11.8 C
United States of America
Monday, February 3, 2025

Navigating a difficult path: precision illness remedy with tailor-made oral nano-armor-probiotics | Journal of Nanobiotechnology


  • Stojanov S, Berlec A, Štrukelj B. The affect of Probiotics on the Firmicutes/Bacteroidetes ratio within the Therapy of Weight problems and inflammatory bowel illness [J]. Microorganisms, 2020.

  • Zou X, Wang L, Xiao L, et al. Intestine microbes in cerebrovascular ailments: intestine flora imbalance, potential affect mechanisms and promising remedy methods [J]. Entrance Immunol. 2022;13:975921.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian C-M, Yang M-F, Xu H-M, et al. Rising function of bacterial outer membrane vesicle in gastrointestinal tract [J]. Intestine Pathogens. 2023;15(1):20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charbonneau MR, Isabella VM, Li N, et al. Growing a brand new class of engineered dwell bacterial therapeutics to deal with human ailments [J]. Nat Commun. 2020;11(1):1738.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Y, Pedersen O. Intestine microbiota in human metabolic well being and illness [J]. Nat Rev Microbiol. 2021;19(1):55–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haran JP, Mccormick BA. Getting older, frailty, and the microbiome—how dysbiosis influences human getting old and illness [J]. Gastroenterology. 2021;160(2):507–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veiga P, Suez J, Derrien M, et al. Transferring from probiotics to precision probiotics. Nat Microbiol. 2020;5:878–80. [Z].

    Article 
    PubMed 

    Google Scholar
     

  • Zaiss MM, Joyce Wu H-J, Mauro D, et al. The intestine–joint axis in rheumatoid arthritis [J]. Nat Rev Rheumatol. 2021;17(4):224–37.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou S, Gravekamp C, Bermudes D, et al. Tumour-targeting micro organism engineered to struggle most cancers [J]. Nat Rev Most cancers. 2018;18(12):727–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X, Liu X-Y, Zhang D, et al. Development of a sustainable 3-hydroxybutyrate-producing probiotic Escherichia coli for remedy of colitis [J]. Cell Mol Immunol. 2021;18(10):2344–2357.

  • Maier L, Goemans CV, Wirbel J, et al. Unravelling the collateral injury of antibiotics on intestine micro organism [J]. Nature. 2021;599(7883):120–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Średnicka P, Juszczuk-Kubiak E, Wójcicki M, et al. Probiotics as a organic cleansing device of meals chemical contamination: a assessment [J]. Meals Chem Toxicol. 2021;153:112306.

  • Jiang Z, Li M, Mcclements DJ, et al. Latest advances within the design and fabrication of probiotic supply techniques to focus on intestinal irritation [J]. Meals Hydrocolloids. 2022;125:107438.

    Article 
    CAS 

    Google Scholar
     

  • Gao J, Zong X, Yue X, et al. Exploring the properties of silica nanomaterials on supporting bimetallic PtZn websites for Direct Propane dehydrogenation [J]. ACS Appl Nano Mater. 2024;7(7):7018–27.

    Article 
    CAS 

    Google Scholar
     

  • Liang D, Liu C, Li J, et al. Engineering probiotics-derived membrane vesicles for encapsulating fucoxanthin: analysis of stability, bioavailability, and biosafety [J]. Meals and Operate; 2023;14(8):3475–87.

  • Çanga EM, Dudak FC. Improved digestive stability of probiotics encapsulated inside poly (vinyl alcohol)/cellulose acetate hybrid fibers [J]. Carbohydr Polym. 2021;264:117990.

    Article 
    PubMed 

    Google Scholar
     

  • Ye N, Zhao P, Ayue S, et al. Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis remedy [J]. Int J Biol Macromol. 2023;232:123229.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan Ok, Zhang Z, Ren Y, et al. Homogeneous distribution of magnetic, antimicrobial-carrying nanoparticles via an infectious biofilm enhances biofilm-killing efficacy [J]. ACS Biomaterials Sci Eng. 2019;6(1):205–12.

    Article 

    Google Scholar
     

  • Yang X, Wang C, Wang Q, et al. Armored probiotics for oral supply [J]. Sensible Med. 2023;2(4):e20230019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gheorghita R, Anchidin-Norocel L, Filip R, et al. Purposes of biopolymers for medicine and probiotics supply. Polymers. 2021;13:2729. [Z].

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crhanova M, Karasova D, Juricova H, et al. Systematic culturomics reveals that half of rooster caecal microbiota members may be grown in vitro besides for 2 lineages of Clostridiales and a single lineage of Bacteroidetes [J]. Microorganisms. 2019;7(11):496.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodke H, Jogdand S. Position of probiotics in human well being [J]. Cureus. 2022;14(11).

  • Goodoory VC, Ford AC. Antibiotics and probiotics for irritable bowel syndrome [J]. Medication. 2023.

  • Scott B M, Gutiérrez-Vázquez C, Sanmarco LM et al. Self-tunable engineered yeast probiotics for the remedy of inflammatory bowel illness [J]. Nat Med. 2021.

  • Gou H, Zhang Y, Ren L et al. How do intestinal probiotics restore the intestinal barrier? Entrance Microbiol. 2022;13:929346.

  • Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the intestine microbiome [J]. Sign Transduction and Focused Remedy; 2019.

  • Pennisi E. Intestine micro organism linked to psychological well-being and melancholy [J]. Science, 2019.

  • Hadjimbei E, Botsaris G, Chrysostomou S. Helpful Results of Yoghurts and Probiotic Fermented Milks and Their Useful Meals Potential [J]. Meals, 2022.

  • Ilango S, Antony U. Probiotic microorganisms from non-dairy conventional fermented meals [J]. Traits in Meals Science & Know-how; 2021.

  • Górska A, Przystupski D, Niemczura MJ, et al. Probiotic micro organism: a promising device in most cancers prevention and remedy [J]. Curr Microbiol. 2019;76:939–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, Zhai Q, Zhang H, et al. Intestine colonization mechanisms of Lactobacillus and Bifidobacterium: an argument for personalised designs [J]. Annual Rev meals Sci Technol. 2021;12:213–33.

    Article 
    CAS 

    Google Scholar
     

  • El-Dalatony MM, LI X. Introduction to Probiotics and Their Potential Well being Advantages [J]. Intestine Remediation of Environmental Pollution: Potential Roles of Probiotics and Intestine Microbiota. 2020:81–108.

  • Maftei N-M, Raileanu CR, Balta AA, et al. The potential affect of Probiotics on Human Well being: an replace on their health-promoting properties [J]. Microorganisms. 2024;12(2):234.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics historical past [J]. J Clin Gastroenterol. 2016;50:S116–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamang JP, Cotter PD, Endo A, et al. Fermented meals in a world age: East meets West [J]. Compr Rev Meals Sci Meals Saf. 2020;19(1):184–217.

    Article 
    PubMed 

    Google Scholar
     

  • Reque PM, Brandelli A. An introduction to probiotics [M]. Probiotics Elsevier. 2022: 1–17.

  • Renuka B, Borse B. Supply of Probiotics within the Meals Industries [M]. Novel Processing strategies for plant-based Well being meals. Apple Acad Press. 2023: 285–310.

  • Tamang JP. Historical past and tradition of Indian ethnic fermented meals and drinks [J]. Ethnic fermented meals and drinks of India: Science historical past and tradition. 2020:1–40.

  • Leeuwendaal NK, Stanton C, O’Toole PW, et al. Fermented meals, well being and the intestine microbiome [J]. Vitamins. 2022;14(7):1527.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín R, Langella P. Rising well being ideas within the probiotics subject: streamlining the definitions. Entrance Microbiol. 2019;10:1047. Z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savitri LP. Probiotics for Human Well being [M]//GOEL G, KUMAR A. Advances in Probiotics for Sustainable Meals and Medication. Singapore; Springer Singapore. 2021:181–212.

  • Drell T, Lillsaar T, Tummeleht L, et al. Characterization of the vaginal micro-and mycobiome in asymptomatic reproductive-age Estonian ladies [J]. PLoS ONE. 2013;8(1):e54379.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in sustaining vaginal well being [J]. Microb Cell Truth. 2020;19(1):203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with purposeful properties: an strategy to extend security and shelf-life of fermented meals [J]. BioMed analysis worldwide; 2018;2018(1):9361614.

  • Champagne CP, Da Cruz AG, Daga M. Methods to enhance the performance of probiotics in dietary supplements and meals [J]. Curr Opin Meals Sci. 2018;22:160–6.

    Article 

    Google Scholar
     

  • Zheng J, Wittouck S, Salvetti E, et al. A taxonomic observe on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae [J]. Int J Syst Evol MicroBiol. 2020;70(4):2782–858.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian P, Wang G, Zhao J, et al. Bifidobacterium with the function of 5-hydroxytryptophan synthesis regulation alleviates the symptom of melancholy and associated microbiota dysbiosis [J]. J Nutr Biochem. 2019;66:43–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He B-L, Xiong Y, Hu T-G, et al. Bifidobacterium spp. as purposeful meals: a assessment of present standing, challenges, and techniques [J]. Crit Rev Meals Sci Nutr. 2023;63(26):8048–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben Braiek O, Smaoui S. Enterococci: between rising pathogens and potential probiotics [J]. Biomed Res Int. 2019;2019(1):5938210.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Htwe Ok, Yee KS, Tin M, et al. Impact of Saccharomyces boulardii within the remedy of acute watery diarrhea in Myanmar kids: a randomized managed research [J]. Am J Trop Med Hyg. 2008;78(2):214–6.

    Article 
    PubMed 

    Google Scholar
     

  • Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from basic to novel purposes [J]. Entrance Microbiol. 2012;3:421.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential [J]. Fungal Genet Biol. 2020;137:103333.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Ban Q, Wang W, et al. Novel nano-encapsulated probiotic brokers: encapsulate supplies, supply, and encapsulation techniques [J]. J Managed Launch. 2022;349:184–205.

    Article 
    CAS 

    Google Scholar
     

  • Centurion F, Basit AW, Liu J, et al. Nanoencapsulation for probiotic supply [J]. ACS Nano. 2021;15(12):18653–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasmin R, Shah M, Khan SA, et al. Gelatin nanoparticles: a possible candidate for medical purposes [J]. Nanatechnol Opinions. 2017;6(2):191–207.

    Article 
    CAS 

    Google Scholar
     

  • Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, et al. Chitosan nanoparticles as oral drug carriers [J]. Int J Mol Sci. 2023;24(5):4289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azizian S, Hadjizadeh A, Niknejad H. Chitosan-gelatin porous scaffold integrated with Chitosan nanoparticles for progress issue supply in tissue engineering [J]. Carbohydr Polym. 2018;202:315–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagoe PN, Ok, Velázquez EJM, Espiritusanto YM, et al. Fabrication of PEG-PLGA microparticles with tunable sizes for managed drug launch utility [J]. Molecules. 2023;28(18):6679.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt V, Kesch C, Jackson JK, et al. Design and characterization of injectable poly (lactic-co-glycolic acid) pastes for sustained and native drug launch [J]. Pharm Res. 2020;37:1–13.

    Article 

    Google Scholar
     

  • Nikzamir M, Akbarzadeh A, Panahi Y. An summary on nanoparticles utilized in biomedicine and their cytotoxicity [J]. J Drug Deliv Sci Technol. 2021;61:102316.

    Article 
    CAS 

    Google Scholar
     

  • Mirchandani Y, Patravale VB, Brijesh S. Strong lipid nanoparticles for hydrophilic medicine [J]. J Managed Launch. 2021;335:457–64.

    Article 
    CAS 

    Google Scholar
     

  • Wang G, Wang J, Wu W, et al. Advances in lipid-based drug supply: enhancing effectivity for hydrophobic medicine [J]. Skilled Opin Drug Deliv. 2015;12(9):1475–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas OS, Weber W. Overcoming physiological boundaries to nanoparticle supply—are we there but? [J]. Entrance Bioeng Biotechnol. 2019;7:415.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalska E, Ziarno M, Ekielski A, et al. Supplies used for the microencapsulation of probiotic micro organism within the meals trade [J]. Molecules. 2022;27(10):3321.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziarno M, Zaręba D, Jamiołkowska D. Studia Nad Czynnikami determinującymi przeżywalność LAB w warunkach symulujących układ pokarmowy [J]. Bromatol Chem Toksykol. 2009;3(42):990–4.


    Google Scholar
     

  • Han S, Lu Y, Xie J, et al. Probiotic gastrointestinal transit and colonization after oral administration: an extended journey [J]. Entrance Cell Infect Microbiol. 2021;11:609722.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zmora N, Zilberman-Schapira G, Suez J et al. Personalised intestine mucosal colonization resistance to empiric probiotics is related to distinctive host and microbiome options [J]. Cell. 2018;174(6):1388 – 405. e21.

  • Yao M, Li B, Ye H, et al. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles [J]. Meals Hydrocolloids. 2018;83:246–52.

    Article 
    CAS 

    Google Scholar
     

  • Ghorbani S, Maryam A. Encapsulation of lactic acid micro organism and bifidobacteria utilizing starch-sodium alginate nanofibers to reinforce viability in meals mannequin [J]. J Meals Course of Preserv. 2021;45(12):e16048.

    Article 
    CAS 

    Google Scholar
     

  • Fan Q, Zeng X, Wu Z et al. Nanocoating of lactic acid micro organism: Properties, safety mechanisms, and future traits [J]. Crit Rev Meals Sci Nutr. 2023: 1–16.

  • Goh YJ, Barrangou R. Harnessing CRISPR-Cas techniques for precision engineering of designer probiotic lactobacilli [J]. Curr Opin Biotechnol. 2019;56:163–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao R, Yu T, Li J et al. Single-cell encapsulation techniques for probiotic supply: Armor probiotics [J]. Adv Colloid Interface Sci. 2024;103270.

  • Dos Santos AM, Carvalho SG, Meneguin AB, et al. Oral supply of micro/nanoparticulate techniques primarily based on pure polysaccharides for intestinal ailments remedy: challenges, advances and future views [J]. Journal of Managed Launch; 2021.

  • Yao M, Xie J, Du H, et al. Progress in microencapsulation of probiotics: a assessment [J]. Compr Rev Meals Sci Meals Saf. 2020;19(2):857–74.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Liu Z, Fang H, et al. Development of Probiotic double-layered Multinucleated microcapsules primarily based on sulfhydryl-modified Carboxymethyl Cellulose Sodium for Elevated Intestinal Adhesion of Probiotics and Remedy for intestinal irritation Induced by Escherichia coli O157:H7 [J]. ACS Utilized Supplies & Interfaces; 2023.

  • Cao F, Jin L, Gao Y et al. Synthetic-enzymes-armed Bifidobacterium longum probiotics for assuaging intestinal irritation and microbiota dysbiosis [J]. Nat Nanotechnol, 2023.

  • Panwar H, Rokana N, Aparna S, et al. Gastrointestinal stress as innate defence towards microbial assault [J]. J Appl Microbiol. 2021;130(4):1035–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talebian S, Schofield T, Valtchev P, et al. Biopolymer-based Multilayer Microparticles for Probiotic Supply to Colon [J]. Adv Healthc Mater. 2022;11(11):2102487.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popović M, Stojanović M, Veličković Z, et al. Characterization of potential probiotic pressure, L. Reuteri B2, and its microencapsulation utilizing alginate-based biopolymers [J]. Int J Biol Macromol. 2021;183:423–34.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Gao S, Yun S, et al. Microencapsulating alginate-based polymers for probiotics supply techniques and their utility [J]. Prescription drugs. 2022;15(5):644.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Ji H. Affect of probiotics on dietary protein digestion and utilization within the gastrointestinal tract [J]. Curr Protein Pept Sci. 2019;20(2):125–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook dinner MT, Tzortzis G, Charalampopoulos D, et al. Microencapsulation of probiotics for gastrointestinal supply [J]. J Managed Launch. 2012;162(1):56–67.

    Article 
    CAS 

    Google Scholar
     

  • Zeise KD, Woods RJ, Huffnagle GB. Interaction between Candida albicans and lactic acid micro organism within the gastrointestinal tract: affect on colonization resistance, microbial carriage, opportunistic an infection, and host immunity [J]. Clin Microbiol Rev. 2021;34(4):e00323–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathipa-Mdakane MG, Thantsha MS. Lacticaseibacillus rhamnosus: an acceptable candidate for the development of novel bioengineered probiotic strains for focused pathogen management [J]. Meals. 2022;11(6):785.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Behrens AM, Ginat N et al. Probiotics: Biofilm-Impressed Encapsulation of Probiotics for the Therapy of Complicated Infections (Adv. Mater. 51/2018) [J]. Superior Supplies. 2018.

  • Li J, Hu FB. Analysis digest: reshaping the intestine microbiota [J]. The Lancet Diabetes & Endocrinology; 2019.

  • Topçu KC, Kaya M, Kaban G. Probiotic properties of lactic acid micro organism strains remoted from pastırma [J]. Lwt. 2020;134:110216.

    Article 

    Google Scholar
     

  • Wang X, Huang M, Yang F, et al. Rapeseed polysaccharides as prebiotics on progress and acidifying exercise of probiotics in vitro [J]. Carbohydr Polym. 2015.

  • Szlufman C, Shemesh M. Position of probiotic Bacilli in growing synbiotic meals: challenges and alternatives [J]. Frontiers in Microbiology; 2021.

  • Liu H, Cui SW, Chen M, et al. Protecting approaches and mechanisms of microencapsulation to the survival of probiotic micro organism throughout processing, storage and gastrointestinal digestion: a assessment [J]. Crit Rev Meals Sci Nutr. 2019;59(17):2863–78.

    Article 
    PubMed 

    Google Scholar
     

  • Tripathi MK, Giri SK. Probiotic purposeful meals: survival of probiotics throughout processing and storage [J]. J Funct Meals. 2014;9:225–41.

    Article 
    CAS 

    Google Scholar
     

  • Fonseca F, Cenard S, Passot S. Freeze-drying of lactic acid micro organism [J]. Cryopreservation and freeze-drying protocols. 2015;477 – 88.

  • Cruz AGD, Castro W, Faria J, D A F, et al. Stability of probiotic yogurt added with glucose oxidase in plastic supplies with totally different permeability oxygen charges in the course of the refrigerated storage [J]. Meals Res Int. 2013;51(2):723–8.

    Article 
    CAS 

    Google Scholar
     

  • Rajam R, Subramanian P. Encapsulation of probiotics: previous, current and future [J]. Beni-Suef Univ J Primary Appl Sci. 2022;11(1):46.

    Article 

    Google Scholar
     

  • Ge S, Han J, Solar Q, et al. Analysis progress on bettering the freeze-drying resistance of probiotics: a assessment [J]. Traits in Meals Science & Know-how; 2024. p. 104425.

  • Iaconelli C, Lemetais G, Kechaou N, et al. Drying course of strongly impacts probiotics viability and functionalities [J]. J Biotechnol. 2015;214:17–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Prisco A, Mauriello G. Probiotication of meals: a give attention to microencapsulation device [J]. Traits Meals Sci Technol. 2016;48:27–39.

    Article 

    Google Scholar
     

  • Meybodi NM, Mortazavian AM, Arab M, et al. Probiotic viability in yoghurt: a assessment of influential elements [J]. Int Dairy J. 2020;109:104793.

    Article 
    CAS 

    Google Scholar
     

  • Mcfarland LV, Evans CT, Goldstein EJ. Pressure-specificity and disease-specificity of probiotic efficacy: a scientific assessment and meta-analysis [J]. Entrance Med. 2018;5:124.

    Article 

    Google Scholar
     

  • Azad MAK, Sarker M, Li T, et al. Probiotic species within the modulation of intestine microbiota: an summary [J]. Biomed Res Int. 2018;2018(1):9478630.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders ME, Merenstein DJ, Reid G, et al. Probiotics and prebiotics in intestinal well being and illness: from biology to the clinic [J]. Nat Opinions Gastroenterol Hepatol. 2019;16(10):605–16.

    Article 

    Google Scholar
     

  • Chua JC, Hale JD, Silcock P, et al. Bacterial survival and adhesion for formulating new oral probiotic meals [J]. Crit Rev Meals Sci Nutr. 2020;60(17):2926–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grumet L, Tromp Y, Stiegelbauer V. The event of high-quality multispecies probiotic formulations: from bench to market [J]. Vitamins. 2020;12(8):2453.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao M, Xie J, Du H, et al. Progress in microencapsulation of probiotics: a assessment [J]. Complete Opinions in Meals Science and Meals Security; 2020.

  • Yoo JY, Groer M, Dutra S, V O, et al. Intestine microbiota and immune system interactions [J]. Microorganisms. 2020;8(10):1587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickard JM, Zeng MY, Caruso R, et al. Intestine microbiota: function in pathogen colonization, immune responses, and inflammatory illness [J]. Immunol Rev. 2017;279(1):70–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubnov RV, Babenko LP, Lazarenko LM, et al. Particular properties of probiotic strains: relevance and advantages for the host [J]. EPMA J. 2018;9:205–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Y, De Souza C, Ramachandran M, et al. Exact oral supply techniques for probiotics: a assessment [J]. J Managed Launch. 2022;352:371–84.

    Article 
    CAS 

    Google Scholar
     

  • Yadav R, Kumar V, Baweja M, et al. Gene enhancing and genetic engineering approaches for superior probiotics: a assessment [J]. Crit Rev Meals Sci Nutr. 2018;58(10):1735–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Chen X, Sheng H, et al. Engineering probiotics as dwelling diagnostics and therapeutics for bettering human well being [J]. Microb Cell Truth. 2020;19:1–12.

    Article 

    Google Scholar
     

  • Kan L, Zheng Z, Fu W, et al. Latest progress on engineered micro/nanomaterials mediated modulation of intestine microbiota for treating inflammatory bowel illness [J]. J Managed Launch. 2024;370:43–65.

    Article 
    CAS 

    Google Scholar
     

  • Yadav M, Mandeep, Shukla P. Probiotics of numerous origin and their therapeutic purposes: a assessment [J]. J Am Coll Nutr. 2020;39(5):469–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forouhandeh H, Soofiyani SR, Hosseini Ok, et al. Modulation of the Immune System mechanisms utilizing probiotic Micro organism in allergic ailments: give attention to allergic retinitis and meals allergy symptoms [J]. Latest Adv Inflamm Allergy Drug Discovery. 2024;18(1):11–26.

    Article 
    CAS 

    Google Scholar
     

  • Shu S-A, Yuen AW, Woo E, et al. Microbiota and meals allergy [J]. Clin Rev Allergy Immunol. 2019;57:83–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Cho Ok, Kim JS, et al. Probiotic remedy induced change of irritation associated metabolites in IBS-D sufferers/double-blind, randomized, placebo-controlled trial [J]. Meals Sci Biotechnol. 2020;29:837–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami N. Impact of Microgravity Surroundings on Intestine Microbiome and Angiogenesis [J]. 2021.

  • O’Mahony L, Mccarthy J, Kelly P et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles [J]. Gastroenterology. 2005.

  • Gou H-Z, Zhang Y-L, Ren L-F, et al. How do intestinal probiotics restore the intestinal barrier? [J]. Entrance Microbiol. 2022;13:929346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefi B, Eslami M, Ghasemian A, et al. Probiotics significance and their immunomodulatory properties [J]. J Cell Physiol. 2019;234(6):8008–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celebioglu HU, Svensson B. Dietary vitamins, proteomes, and adhesion of probiotic lactobacilli to mucin and host epithelial cells [J]. Microorganisms. 2018;6(3):90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das TK, Pradhan S, Chakrabarti S, et al. Present standing of probiotic and associated well being advantages [J]. Appl Meals Res. 2022;2(2):100185.

    Article 
    CAS 

    Google Scholar
     

  • Cao F, Jin L, Gao Y, et al. Synthetic-enzymes-armed Bifidobacterium longum probiotics for assuaging intestinal irritation and microbiota dysbiosis [J]. Nat Nanotechnol. 2023;18(6):617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury S, Castro S, Coker C et al. Programmable micro organism induce sturdy tumor regression and systemic antitumor immunity [J]. Nat Med. 2019.

  • Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of pure compounds and probiotics by mucoadhesive tailor-made biopolymer-based nanoparticles: a assessment [J]. Meals Hydrocolloids. 2021;118:106772.

    Article 

    Google Scholar
     

  • Zhao Z, Xu S, Zhang W, et al. Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel illness purposes [J]. Meals & Operate. 2022;13(11):5914–24.

  • Schultz M. Scientific use of E. Coli Nissle 1917 in inflammatory bowel illness [J]. Inflamm Bowel Dis. 2008;14(7):1012–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yu X, Lin C, Yu J, et al. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting remedy [J]. Microb Biotechnol. 2020;13(3):629–36.

    Article 
    PubMed 

    Google Scholar
     

  • Hojo Ok, Nagaoka S, Murata S et al. Discount of vitamin Ok focus by salivary Bifidobacterium strains and their attainable dietary competitors with Porphyromonas gingivalis [J]. J Appl Microbiol. 2007.

  • Fan L, Si J, Chen S. Su514 Bifidobacterium Adolescentis ameliorates Continual Colitis by regulating Treg response [J]. Gastroenterology. 2021.

  • Roberts JL, Liu G, Darby TM, et al. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae [J]. Biomed Pharmacother. 2020.

  • Nowak A, Paliwoda A, Błasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative exercise of Lactobacillus and Bifidobacterium strains: a assessment of mechanisms and therapeutic views [J]. Crit Rev Meals Sci Nutr. 2019;59(21):3456–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez B. Bile acid–microbiota crosstalk in gastrointestinal irritation and carcinogenesis: a job for bifidobacteria and lactobacilli? [J]. Nat Rev Gastroenterol Hepatol. 2018.

  • Arvidsson I, Tontanahal A, Johansson Ok, et al. Apyrase decreases phage induction and shiga toxin launch from E. Coli O157:H7 and has a protecting impact throughout an infection [J]. Intestine Microbes. 2022.

  • Henrick BM, Hutton AA, Palumbo MC, et al. Elevated fecal pH signifies a profound change within the breastfed toddler intestine microbiome attributable to discount of Bifidobacterium over the previous century [J]. MSphere. 2018;3(2).

  • Prince T, Mcbain AJ, O’neill C A. Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus-induced cell dying by aggressive exclusion [J]. Appl Environ Microbiol. 2012;78(15):5119–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Z, Chen J, Liu Y, et al. The function of potential probiotic strains Lactobacillus reuteri in numerous intestinal ailments: new roles for an previous participant [J]. Entrance Microbiol. 2023;14:1095555.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Li L, Wang S, et al. The function of the intestine microbiota and probiotics related to microbial metabolisms in most cancers prevention and remedy [J]. Entrance Pharmacol. 2022;13:1025860.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Ishima T, Zhang J, et al. Ingestion of Lactobacillus intestinalis and Lactobacillus reuteri causes depression-and anhedonia-like phenotypes in antibiotic-treated mice through the vagus nerve [J]. J Neuroinflamm. 2020;17:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Idrees M, Imran M, Atiq N, et al. Probiotics, their motion modality and the usage of multi-omics in metamorphosis of commensal microbiota into target-based probiotics [J]. Entrance Nutr. 2022;9:959941.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diale MO, Abrahams A, Serepa-Dlamini MH. Isolation and characterization of bacteriocin-like substances from Bacillus paranthracis pressure MHSD3, a possible probiotic [J]. 2022.

  • Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome in silico and in vitro evaluation of the probiotic properties of a bacterial endophyte, Bacillus paranthracis pressure MHSD3 [J]. Entrance Genet. 2021;12:672149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greppi A, Hemery Y, Berrazaga I, et al. Capacity of lactobacilli remoted from conventional cereal-based fermented meals to provide folate in tradition media below totally different progress circumstances [J]. LWT. 2017;86:277–84.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Zeng X, Fu H, et al. Lactiplantibacillus plantarum: a complete assessment of its antifungal and anti-mycotoxic results [J]. Traits Meals Sci Technol. 2023;136:224–38.

    Article 
    CAS 

    Google Scholar
     

  • Sakurai T, Odamaki T, Xiao J-Z. Manufacturing of Indole-3-Lactic Acid by Bifidobacterium Strains Remoted fromHuman Infants [J]. Microorganisms. 2019.

  • Bozzi Cionci N Baffonil, Gaggìa F, et al. Therapeutic microbiology: the function of Bifidobacterium breve as meals complement for the prevention/remedy of paediatric ailments [J]. Vitamins. 2018;10(11):1723.

  • Levit R, De Giori GS, De Leblanc ADM et al. Growing B nutritional vitamins in meals to forestall intestinal irritation and most cancers [M]. Vitamins in dairy and their implications on Well being and Illness. Elsevier. 2017: 193–204.

  • Magryś A, Pawlik M. Postbiotic Fractions of Probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG Present Immune-Modulating Results [J]. Cells. 2023.

  • Magryś A, Pawlik M. Postbiotic fractions of probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG present immune-modulating results [J]. Cells. 2023;12(21):2538.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto J, Mizukure T, Park S-B et al. A intestine microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially through GPR40-MEK-ERK pathway [J]. J Biol Chem, 2015.

  • Le B, Yang SH. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel illness [J]. Toxicol Rep. 2018;5:314–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Yu Z, Tian F, et al. Floor elements and metabolites of probiotics for regulation of intestinal epithelial barrier [J]. Microbial Cell Factories; 2020.

  • Wang H, Zhang Q, Niu Y et al. Floor-layer protein from Lactobacillus acidophilus NCFM attenuates tumor necrosis factor-α-induced intestinal barrier dysfunction and irritation [J]. Int J Biol Macromol. 2019.

  • Swann J, Rajilic-Stojanovic M, Salonen A, et al. Issues for the design and conduct of human intestine microbiota intervention research regarding meals [J]. Eur J Nutr. 2020;59:3347–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmedes M, Brejnrod AD, Aadland EK, et al. The impact of lean-seafood and non‐Seafood diets on fecal metabolites and intestine microbiome: outcomes from a randomized crossover intervention research [J]. Molecular diet & meals analysis. 2019;63(1):1700976

  • Beaumont M, Portune KJ, Steuer N, et al. Amount and supply of dietary protein affect metabolite manufacturing by intestine microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in obese people [J]. Am J Clin Nutr. 2017;106(4):1005–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenhalgh Ok, Meyer KM, Aagaard KM, et al. The human intestine microbiome in well being: institution and resilience of microbiota over a lifetime [J]. Environ Microbiol. 2016;18(7):2103–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones R, Zhu X, Moan E, et al. Inter-niche and inter-individual variation in intestine microbial neighborhood evaluation utilizing stool, rectal swab, and mucosal samples. Sci Rep. 2018;8:4139.

  • Li Z, Li Y, Xiao C, et al. Genomic and metabolic options of the Lactobacillus sakei JD10 revealed potential probiotic traits [J]. Microbiological Analysis; 2021.

  • Abavisani M, Ebadpour N, Khoshrou A et al. Boosting vaccine effectiveness: the groundbreaking function of probiotics [J]. J Agric Meals Res. 2024;101189.

  • Chattopadhyay I, Nandi D, Nag A. The pint-sized powerhouse: Illuminating the mighty function of the intestine microbiome in bettering the result of anti-cancer remedy; proceedings of the Seminars in most cancers biology, F, 2021 [C]. Elsevier.

  • Suez J, Zmora N, Segal E, et al. The professionals, cons, and plenty of unknowns of probiotics [J]. Nat Med. 2019;25(5):716–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trush EA, Poluektova EA, Beniashvilli AG, et al. The evolution of human probiotics: challenges and prospects [J]. Probiotics Antimicrob Proteins. 2020;12:1291–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma J, Lyu Y, Liu X, et al. Eng Probiotics [J] Microb cell Factories. 2022;21(1):72.

    Article 

    Google Scholar
     

  • Fooladi S, Rabiee N, Iravani S. Genetically engineered micro organism: a brand new frontier in focused drug supply [J]. J Mater Chem B. 2023;11(42):10072–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dangi P, Chaudhary N, Chaudhary V, et al. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals expertise [J]. Int J Meals Microbiol. 2023;388:110083.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to enhance stability and viability within the gastrointestinal tract: a assessment [J]. Int J Biol Macromol. 2024: 129287.

  • Shen H, Aggarwal N, Wun KS, et al. Engineered microbial techniques for superior drug supply [J]. Adv Drug Deliv Rev. 2022;187:114364.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Kim N, Rheem HB, et al. A decade of advances in single-cell nanocoating for mammalian cells [J]. Adv Healthc Mater. 2021;10(13):2100347.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Wang Y, Heelan WJ, et al. Mucoadhesive probiotic backpacks with ROS nanoscavengers improve the bacteriotherapy for inflammatory bowel ailments [J]. Sci Adv. 2022;8(45):eabp8798.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Wei S, Yan J, et al. Improvement of double layer microcapsules for enhancing the viability of Lactobacillus casei LC2W in simulated gastrointestinal fluids [J]. LWT. 2021;145:111319.

    Article 
    CAS 

    Google Scholar
     

  • Zaeim D, Sarabi-Jamab M, Ghorani B, et al. Double layer co-encapsulation of probiotics and prebiotics by electro-hydrodynamic atomization [J]. Lwt. 2019;110:102–9.

    Article 
    CAS 

    Google Scholar
     

  • Brown TD, Whitehead KA, Mitragotri S. Supplies for oral supply of proteins and peptides [J]. Nat Opinions Mater. 2020;5(2):127–48.

    Article 

    Google Scholar
     

  • Viswanathan P, Muralidaran Y, Ragavan G. Challenges in oral drug supply: a nano-based technique to beat [M]. Nanostructures for oral medication. Elsevier. 2017: 173–201.

  • Deng B, Liu S, Wang Y, et al. Oral nanomedicine: challenges and alternatives [J]. Adv Mater. 2024;36(6):2306081.

    Article 
    CAS 

    Google Scholar
     

  • Onoue S, Yamada S, Chan H-Ok. Nanodrugs: pharmacokinetics and security [J]. Int J Nanomed. 2014;1025–37.

  • Rostami E, Kashanian S, Azandaryani AH, et al. Drug concentrating on utilizing stable lipid nanoparticles [J]. Chem Phys Lipids. 2014;181:56–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zur Mühlen A, Schwarz C, Mehnert W. Strong lipid nanoparticles (SLN) for managed drug supply–drug launch and launch mechanism [J]. Eur J Pharm Biopharm. 1998;45(2):149–55.

    Article 
    PubMed 

    Google Scholar
     

  • More durable BG, Blomquist MR, Wang J, et al. Developments in blood-brain barrier penetrance and drug repurposing for improved remedy of glioblastoma [J]. Entrance Oncol. 2018;8:462.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badar A, Pachera S, Ansari A, et al. Nano primarily based drug supply techniques: current and future prospects [J]. Nanomed Nanotechnol J. 2019;2(1):121.


    Google Scholar
     

  • Wang M, Li Y, Yang J, et al. Results of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum [J]. LWT. 2021;139:110540.

    Article 
    CAS 

    Google Scholar
     

  • Dai H, Hosseinpour S, Hua S, et al. Advances in porous inorganic nanomaterials for bone regeneration [J]. Nano TransMed. 2022;1(1):9130005.

    Article 

    Google Scholar
     

  • Liu Q, Kim YJ, Im GB, et al. Inorganic nanoparticles utilized as purposeful therapeutics [J]. Adv Funct Mater. 2021;31(12):2008171.

    Article 
    CAS 

    Google Scholar
     

  • Zou Y, Huang B, Cao L, et al. Tailor-made mesoporous inorganic biomaterials: meeting, functionalization, and drug supply engineering [J]. Adv Mater. 2021;33(2):2005215.

    Article 
    CAS 

    Google Scholar
     

  • Huang H, Feng W, Chen Y, et al. Inorganic nanoparticles in medical trials and translations [J]. Nano At this time. 2020;35:100972.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Liu J, Shi L, et al. Gold nanoparticles-embedded ceria with enhanced antioxidant actions for treating inflammatory bowel illness [J]. Bioactive Mater. 2023;25:95–106.

    Article 
    CAS 

    Google Scholar
     

  • Hao W, Cha R, Wang M, et al. Ligand-modified gold nanoparticles as mitochondrial modulators: regulation of intestinal barrier and remedy for constipation [J]. ACS Nano. 2023;17(14):13377–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y-X, You Y, Chen Z, et al. Inorganic nanosheet-shielded probiotics: a self-adaptable oral supply system for intestinal illness remedy [J]. Nano Lett. 2023;23(10):4683–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin M, Zhang X, Ding H et al. Engineered Probiotic bio-heterojunction with Sturdy Antibiofilm Modality through Consuming Extracellular Polymeric substances for Wound regeneration [J]. Adv Mater. 2024;2402530.

  • Wang W, Zhang L, Deng Q, et al. Yeast@ MOF bioreactor as a tumor metabolic symbiosis disruptor for the potent inhibition of metabolically heterogeneous tumors [J]. Nano At this time. 2022;42:101331.

    Article 
    CAS 

    Google Scholar
     

  • Buss MT, Ramesh P, English MA et al. Spatial Management of Probiotic Micro organism within the gastrointestinal tract assisted by magnetic particles [J]. Adv Mater, 2021.

  • Ramalingam V. Multifunctionality of gold nanoparticles: believable and convincing properties [J]. Adv Colloid Interface Sci. 2019;271:101989.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, et al. A assessment on the newest developments of mesoporous silica nanoparticles as a promising platform for analysis and remedy of most cancers [J]. Int J Pharm. 2022;625:122099.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma A, Yan J, Siwakoti P, et al. Morphology and temporal interactions of silica particles affect the chemotherapeutic most cancers cell dying [J]. Nano TransMed. 2024;3:100053.

    Article 

    Google Scholar
     

  • Kundu S, Ghosh M, Sarkar N. Cutting-edge and views on the biofunctionalization of fluorescent metallic nanoclusters and carbon quantum dots for focused imaging and drug supply [J]. Langmuir. 2021;37(31):9281–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrovic S, Bita B, Barbinta-Patrascu M-E. Nanoformulations in Pharmaceutical and Biomedical Purposes: Inexperienced views [J]. Int J Mol Sci. 2024;25(11):5842.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Chen Z, Zhao D, et al. A pH-Triggered Self‐Unpacking Capsule Containing Zwitterionic Hydrogel‐Coated MOF nanoparticles for environment friendly oral Exendin‐4 supply [J]. Adv Mater. 2021;33(32):2102044.

    Article 
    CAS 

    Google Scholar
     

  • Lawson HD, Walton SP, Chan C. Metallic–natural frameworks for drug supply: a design perspective [J]. ACS Appl Mater Interfaces. 2021;13(6):7004–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Hu Z, Jin W, et al. Intrafibrillar mineralization and immunomodulatory for synergetic enhancement of bone regeneration through calcium phosphate nanocluster scaffold [J]. Adv Healthc Mater. 2023;12(12):2201548.

    Article 
    CAS 

    Google Scholar
     

  • Singh TA, Sharma A, Tejwan N, et al. A state-of-the-art assessment on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration actions of zinc oxide nanoparticles [J]. Adv Colloid Interface Sci. 2021;295:102495.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asgari S, Pourjavadi A, Licht TR, et al. Polymeric carriers for enhanced supply of probiotics [J]. Adv Drug Deliv Rev. 2020;161:1–21.

    Article 
    PubMed 

    Google Scholar
     

  • Grewal AK, Salar RK. Chitosan nanoparticle supply techniques: an efficient strategy to enhancing efficacy and security of anticancer medicine [J]. Nano TransMed. 2024;3:100040.

    Article 

    Google Scholar
     

  • Alves VD, Torres CA, Freitas F. Bacterial polymers as supplies for the event of micro/nanoparticles [J]. Int J Polym Mater Polym Biomaterials. 2016;65(5):211–24.

    Article 
    CAS 

    Google Scholar
     

  • Dutta H. Potential of polysaccharide nanoparticles in meals [M]. Nanotechnology Horizons in meals course of Engineering. Apple Acad Press. 2023;85–155.

  • Hu Q, Li J, Wang T, et al. Polyphenolic nanoparticle-modified Probiotics for Microenvironment Reworking and focused remedy of inflammatory bowel illness [J]. ACS nano. 2024.

  • Fu J, Liu X, Cui Z, et al. Probiotic-based nanoparticles for focused microbiota modulation and immune restoration in bacterial pneumonia [J]. Natl Sci Rev. 2023;10(2):nwac221.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajalloueian F, Guerra PR, Bahl MI, et al. Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic supply [J]. Meals Hydrocolloids. 2022;123:107112.

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto H, Kuno Y, Sugimoto S, et al. Floor-modified PLGA nanosphere with Chitosan improved pulmonary supply of calcitonin by mucoadhesion and opening of the intercellular tight junctions [J]. J Managed Launch. 2005;102(2):373–81.

    Article 
    CAS 

    Google Scholar
     

  • Hassan S, Prakash G, Ozturk AB, et al. Evolution and medical translation of drug supply nanomaterials [J]. Nano At this time. 2017;15:91–106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: manufacturing strategies and their purposes within the vaccinal subject [J]. J Translational Med. 2024;22(1):339.

    Article 
    CAS 

    Google Scholar
     

  • Tenchov R, Chook R, Curtze AE, et al. Lipid nanoparticles from liposomes to mRNA vaccine supply, a panorama of analysis range and development [J]. ACS Nano. 2021;15(11):16982–7015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Present approaches in lipid-based nanocarriers for oral drug supply [J]. Drug Supply Translational Res. 2021;11:471–97.

    Article 
    CAS 

    Google Scholar
     

  • Zhao P, Xia X, Xu X, et al. Nanoparticle-assembled bioadhesive coacervate coating with extended gastrointestinal retention for inflammatory bowel illness remedy [J]. Nat Commun. 2021;12(1):7162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Yu C. Nanostructured supplies: Physicochemical Fundamentals for Vitality and Environmental purposes [M]. Elsevier. 2023.

  • Chen T, Meng W, Li Y et al. Probiotics Armed with in situ mineralized nanocatalysts and focused Biocoatings for Multipronged Therapy of Inflammatory Bowel Illness [J]. Nano Lett, 2024.

  • Du X, Wang S, Lou Z, et al. Preparation, characterization and purposeful properties of ternary composite nanoparticles for enhanced water solubility and bioaccessibility of lutein [J]. Meals Hydrocolloids. 2023;144:109039.

    Article 
    CAS 

    Google Scholar
     

  • Ding X, Xu Y, Wang Y, et al. Carboxymethyl Konjac Glucomannan-Chitosan advanced nanogels stabilized double emulsions integrated into alginate hydrogel beads for the encapsulation, safety and supply of probiotics [J]. Carbohydr Polym. 2022;289:119438.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu J, Jiang Z, Ren J, et al. One-Pot synthesis of multifunctional carbon‐primarily based nanoparticle‐supported dispersed Cu2 + disrupts redox homeostasis to reinforce CDT [J]. Angew Chem Int Ed. 2022;61(4):e202114373.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Peng M, Tan S, et al. Calcium Tungstate Microgel enhances the supply and colonization of Probiotics throughout Colitis through Intestinal ecological area of interest occupancy [J]. ACS Cent Sci. 2023;9(7):1327–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W-C, Wang W, Wang W, et al. A double-layer Polysaccharide Hydrogel (DPH) for the improved intestine-targeted oral supply of probiotics [J]. Engineering. 2024;34:187–94.

    Article 
    CAS 

    Google Scholar
     

  • Rajasekharan SK, Paz-Aviram T, Galili S, et al. Biofilm formation onto starch fibres by Bacillus subtilis governs its profitable adaptation to chickpea milk [J]. Microb Biotechnol. 2021;14(4):1839–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Jiang H, Wang J, et al. Superior in vitro anticancer impact of biomimetic paclitaxel and triptolide co-delivery system in gastric most cancers [J]. J Biomedical Res. 2021;35(4):327.

    Article 
    CAS 

    Google Scholar
     

  • Wu F, Liu J. Embellished micro organism and the appliance in drug supply [J]. Adv Drug Deliv Rev. 2022;188:114443.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Gao X, Ren X, et al. Micro organism-Induced Colloidal Encapsulation for probiotic oral supply [J]. ACS Nano. 2023.

  • Xie S, Zhao L, Music X et al. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to realize tumor concentrating on and responsive drug launch [J]. J Managed Launch, 2017.

  • Liu C, Xu B, Mcclements DJ, et al. Properties of curcumin-loaded zein-tea saponin nanoparticles ready by antisolvent co-precipitation and precipitation [J]. Meals Chemistry. 2022.

  • Xie X, Li Q, Jia L, et al. Multishell Colloidosome platform with sequential gastrointestinal resistance for On-Demand probiotic supply [J]. Adv Healthc Mater. 2023;12(12):2202954.

    Article 
    CAS 

    Google Scholar
     

  • Yin Y, Li Z, Gao H, et al. Microfluidics-Derived Microparticles with Prebiotics and Probiotics for enhanced in situ colonization and immunoregulation of colitis [J]. Nano Lett. 2024;24(4):1081–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazaka Ok, Jacob MV, Crawford RJ, et al. Plasma-assisted floor modification of natural biopolymers to forestall bacterial attachment [J]. Acta Biomater. 2011;7(5):2015–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Xia Q, Guo H, et al. Adorning Micro organism with Triple Immune Nanoactivators generates Tumor-Resident dwelling immunotherapeutics [J]. Angewandte Chemie Worldwide Version. 2022.

  • Liang Y, Xu J, Solar Z, et al. Analysis progress on the correlation between bacterial biofilm microenvironment and cost regulation [J]. IEEE Trans Dielectr Electr Insul. 2022;29(4):1540–5.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Liu N, Zhu J, et al. Engineered probiotics with sustained launch of interleukin-2 for the remedy of inflammatory bowel illness after oral supply [J]. Biomaterials. 2024;309:122584.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Li W, Wang Y, et al. Biomaterials coating for on-demand micro organism supply: selective launch, adhesion, and detachment [J]. Nano At this time. 2021;41:101291.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Liu J, Yuan S et al. Double-layer probiotic encapsulation for enhanced bacteriotherapy towards inflammatory bowel illness [J]. Nano Res. 2024: 1–8.

  • Zhou J, Li M, Chen Q, et al. Programmable probiotics modulate irritation and intestine microbiota for inflammatory bowel illness remedy after efficient oral supply [J]. Nat Commun. 2022;13(1):3432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie A, Ji H, Liu Z, et al. Modified prebiotic-based protect armed probiotics with enhanced resistance of gastrointestinal stresses and extended intestinal retention for synergistic alleviation of colitis [J]. ACS Nano. 2023;17(15):14775–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang A, Zhao S, Tyson J et al. Purposes of artificial polymers directed towards dwelling cells [J]. Nat Synthesis. 2024.

  • Zheng D-W, Pan P, Chen Ok-W, et al. An orally delivered microbial cocktail for the elimination of nitrogenous metabolic waste in animal fashions of kidney failure [J]. Nat Biomedical Eng. 2020;4(9):853–62.

    Article 
    CAS 

    Google Scholar
     

  • Lengthy Y, Ma M, Wang Y et al. Sequence-controlled polymers constructed by alkyne-based polymerizations [J]. Big, 2023:100168.

  • Music W-F, Yao W-Q, Chen Q-W, et al. In situ bioorthogonal conjugation of delivered micro organism with intestine inhabitants for enhancing probiotics colonization [J]. ACS Cent Sci. 2022;8(9):1306–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng DW, Li RQ, An JX, et al. Prebiotics-encapsulated probiotic spores regulate intestine microbiota and suppress colon most cancers [J]. Adv Mater. 2020;32(45):2004529.

    Article 
    CAS 

    Google Scholar
     

  • He Yuanqing HY, Ma Chaoyue MC, Pan Ye PY et al. Bioavailability of corn gluten meal hydrolysates and their results on the immune system [J]. 2018.

  • Liu B, Hu J, Yao H, et al. Improved viability of probiotics encapsulated by layer-by-layer meeting utilizing zein nanoparticles and pectin [J]. Meals Hydrocolloids. 2023;143:108899.

    Article 
    CAS 

    Google Scholar
     

  • Fu Q, Wei C, Wang M, Transition-Metallic-Based mostly, Nanozymes. Synthesis, mechanisms of therapeutic motion, and purposes in Most cancers remedy [J]. ACS Nano. 2024;18(19):12049–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Hu L, Wang X, et al. Increasing from supplies to biology impressed by biomineralization [J]. Interdisciplinary Supplies; 2024.

  • Geng Z, Wang X, Wu F, et al. Biointerface mineralization generates ultraresistant intestine microbes as oral biotherapeutics [J]. Sci Adv. 2023;9(11):eade0997.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Ok, Chen Q, Ding L, et al. Mucoadhesive probiotic-based oral microcarriers with extended intestinal retention for inflammatory bowel illness remedy [J]. Nano At this time. 2023;50:101876.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Zhang W, Bai M, et al. Edible plant-derived extracellular vesicles function promising therapeutic techniques [J]. Nano TransMed. 2023;2(2):100004.

    Article 

    Google Scholar
     

  • Liang D, Liu C, Li Y, et al. Engineering fucoxanthin-loaded probiotics’ membrane vesicles for the dietary intervention of colitis [J]. Biomaterials. 2023;297:122107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Deng Y, Geng W, et al. Infectious and inflammatory Microenvironment Self-Adaptive Synthetic Peroxisomes with Synergetic Co‐Ru Pair Facilities for Programmed Diabetic Ulcer Remedy [J]. Adv Mater. 2024;36(38):2408787.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Wang Y, Liu J, et al. Chemically and biologically engineered bacteria-based supply techniques for rising analysis and superior remedy [J]. Adv Mater. 2021;33(38):2102580.

    Article 
    CAS 

    Google Scholar
     

  • Cheng W, He L, Ren W, et al. Micro organism-nanodrug most cancers remedy system: the mix of twin swords and the confrontation of needle ideas [J]. Nano TransMed. 2023;2(2):100008.

    Article 

    Google Scholar
     

  • Yang Y, Hu T, Bian Y, et al. Coupling probiotics with 2D CoCuMo-LDH nanosheets as a tumor‐microenvironment‐responsive platform for exact NIR‐II photodynamic remedy [J]. Adv Mater. 2023;35(23):2211205.

    Article 
    CAS 

    Google Scholar
     

  • Cao Y, Liu S, Ma Y et al. Oral nanomotor-enabled mucus Traverse and Tumor Penetration for focused chemo-sono-immunotherapy towards Colon most cancers [J]. Small. 2022.

  • Bender MJ, Mcpherson AC, Phelps CM et al. Dietary tryptophan metabolite launched by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor remedy [J]. Cell. 2023.

  • Wang Y, Zhao L, Gao L, et al. Well being coverage and public well being implications of weight problems in China [J]. The lancet Diabetes & endocrinology. 2021;9(7):446–61.

  • Takeuchi T, Kameyama Ok, Miyauchi E et al. Fatty acid overproduction by intestine commensal microbiota exacerbates weight problems [J]. Cell metabolism. 2023;35(2):361 – 75.e9.

  • Breisch ST, Zemlan FP, Hoebel BG. Hyperphagia and weight problems following serotonin depletion by intraventricular p-chlorophenylalanine [J]. Science. 1976;192(4237):382–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones LA, Solar EW, Martin AM, et al. The ever-changing roles of serotonin [J]. Int J Biochem Cell Biol. 2020;125:105776.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato M, Uzu Ok, Yoshida T, et al. Results of milk fermented byLactobacillusgasseri SBT2055 on adipocyte dimension in rats [J]. Br J Nutr. 2008;99(5):1013–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro CFA, Silveira G, G D O S, Candido EDS, et al. Results of antibiotic remedy on intestine microbiota and the best way to overcome its unfavorable impacts on human well being [J]. ACS Infect Dis. 2020;6(10):2544–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA. Potential utility of the probiotic Bacillus licheniformis as an adjuvant within the remedy of ailments in people and animals: a scientific assessment [J]. Entrance Microbiol. 2022;13:993451.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan J, Gong G, Wang Q, et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea [J]. Nat Commun. 2022;13(1):2117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi C, Dawulieti J, Shi F, et al. A nanoparticulate twin scavenger for focused remedy of inflammatory bowel illness [J]. Sci Adv. 2022;8(4):eabj2372.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng P, Feng T, Yang X, et al. Gastrointestinal Microenvironment Responsive Nanoencapsulation of Probiotics and medicines for synergistic remedy of Intestinal ailments [J]. ACS Nano. 2023.

  • Xu J, Xu J, Shi T, et al. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox stability, immune responses, and the intestine microbiome [J]. Adv Mater. 2023;35(3):2207890.

    Article 
    CAS 

    Google Scholar
     

  • Miller V, Jenkins DA, Dehghan M, et al. Associations of the glycaemic index and the glycaemic load with threat of kind 2 diabetes in 127 594 folks from 20 nations (PURE): a potential cohort research [J]. The Lancet Diabetes & Endocrinology. 2024;12(5): 330–8. 5.

  • Chen Y, Li P, Modica JA, et al. Acid-resistant mesoporous metallic–natural framework towards oral insulin supply: protein encapsulation, safety, and launch [J]. J Am Chem Soc. 2018;140(17):5678–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunt NJ, Lockwood GP, Heffernan SJ et al. Oral nanotherapeutic formulation of insulin with diminished episodes of hypoglycaemia [J]. Nat Nanotechnol, 2024: 1–11.

  • Takeuchi T, Kubota T, Nakanishi Y, et al. Intestine microbial carbohydrate metabolism contributes to insulin resistance [J]. Nature. 2023;621(7978):389–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amini M, Zayeri F, Salehi M. Pattern evaluation of heart problems mortality, incidence, and mortality-to-incidence ratio: outcomes from international burden of illness research 2017 [J]. BMC Public Well being. 2021;21:1–12.

    Article 

    Google Scholar
     

  • Pavlidou E, Fasoulas A, Mantzorou M, et al. Scientific proof on the potential useful results of probiotics and prebiotics in heart problems [J]. Int J Mol Sci. 2022;23(24):15898.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar D, Ashraf GM, Bilgrami AL, et al. Rising therapeutic developments in neurodegenerative ailments: a medical investigation [J]. Drug Discovery At this time. 2022;27(10):103305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanmarco LM, Rone JM, Polonio CM, et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells [J]. Nature. 2023;620(7975):881–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang D, Wu F, Zhou D, et al. Business probiotic merchandise in public well being: present standing and potential limitations [J]. Crit Rev Meals Sci Nutr. 2024;64(19):6455–76.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Yuan S, Bremmer A, et al. Convergence of Nanotechnology and Bacteriotherapy for Biomedical purposes [J]. Adv Sci. 2024;11(16):2309295.

    Article 
    CAS 

    Google Scholar
     

  • Hoffmann DE, Fraser CM, Palumbo F, et al. Probiotics: attaining a greater regulatory match [J]. Meals Drug Regulation J. 2014;69(2):237.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toscano M, Vecchi ED, Rodighiero V, et al. Microbiological and genetic identification of some probiotics proposed for medical use in 2011 [J]. J Chemother. 2013;25(3):156–61.

    Article 
    PubMed 

    Google Scholar
     

  • Gong Y, Liu Z, Zhou P, et al. Biomimetic nanocarriers harnessing microbial metabolites usher the trail for mind illness remedy [J]. Nano TransMed. 2023;2(4):100020.

    Article 

    Google Scholar
     

  • Parker A, Fonseca S, Carding SR. Intestine microbes and metabolites as modulators of blood-brain barrier integrity and mind well being [J]. Intestine Microbes. 2020;11(2):135–57.

    Article 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, et al. The blood–mind barrier: construction, regulation, and drug supply [J]. Sign Transduct Goal Remedy. 2023;8(1):217.

    Article 

    Google Scholar
     

  • Abbott NJ, Patabendige AA, Dolman DE, et al. Construction and performance of the blood–mind barrier [J]. Neurobiol Dis. 2010;37(1):13–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hold Z, Lei T, Zeng Z, et al. Composition of intestinal flora impacts the danger relationship between Alzheimer’s illness/Parkinson’s illness and most cancers [J]. Biomedicine & Pharmacotherapy. 2022;145:112343.

  • Skonieczna-Żydecka Ok, Jakubczyk Ok, Maciejewska-Markiewicz D, et al. Intestine biofactory—neurocompetent metabolites throughout the gastrointestinal tract. Scoping Rev [J] Vitamins. 2020;12(11):3369.

    Article 

    Google Scholar
     

  • Guo M, Yang C, Li B, et al. Bionic dormant physique of timed wake-up for bacteriotherapy in vivo [J]. ACS Nano. 2022;16(1):823–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suda Ok, Matsuda Ok. How microbes have an effect on melancholy: underlying mechanisms through the intestine–mind axis and the modulating function of probiotics [J]. Int J Mol Sci. 2022;23(3):1172.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju S, Shin Y, Han S, et al. The intestine–mind axis in schizophrenia: the implications of the intestine microbiome and SCFA manufacturing [J]. Vitamins. 2023;15(20):4391.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu L, Yu T, Wang W, et al. Responsively degradable nanoarmor-assisted Tremendous Resistance and secure colonization of Probiotics for enhanced irritation‐focused supply [J]. Adv Mater. 2024;36(18):2308728.

    Article 
    CAS 

    Google Scholar
     

  • Gershon MD, Margolis KG. The intestine, its microbiome, and the mind: connections and communications [J]. J Clin Investig. 2021;131(18).

  • Wang S, Zhou X, Ma Y et al. Intestine-to-brain neuromodulation by artificial butyrate-producing commensal micro organism [J]. Innov Life, 2024: 100082–1.

  • Agirman G, Hsiao EY, SnapShot. The microbiota-gut-brain axis [J]. Cell. 2021;184(9):2524. e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bravo JA, Forsythe P, Chew MV et al. Ingestion of Lactobacillus pressure regulates emotional conduct and central GABA receptor expression in a mouse through the vagus nerve [J]. Proceedings of the Nationwide Academy of Sciences. 2011;108(38):16050-5.

  • De Santa F, Strimpakos G, Marchetti N, et al. Impact of a multi-strain probiotic combination consumption on anxiousness and melancholy signs induced in grownup mice by postnatal maternal separation [J]. Microbiome. 2024;12(1):29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles