat Rev Most cancers. 2005;5(11):886–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sousa CA, Soares HMVM, Soares EV. Nickel oxide nanoparticles set off caspase- and mitochondria-dependent apoptosis within the yeast Saccharomyces cerevisiae. Chem Res Toxicol. 2019;32(2):245–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gai Y, Zhou H, Yang Y, Chen J, Chi B, Li P, Yin Y, Wang Y, Li J. Injectable physique temperature responsive hydrogel for encephalitis therapy through sustained launch of nano-anti-inflammatory brokers. Biomater Transl. 2024;5(3):300–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong M-J, Jeon S, Yu H-S, Cho W-S, Lee S, Kang D, Kim Y, Kim Y-J, Kim S-Y. Publicity to nickel oxide nanoparticles induces acute and power inflammatory responses in rat lungs and perturbs the lung microbiome. Int J Environ Res Public Well being. 2022;19(1):522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan H, Chang X, Wang X, Yang M, Gao Q, Liu H, Li C, Li S, Solar Y. LncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis through suppressing TGF-beta 1 expression and epithelial–mesenchymal transition course of. Environ Toxicol. 2021;36(6):1099–110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Lengthy J, Liu L, He T, Jiang L, Zhao C, Li Z. A evaluation of endoplasmic reticulum (ER) stress and nanoparticle (NP) publicity. Life Sci. 2017;186:33–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang X, Liu F, Tian M, Zhao H, Han A, Solar Y. Nickel oxide nanoparticles induce hepatocyte apoptosis through activating endoplasmic reticulum stress pathways in rats. Environ Toxicol. 2017;32(12):2492–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell traces. Environ Mol Mutagen. 2018;59(3):211–22.

    Article 
    PubMed 

    Google Scholar
     

  • Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21:2346.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian M, Chang X, Zhang Q, Li C, Li S, Solar Y. TGF-β1 mediated MAPK signaling pathway promotes collagen formation induced by Nano NiO in A549 cells. Environ Toxicol. 2019;34(6):719–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saquib Q, Attia SM, Ansari SM, Al-Salim A, Faisal M, Alatar AA, Musarrat J, Zhang X, Al-Khedhairy AA. p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell demise and cytogenetic anomalies in rats. Int J Biol Macromol. 2017;105:228–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang M, Chang X, Gao Q, Gong X, Zheng J, Liu H, Li Ok, Zhan H, Wang X, Li S, et al. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory harm through suppressing the p38 mitogen activated protein kinases pathway. Environ Toxicol. 2022;37(5):1058–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. Nickel nanoparticles induce epithelial–mesenchymal transition in human bronchial epithelial cells through the HIF-1α/HDAC3 pathway. Nanotoxicology. 2022;16(6–8):695–712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, He C, Yan R, Chen Y, Zhao P, Li M, Fan T, Yang T, Lu Y, Luo J, et al. HIF-1 dependent reversal of cisplatin resistance through anti-oxidative nano selenium for efficient most cancers remedy. Chem Eng J. 2020;380: 122540.

    Article 
    CAS 

    Google Scholar
     

  • Pietruska JR, Liu X, Smith A, McNeil Ok, Weston P, Zhitkovich A, Harm R, Kane AB. Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells uncovered to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 2011;124(1):138–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian F, He M, Duan W, Mao L, Li Q, Yu Z, Zhou Z, Zhang Y. Cross regulation between hypoxia-inducible transcription factor-1α (HIF-1α) and reworking development issue (TGF)-ß1 mediates nickel oxide nanoparticles (NiONPs)-induced pulmonary fibrosis. Am J Transl Res. 2015;7(11):2364–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo H, Deng H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen Ok. Nickel chloride (NiCl2)-caused inflammatory responses through activation of NF-κB pathway and discount of anti-inflammatory mediator expression within the kidney. Oncotarget. 2015;6(30):28607–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janicka Ok, Cempel M. Impact of nickel (II) chloride oral publicity on urinary nickel excretion and another parts. Pol J Environ Stud. 2003;12(5):563–6.

    CAS 

    Google Scholar
     

  • Abd-Eltawab Tammam A, Khalaf AA, Zaki A, Mansour Khalifa M, Ibrahim M, Mekkawy A, Abdelrahman R, Farghali A, Noshy P. Hesperidin protects rats’ liver and kidney from oxidative harm and physiological disruption induced by nickel oxide nanoparticles. Entrance Physiol. 2022;13: 912625.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nho R. Pathological results of nano-sized particles on the respiratory system. Nanomedicine. 2020;29: 102242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latvala S, Hedberg J, Di Bucchianico S, Möller L, Odnevall Wallinder I, Elihn Ok, Karlsson HL. Nickel launch, ROS technology and toxicity of Ni and NiO micro- and nanoparticles. PLoS ONE. 2016;11(7): e0159684.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi Ok-I, Kadoya C, et al. Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology. 2010;4(2):161–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JK, Kang MG, Cho HW, Han JH, Chung YH, Rim KT, Yang JS, Kim H, Lee MY. Impact of nano-sized carbon black particles on lung and circulatory system by inhalation publicity in rats. Saf Well being Work. 2011;2(3):282–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, Shahbaz A, Shaukat M, Kanwal S, Uddin S, et al. Phytogenic Synthesis of nickel oxide nanoparticles (NiO) utilizing contemporary leaves extract of Rhamnus triquetra (Wall.) and investigation of its a number of in vitro organic potentials. Biomedicines. 2020;8(5):117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanwal Z, Raza MA, Manzoor F, Riaz S, Jabeen G, Fatima S, Naseem S. A comparative evaluation of nanotoxicity induced by steel (silver, nickel) and steel oxide (cobalt, chromium) nanoparticles in Labeo rohita. Nanomaterials. 2019;9(2):309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Rodríguez NL, Tavárez S, González-Sánchez ZI. In vitro toxicity evaluation of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol In Vitro. 2019;57:54–61.

    Article 
    PubMed 

    Google Scholar
     

  • Ding R, Ma Y, Li T, Solar M, Solar Z, Duan J. The detrimental results of micro-and nano-plastics on digestive system: an summary of oxidative stress-related adversarial consequence pathway. Sci Whole Environ. 2023;878: 163144.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abudayyak M, Guzel E, Ozhan G. Cytotoxic, genotoxic, and apoptotic results of nickel oxide nanoparticles in intestinal epithelial cells. Turk J Pharm Sci. 2020;17(4):446–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samim AR, Singh VK, Vaseem H. Evaluation of hazardous impression of nickel oxide nanoparticles on biochemical and histological parameters of gills and liver tissues of Heteropneustes fossilis. Int J Biol Macromol. 2022;74: 127059.

    CAS 

    Google Scholar
     

  • Zolnik BS, González-Fernández AF, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151(2):458–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M, Pi H, Yu Z, Zhou Z. Publicity to nickel oxide nanoparticles induces pulmonary irritation by means of NLRP3 inflammasome activation in rats. Int J Nanomedicine. 2016;11:3331–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Li Q, Zhang Y, Bai Y, Cao Y, Yang Y, Zang L, Huang M, Sui R. Nickel oxide nanoparticles enhance α-synuclein amyloid formation and related overexpression of inflammatory mediators in microglia as a marker of Parkinson’s illness. Arab J Chem. 2021;14(10): 103380.

    Article 
    CAS 

    Google Scholar
     

  • Rahimi S, Naserzadeh P, Mousavi Z, Ashtari Ok, Seydi E, Pourahmad J. Nickel oxide nanoparticles exert selective toxicity on pores and skin mitochondria and lysosomes remoted from the mouse mannequin of melanoma. J Biochem Mol Toxicol. 2019;33(9): e22376.

    Article 
    PubMed 

    Google Scholar
     

  • Manohar A, Vattikuti SVP, Manivasagan P, Jang E-S, Bandi H, Al-Enizi AM, Gupta M, Ubaidullah M, Kim KH. Exploring NiFe2O4 nanoparticles: electrochemical evaluation and analysis of cytotoxic results on regular human dermal fibroblasts (HDF) and mouse melanoma (B16–F10) cell traces. Colloid Floor A. 2024;682: 132855.

    Article 
    CAS 

    Google Scholar
     

  • Rabbani A, Haghniaz R, Khan T, Khan R, Khalid A, Naz SS, Ul-Islam M, Vajhadin F, Wahid F. Growth of bactericidal spinel ferrite nanoparticles with efficient biocompatibility for potential wound therapeutic purposes. RSC Adv. 2021;11(3):1773–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong L, Dong J, Lu W, Wu Y, Liu L, Tang M. Publicity results of inhaled nickel nanoparticles on the male reproductive system through mitochondria harm. NanoImpact. 2021;23: 100350.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shipelin VA, Shumakova AA, Trushina EN, Mustafina OK, Masyutin AG, Kolobanov AI, Sokolov IE, Gmoshinski IV, Khotimchenko SA, Nikityuk DB. Peroral toxicological evaluation of two-dimensional types of nickel nanoparticles sized between 20 and 120 nm. Nanomaterials. 2022;12(19):3523.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garces M, Marchini T, Caceres L, Calabro V, Mebert AM, Victoria Tuttolomondo M, Vico T, Vanasco V, Tesan F, Salgueiro J, et al. Oxidative metabolism within the cardiorespiratory system after an acute publicity to nickel-doped nanoparticles in mice. Toxicology. 2021;464: 153020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abouzeinab NS, Kahil N, Fakhruddin N, Awad R, Khalil MI. Intraperitoneal hepato-renal toxicity of zinc oxide and nickel oxide nanoparticles in male rats: biochemical, hematological and histopathological research. Excli J. 2023;22:619–44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurkan SE. Affect of nickel oxide nanoparticles (NiO) on oxidative stress biomarkers and hemocyte counts of Mytilus galloprovincialis. Biol Hint Elem Res. 2022;200(7):3429–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA harm and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Whole Environ. 2021;753: 141743.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Ashram S, Ali AM, Osman SE, Huang S, Shouman AM, Kheirallah DA. Biochemical and histological alterations induced by nickel oxide nanoparticles within the floor beetle Blaps polychresta (Forskl, 1775) (Coleoptera: Tenebrionidae). PLoS ONE. 2021;16(9): e0255623.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomes SIL, Roca CP, Scott-Fordsmand JJ, Amorim MJB. Excessive-throughput transcriptomics: insights into the pathways concerned in (nano) nickel toxicity in a key invertebrate check species. Environ Pollut. 2019;245:131–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adeel M, Ma C, Ullah S, Rizwan M, Hao Y, Chen C, Jilani G, Shakoor N, Li M, Wang L, et al. Publicity to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative harm: a life cycle examine on Eisenia fetida. Environ Pollut. 2019;254: 113032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paserin V, Baksa S, Zaitsev A, Shu J, Shojai F, Nowosiadly W. Potential for mass manufacturing of nickel-based nanomaterials by carbonyl course of. J Nanosci Nanotechnol. 2008;8(8):4049–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenstone M. The impacts of environmental rules on industrial exercise: proof from the 1970 and 1977 clear air act amendments and the census of manufactures. J Polit Econ. 2002;110(6):1175–219.

    Article 

    Google Scholar
     

  • Bradham KD, Nelson CM, Sowers TD, Lytle DA, Tully J, Schock MR, Li Ok, Blackmon MD, Kovalcik Ok, Cox D. A nationwide survey of lead and different steel (loids) in residential consuming water in the USA. J Expo Sci Environ Epidemiol. 2023;33(2):160–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein CB, Costa M. Chapter 24—nickel. In: Nordberg GF, Costa M, editors. Handbook on the toxicology of metals (fifth version). Amsterdam: Educational Press; 2022. p. 615–37.

    Chapter 

    Google Scholar
     

  • Sarkar B, Mitchell E, Frisbie S, Grigg L, Adhikari S, Maskey BR. Ingesting water high quality and public well being within the Kathmandu valley, Nepal: coliform micro organism, chemical contaminants, and well being standing of shoppers. J Environ Public Well being. 2022;2022(1):3895859.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhlbusch TAJ, Wijnhoven SWP, Haase A. Nanomaterial exposures for employee, client and most people. NanoImpact. 2018;10:11–25.

    Article 

    Google Scholar
     

  • Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory elements of environmental sustainability of nanopesticides. J Hazard Mater. 2021;404: 124148.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Qin H, Li N, Wei Y, Lin Y, Deng R, Ding H, Lv Y, Ma T, Li R, et al. Neoadjuvant chemotherapy by liposomal doxorubicin boosts immune safety of tumor membrane antigens-based nanovaccine. Cell Rep Med. 2024;6:101877.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Chen W, Li G, Ma Z, Zhu M, Gao Q, Xu Ok, Liu X, Lu W, Zhang W, et al. An element-free hydrogel with ROS scavenging and responsive degradation for enhanced diabetic bone therapeutic. Small. 2024;20(24): e2306389.

    Article 
    PubMed 

    Google Scholar
     

  • Wang C, Gu Z, Gu X, Tan X, Wang S, Zhang R, Li R, Solar M, Gui C, Li S, et al. Nano-selenium attenuates mitochondrial-associated apoptosis through the PI3K/AKT pathway in nickel-induced hepatotoxicity in vivo and in vitro. Environ Toxicol. 2022;37(1):101–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noshy PA, Khalaf AAA, Ibrahim MA, Mekkawy AM, Abdelrahman RE, Farghali A, Tammam AA-E, Zaki AR. Alterations in reproductive parameters and steroid biosynthesis induced by nickel oxide nanoparticles in male rats: the ameliorative impact of hesperidin. Toxicology. 2022;473:153208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu Y, Wang Y, Zhou Q, Bowman L, Mao G, Zou B, Xu J, Liu Y, Liu Ok, Zhao J, et al. Inhibition of nickel nanoparticles-induced toxicity by epigallocatechin-3-gallate in JB6 cells could also be by means of down-regulation of the MAPK signaling pathways. PLoS ONE. 2016;11(3): e0150954.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali AA-M, Mansour AB, Attia SA. The potential protecting position of apigenin in opposition to oxidative harm induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus. Environ Sci Pollut Res. 2021;28(22):27577–92.

    Article 
    CAS 

    Google Scholar
     

  • Mohamed Ok, Zine Ok, Fahima Ok, Abdelfattah E, Sharifudin SM, Duduku Ok. NiO nanoparticles induce cytotoxicity mediated by means of ROS technology and impairing the antioxidant protection within the human lung epithelial cells (A549): preventive impact of Pistacia lentiscus important oil. Toxicol Rep. 2018;5:480–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahoney S, Najera M, Bai Q, Burton EA, Veser G. The developmental toxicity of advanced silica-embedded nickel nanoparticles is set by their physicochemical properties. PLoS ONE. 2016;11(3): e0152010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng L, Wu Y, Pan Ok, Zhu Y, Li X, Wei W, Liu X. Polymeric nanoparticles-based multi-functional coatings on NiTi alloy with nickel ion launch management, cytocompatibility, and antibacterial efficiency. New J Chem. 2019;43(3):1551–61.

    Article 
    CAS 

    Google Scholar
     

  • Vemula PK, Anderson RR, Karp JM. Nanoparticles cut back nickel allergy by capturing steel ions. Nat Nanotechnol. 2011;6(5):291–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Yin L, Ma Z, Zhang Y. Chlorogenic acid-loaded mesoporous silica nanoparticles modified with hexa-histidine peptides cut back pores and skin allergy symptoms by capturing nickel. Molecules. 2022;27(4):1430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Zhang R, Wang S, Li R, Tan X, Gu X, Ma J, Zhang L, Su L. Protecting results of nano-selenium on nickel-induced renal cell apoptosis in rats. J Anal Toxicol. 2021;35(3):193–7.


    Google Scholar
     

  • Doria-Manzur A, Sharifan H, Tejeda-Benitez L. Software of zinc oxide nanoparticles to advertise remediation of nickel by Sorghum bicolor: steel ecotoxic efficiency and plant response. Int J Phytoremediation. 2023;25(1):98–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Bucchianico S, Gliga AR, Åkerlund E, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Calcium-dependent cyto- and genotoxicity of nickel steel and nickel oxide nanoparticles in human lung cells. Half Fibre Toxicol. 2018;15(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Zhang W, Peng Y, Gao L, Wang F, Wang L, Wei X. A Multifunctional layered nickel silicate nanogenerator of synchronous oxygen self-supply and superoxide radical technology for hypoxic tumor remedy. ACS Nano. 2022;16(1):974–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Liu W, Ge J, Jia Q, Nan F, Ding Y, Wu J, Zhang W, Lee C-S, Wang P. Biodegradable pure product-based nanoparticles for near-infrared fluorescence imaging-guided sonodynamic remedy. ACS Appl Mater Interfaces. 2019;11(20):18178–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles