19.8 C
United States of America
Saturday, November 16, 2024

Nanotechnology in healthcare, and its security and environmental dangers | Journal of Nanobiotechnology


  • Armarego WLF. Nanomaterials. In: Armarego WLF, editor. Purification of laboratory chemical substances. Oxford: Butterworth-Heinemann; 2022. p. 586–630.

    Chapter 

    Google Scholar
     

  • Singh A, Amiji MM. Utility of nanotechnology in medical analysis and imaging. Curr Opin Biotechnol. 2022;74:241–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa AI, Rebelo R, Reis RL, Bhattacharya M, Correlo VM. Present nanotechnology advances in diagnostic biosensors. Med Gadgets Sens. 2021;4(1): e10156.

    Article 
    CAS 

    Google Scholar
     

  • Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: increasing prospects with nanoparticles. Nanotechnology. 2024;35(39): 392002.

    Article 

    Google Scholar
     

  • Malik S, Muhammad Ok, Waheed Y. Rising purposes of nanotechnology in healthcare and drugs. Molecules. 2023;28(18):6624.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Sensible nanoparticles for most cancers remedy. Signal Transduct Goal Ther. 2023;8(1):418.

    Article 
    CAS 

    Google Scholar
     

  • Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical programs based mostly on copper nanoparticles: synthesis, characterization, and purposes. Coll Surf B Biointerface. 2024;237: 113861.

    Article 
    CAS 

    Google Scholar
     

  • Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping evaluate of the present literature. BMC Public Well being. 2023;23(1):1059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali F, Neha Ok, Parveen S. Present regulatory panorama of nanomaterials and nanomedicines: a worldwide perspective. J Drug Deliv Sci Technol. 2023;80: 104118.

    Article 
    CAS 

    Google Scholar
     

  • Paras Ok, Yadav P, Kumar DR, Teja S, Chakraborty M, Chakraborty SS, Mohapatra A, Sahoo MMC, Chou CT, Liang DRH. A evaluate on low-dimensional nanomaterials: nanofabrication. Charact Appl Nanomater. 2022;13(1):160.


    Google Scholar
     

  • Barhoum A, Garcia-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, Abdalla MSM, Bechelany. Evaluate on pure, incidental, bioinspired, and engineered nanomaterials: historical past, definitions, classifications, synthesis, properties, market, toxicities, dangers, and rules. Nanomaterials. 2022;12(2):177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datta D, Das KP, Deepak KS, Das B. Candidates of functionalized nanomaterial-based membranes. In: Dutta S, Hussain CM, editors. Membranes with functionalized nanomaterials. Amsterdam: Elsevier; 2022. p. 81–127.

    Chapter 

    Google Scholar
     

  • Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Natural nanodelivery programs as a brand new platform within the administration of breast most cancers: a complete evaluate from preclinical to scientific research. J Clin Med. 2023;12(7):2648.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Yang J, Gao F, Zhang Q. Covalent natural frameworks: current progress in biomedical purposes. ACS Nano. 2023;17(3):1879–905.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tripathi A, Bonilla-Cruz J. Evaluate on healthcare biosensing nanomaterials. Acs Appl Nano Mater. 2023;6(7):5042–74.

    Article 
    CAS 

    Google Scholar
     

  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a evaluate. Polym Degrad Stab. 2010;95(11):2126–46.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Fang F, Li L, Zhang J. Self-assembled natural nanomaterials for drug supply, bioimaging, and most cancers remedy. ACS Biomater Sci Eng. 2020;6(9):4816–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu M, Yim W, Zhou JJ, Zhou JC, Jin ZC, Moore C, Borum R, Jorns A, Jokerst JV. The applying of natural nanomaterials for bioimaging, drug supply, and remedy Spanning numerous domains. IEEE Nanatechnol Magazine. 2021;15(4):8–28.

    Article 

    Google Scholar
     

  • Mantri Y, Jokerst JV. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano. 2020;14(8):9408–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng Ok, Zhang X, Chen C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores within the second near-infrared window. Nat Commun. 2014;5(1):4206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent natural frameworks: from managed synthesis to most cancers remedy. Chem Commun. 2021;57(93):12417–35.

    Article 
    CAS 

    Google Scholar
     

  • Yao S, Liu Z, Li L. Latest progress in nanoscale covalent natural frameworks for most cancers analysis and remedy. Nanomicro Lett. 2021;13(1):176.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allahou LW, Madani SY, Seifalian A. Investigating the applying of liposomes as drug supply programs for the analysis and remedy of most cancers. Int J Biomater. 2021; 20211–16. https://doi.org/10.1155/2021/3041969.

  • Rommasi F, Esfandiari N. Liposomal nanomedicine: purposes for drug supply in most cancers remedy. Nanoscale Res Lett. 2021;16(1):95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi Ok, Kochat H, Kumar S. Focused drug supply to the central nervous system utilizing extracellular vesicles. Prescribed drugs. 2022;15(3):358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng YT, OuncesY, Gu YM, Ahamad N, Shariati Ok, Chevalier J, Kapur D, Annabi N. Rational design of polymeric micelles for focused therapeutic supply. Nano At the moment. 2024;55: 102147.

    Article 
    CAS 

    Google Scholar
     

  • Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, Sohail M, Khan A, Abdullaev SS, Khan R. Natural and inorganic nanomaterials: fabrication, properties and purposes. RSC Adv. 2023;13(20):13735–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natesan V, Kim SJ. The pattern of natural based mostly nanoparticles within the remedy of diabetes and its views. Biomol Ther. 2023;31(1):16–26.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with fast clearance for biomedical purposes. Chem Soc Rev. 2021;50(15):8669–742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarschler Ok, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and views for biomedical purposes. Nanomedicine. 2016;12(6):1663–701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological purposes: ongoing analysis and scientific trials. Nanoscale Adv. 2020;2(11):5046–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, Rizzolio F. Inorganic nanoparticles for most cancers remedy: a transition from lab to clinic. Curr Med Chem. 2020;25(34):4269–303.

    Article 

    Google Scholar
     

  • Knezevic NZ, Kaluderovic GN. Silicon-based nanotheranostics. Nanoscale. 2017;9(35):12821–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Rising 2D nanomaterials for biomedical purposes. Mater At the moment. 2021;50:276–302.

    Article 
    CAS 

    Google Scholar
     

  • Jakubczak M, Szuplewska A, Rozmyslowska-Wojciechowska A, Rosenkranz A, Jastrzebska AM. Novel 2D MBenes-synthesis, construction, and biotechnological potential. Adv Funct Mater. 2021;31(38):2103048.

    Article 
    CAS 

    Google Scholar
     

  • Riley PR, Narayan RJ. Latest advances in carbon nanomaterials for biomedical purposes: a evaluate. Curr Opin Biomed Eng. 2021;17: 100262.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory illnesses: prevention and remedy. Sign Transduct Goal Ther. 2024;9(1):34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile varieties of natural/inorganic nanohybrids: from strategic design to biomedical purposes. Chem Rev. 2019;119(3):1666–762.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poma A, Brahmbhatt H, Watts JK, Turner NW. Nucleoside-tailored molecularly imprinted polymeric nanoparticles (MIP NPs). Macromolecules. 2014;47(18):6322–30.

    Article 
    CAS 

    Google Scholar
     

  • Poma A, Brahmbhatt H, Pendergraff HM, Watts JK, Turner NW. Technology of novel hybrid aptamer-molecularly imprinted polymeric nanoparticles. Adv Mater. 2015;27(4):750–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brahmbhatt H, Poma A, Pendergraff HM, Watts JK, Turner NW. Enchancment of DNA recognition by means of molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs). Biomater Sci. 2016;4(2):281–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park W, Shin H, Choi B, Rhim WK, Na Ok, Han DK. Superior hybrid nanomaterials for biomedical purposes. Prog Mater Sci. 2020;114: 100686.

    Article 
    CAS 

    Google Scholar
     

  • Ling D, Park W, Park YI, Lee N, Li F, Track C, Yang SG, Choi SH, Na Ok, Hyeon T. A number of-interaction ligands impressed by mussel adhesive protein: synthesis of extremely secure and biocompatible nanoparticles. Angew Chem Int Ed Engl. 2011;50(48):11360–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiozzi V, Rossi F. Inorganic-organic core/shell nanoparticles: progress and purposes. Nanoscale Adv. 2020;2(11):5090–105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hideshima S, Hinou H, Ebihara D, Sato R, Kuroiwa S, Nakanishi T, Nishimura S, Osaka T. Attomolar detection of influenza a virus hemagglutinin human H1 and avian H5 utilizing glycan-blotted subject impact transistor biosensor. Anal Chem. 2013;85(12):5641–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, He Z, Li B, Cheng T, Liu G. AND logic-like pH- and light-dual managed drug supply by floor modified mesoporous silica nanoparticles. Mater Sci Eng C Mater Biol Appl. 2017;73:1–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L. Synthesis and activation of pH-sensitive metallic–natural framework Sr (BDC)∞ for oral drug supply. Dalton Trans. 2024;53(3):1048–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar XJ, Li H, Qi LJ, Wang F, Hou YC, Li JG, Guan SK. Building and biocompatibility analysis of MOF/ S-HA composite coating on the floor of magnesium alloy vascular stent. Prog Org Coat. 2024;189: 108177.

    Article 

    Google Scholar
     

  • Wang H, Fang T, Wang J, Zhang M, Mu X, Gao T, Wei T, Dai Z. Adaptive dimension evolution of an MOFs-in-MOF nanovehicle for enhanced nucleus-targeted tumor chemotherapy. Nano Lett. 2024. https://doi.org/10.1021/acs.nanolett.4c02817.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of purposeful nanomaterials for magnetic resonance imaging and biomedical engineering purposes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(4): e1800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li HC, Yang SQ, Hui D, Hong RY. Progress in magnetic Fe O nanomaterials in magnetic resonance imaging. Nanotechnol Rev. 2020;9(1):1265–83.

    Article 
    CAS 

    Google Scholar
     

  • Gao ZY, Ma TC, Zhao EY, Docter D, Yang WS, Stauber RH, Gao MY. Small is smarter: nano MRI distinction brokers—benefits and up to date achievements. Small. 2016;12(5):556–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu X, Xiong H, Zhou Q, Zhao Z, Zhang Y, Li Y, Wang S, Shi S. A pH-activatable MnCO(3) nanoparticle for improved magnetic resonance imaging of tumor malignancy and metastasis. ACS Appl Mater Interfaces. 2021;13(16):18462–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao Q, Gu M, Hong C, Wang H, Ruan X, Liu Z, Yuan B, Xu M, Dong C, Mou L, Gao X, Tang G, Chen T, Wu A, Pan Y. A contrast-enhanced Tri-modal MRI approach for high-performance hypoxia imaging of breast most cancers. Small. 2024;20(28): e2308850.

    Article 
    PubMed 

    Google Scholar
     

  • Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast brokers for computed tomography and magnetic resonance. Sci Prog. 2024;107(1):368504241228076.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kee PH, Danila D. CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. Nanomedicine. 2018;14(6):1941–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Zhu J, Wang S, Zhao L, Wei P, Yi T. Self-assembled nano-CT distinction agent leveraging dimension aggregation for improved in vivo tumor CT imaging. Adv Mater. 2024;36(2): e2309789.

    Article 
    PubMed 

    Google Scholar
     

  • Solar X, Cai W, Chen X. Positron emission tomography imaging utilizing radiolabeled inorganic nanomaterials. Acc Chem Res. 2015;48(2):286–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, Cai T, Van Dort ME, Ross BD, Hong H. In vivo concentrating on and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano. 2017;11(4):4315–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YP, Pan ZW, Jiang YJ, Peng YY, Cai T, Hong H, Wang XF. Zirconium-containing nanoscale coordination polymers for positron emission tomography and fluorescence-guided cargo supply to triple-negative breast tumors. Acta Biomater. 2024;179:313–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung KO, Kim TJ, Yu JH, Rhee S, Zhao W, Ha B, Purple-Horse Ok, Gambhir SS, Pratx G. Complete-body monitoring of single cells by way of positron emission tomography. Nat Biomed Eng. 2020;4(8):835–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based distinction brokers. Nat Rev Methodology Prim. 2023;3(1):30.

    Article 
    CAS 

    Google Scholar
     

  • Malhotra BD, Ali MA. Nanomaterials in biosensors. In: Malhotra BD, Ali MA, editors. Nanomaterials for biosensors. Norwich: William Andrew Publishing; 2018. p. 1–74.


    Google Scholar
     

  • Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA. MIP sensors—the electrochemical strategy. Anal Bioanal Chem. 2012;402(5):1827–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malik S, Singh J, Goyat R, Saharan Y, Chaudhry V, Umar A, Ibrahim AA, Akbar S, Ameen S, Baskoutas S. Nanomaterials-based biosensor and their purposes: a evaluate. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e19929.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A evaluate of nanomaterials for biosensing purposes. J Mater Chem B. 2024;12(5):1168–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wozniak M, Ploska A, Siekierzycka A, Dobrucki LW, Kalinowski L, Dobrucki IT. Molecular imaging and nanotechnology-emerging instruments in diagnostics and remedy. Int J Mol Sci. 2022;23(5):2658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poma A, Turner APF, Piletsky SA. Advances within the manufacture of MIP nanoparticles. Development Biotechnol. 2010;28(12):629–37.

    Article 
    CAS 

    Google Scholar
     

  • Poma A, Whitcombe M, Piletsky S. Plastic antibodies. In: Piletsky SA, Whitcombe MJ, editors. Designing receptors for the subsequent technology of biosensors. Berlin: Springer; 2013. p. 105–29.


    Google Scholar
     

  • Muzyka Ok, Karim Ok, Guerreiro A, Poma A, Piletsky S. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles utilizing automated photoreactor. Nanoscale Res Lett. 2014;9(1):154.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furth ME, Atala A. Tissue engineering. In: Lanza R, Langer R, Vacanti J, editors. Ideas of tissue engineering. Boston: Educational Press; 2014. p. 83–123.

    Chapter 

    Google Scholar
     

  • Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Functions of nanomaterials in tissue engineering. RSC Adv. 2021;11(31):19041–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar R, Aadil KR, Ranjan S, Kumar VB. Advances in nanotechnology and nanomaterials based mostly methods for neural tissue engineering. J Drug Deliv Sci Technol. 2020;57: 101617.

    Article 
    CAS 

    Google Scholar
     

  • Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M. The management of neural cell-to-cell interactions by means of non-contact electrical subject stimulation utilizing graphene electrodes. Biomaterials. 2011;32(1):19–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu X, Li G, Jiao W, Li Ok, Zhang T, Liu X, Fan H. Magnetic nanomaterials-mediated neuromodulation. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(4): e1890.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaparro CIP, Simões BT, Borges JP, Castanho MARB, Soares PIP, Neves V. A promising strategy: magnetic nanosystems for alzheimer’s illness theranostics. Pharmaceutics. 2023;15(9):2316.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Cui X, Ke PC, Mortimer M, Wang X, Bao L, Chen C. Nanomaterials as novel brokers for amelioration of Parkinson’s illness. Nano At the moment. 2021;41: 101328.

    Article 
    CAS 

    Google Scholar
     

  • Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Latest advances in nanomaterials for the remedy of spinal wire damage. Mater At the moment Bio. 2023;18: 100524.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XD, Cui X, Wang DC, Wang S, Liu ZR, Zhao GR, Zhang Y, Li Z, Wang ZL, Li LL. Piezoelectric nanotopography induced neuron-like differentiation of stem cells. Adv Funct Mater. 2019;29(22):1900372.

    Article 

    Google Scholar
     

  • Mishra A, Kumar R, Mishra J, Dutta Ok, Ahlawat P, Kumar A, Dhanasekaran S, Gupta AK, Sinha S, Bishi DK, Gupta PK, Nayak S. Methods facilitating the permeation of nanoparticles by means of blood-brain barrier: an perception in direction of the event of brain-targeted drug supply system. J Drug Deliv Sci Technol. 2023;86: 104694.

    Article 
    CAS 

    Google Scholar
     

  • Barot T, Rawtani D, Kulkarni P. Nanotechnology-based supplies as rising traits for dental purposes. Rev Adv Mater Sci. 2021;60(1):173–89.

    Article 
    CAS 

    Google Scholar
     

  • Bao X, Zhao J, Solar J, Hu M, Yang X. Polydopamine nanoparticles as environment friendly scavengers for reactive oxygen species in periodontal illness. ACS Nano. 2018;12(9):8882–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater. 2021;6(10):3288–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaasalainen M, Zhang R, Vashisth P, Birjandi AA, S’Ari M, Martella DA, Isaacs M, Makila E, Wang C, Moldenhauer E, Clarke P, Pinna A, Zhang X, Mustfa SA, Caprettini V, Morrell AP, Gentleman E, Brauer DS, Addison O, Zhang X, Bergholt M, Al-Jamal Ok, Volponi AA, Salonen J, Hondow N, Sharpe P, Chiappini C. Lithiated porous silicon nanowires stimulate periodontal regeneration. Nat Commun. 2024;15(1):487.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tukmachi MS, Safi IN, Ali MMM. Analysis of mechanical properties and cytotoxicity of maxillofacial silicone materials after incorporation of zirconia nanopowder. Mater At the moment Proceed. 2021;42:2209–17.

    Article 
    CAS 

    Google Scholar
     

  • Abdalqadir M, Mohammed Ok, Azhdar B. The influence of zirconium dioxide nanoparticles on the colour stability of artificially aged heat-polymerized maxillofacial silicone elastomer. Sci Prog. 2023;106(4):368504231205392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watcharajittanont N, Tabrizian M, Putson C, Pripatnanont P, Meesane J. Osseointegrated membranes based mostly on electro-spun TiO(2)/hydroxyapatite/polyurethane for oral maxillofacial surgical procedure. Mater Sci Eng C Mater Biol Appl. 2020;108: 110479.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a evaluate. J Endod. 2016;42(10):1417–26.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Gulati Ok, Li Z, Di P, Liu Y. Dental implant nano-engineering: advances limitations and future instructions. Nanomaterials (Basel). 2021;11(10):2489.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Latest advances in two-dimensional nanomaterials for bone tissue engineering. J Mater. 2023;9(5):930–58.


    Google Scholar
     

  • Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Utility of nanoparticles in bone tissue engineering; a evaluate on the molecular mechanisms driving osteogenesis. Biomater Sci. 2021;9(13):4541–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q. Bone microenvironment regulative hydrogels with ROS scavenging and extended oxygen-generating for enhancing bone restore. Bioact Mater. 2023;24:477–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie C, Ye J, Liang R, Yao X, Wu X, Koh Y, Wei W, Zhang X, Ouyang H. Superior methods of biomimetic tissue-engineered grafts for bone regeneration. Adv Healthc Mater. 2021;10(14): e2100408.

    Article 
    PubMed 

    Google Scholar
     

  • Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Floor modification strategies to provide micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration. Entrance Bioeng Biotechnol. 2022;10: 835008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, Zhang H, Chen S, Guan S, Lu W, Zhu H, Ouyang L, Liu X, Mei Y. Fe-NC nanozymes-loaded TiO2 nanotube arrays endow titanium implants with glorious antioxidant capability for irritation inhibition and tender tissue integration. Compos B Eng. 2023;267: 111054.

    Article 
    CAS 

    Google Scholar
     

  • Guan S, Hou Z, Tan J, Zhang X, Liu J, Du H, Zhu H, Qiao Y, Liu Z, Liu X. Straddle-type heterostructure movies endow titanium implant with NIR photocatalysis property for fast sterilization. Appl Catal B. 2023;334: 122826.

    Article 
    CAS 

    Google Scholar
     

  • Goonoo N, A. Bhaw-Luximon, nanomaterials mixture for wound therapeutic and pores and skin regeneration. In: Toit LCD, Kumar P, Choonara YE, Pillay V, editors. Superior 3D-printed programs and nanosystems for drug supply and tissue engineering. Amsterdam: Elsevier; 2020. p. 159–217.

    Chapter 

    Google Scholar
     

  • Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova Ok, Svorcik V. Versatile utility of nanocellulose: from {industry} to pores and skin tissue engineering and wound therapeutic. Nanomaterials (Basel). 2019. https://doi.org/10.3390/nano9020164.

    Article 
    PubMed 

    Google Scholar
     

  • Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Present advances of nanocellulose utility in biomedical subject. Carbohydr Res. 2023;532: 108899.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamberger Z, Zainuddin S, Scheibel T, Lang G. Polymeric Janus fibers. ChemPlusChem. 2023;88(2): e202200371.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian S, Zhao B, Mao J, Liu Z, Zhao Q, Lu B, Mao X, Zhang L, Cheng L, Zhang Y, Cui W, Solar X. Biomedical purposes of Janus membrane. Biomed Technol. 2023;2:58–69.

    Article 
    CAS 

    Google Scholar
     

  • Zhou L, Liu F, You J, Zhou B, Guo W, Qu W, Ren X, Gao G. A novel self-pumping Janus dressing for selling wound immunomodulation and diabetic wound therapeutic. Adv Healthc Mater. 2024;13(10): e2303460.

    Article 
    PubMed 

    Google Scholar
     

  • Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Solar T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug supply programs for illness analysis and remedy. Chin Chem Lett. 2023;34(2): 107518.

    Article 
    CAS 

    Google Scholar
     

  • Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based mostly drug supply system: present methods and rising therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021;63: 102487.

    Article 
    CAS 

    Google Scholar
     

  • Eras A, Castillo D, Suarez M, Vispo NS, Albericio F, Rodriguez H. Chemical conjugation in drug supply programs. Entrance Chem. 2022;10: 889083.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu C-Y, Rheima AM, Kadhim MM, Ahmed NN, Mohammed SH, Abbas FH, Abed ZT, Mahdi ZM, Abbas ZS, Hachim SK, Ali FK, Mahmoud ZH, Kianfar E. An outline of nanoparticles in drug supply: properties and purposes. S Afr J Chem Eng. 2023;46:233–70.


    Google Scholar
     

  • Li S, Wang H, Shan Y. The mechanism of nano-drug supply. Curr Pharmacol Rep. 2019;5(6):410–20.

    Article 

    Google Scholar
     

  • Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive concentrating on and crossing of organic limitations. Curr Med Chem. 2012;19(19):3070–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salahpour Anarjan F. Energetic concentrating on drug supply nanocarriers: ligands. NanoStruct NanoObject. 2019;19:100370.

    CAS 

    Google Scholar
     

  • Barenholz Y. Doxil(R)–the primary FDA-approved nano-drug: classes realized. J Management Launch. 2012;160(2):117–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielinska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: manufacturing, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabizon AA, Lyass O, Berry GJ, Wildgust M. Cardiac security of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in sufferers with superior malignancies. Most cancers Make investments. 2004;22(5):663–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (abraxane ABI-007) within the remedy of breast most cancers. Int J Nanomed. 2009;4:99–105.

    CAS 

    Google Scholar
     

  • Fraguas-Sanchez AI, Lozza I, Torres-Suarez AI. Actively focused nanomedicines in breast most cancers: from pre-clinal investigation to clinic. Cancers (Basel). 2022;14(5):1198.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoogenboezem EN, Duvall CL. Harnessing albumin as a provider for most cancers therapies. Adv Drug Deliv Rev. 2018;130:73–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senzer NN, Matsuno Ok, Yamagata N, Fujisawa T, Wasserman E, Sutherland W, Sharma S, Phan A. Summary C36: MBP-426, a novel liposome-encapsulated oxaliplatin, together with 5-FU/leucovorin (LV): part I outcomes of a part I/II examine in gastro-esophageal adenocarcinoma, with pharmacokinetics. Mol Most cancers Therapeutics. 2009;8(12_Supplement):C36–C36.

    Article 

    Google Scholar
     

  • Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. The transferrin receptor and the focused supply of therapeutic brokers in opposition to most cancers. Biochim Biophys Acta. 2012;1820(3):291–317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadhum WR, Majeed AA, Saleh RO, Ali E, Alhajlah S, Alwaily ER, Mustafa YF, Ghildiyal P, Alawadi A, Alsalamy A. Overcoming drug resistance with particular nano scales to focused remedy: centered on metastatic cancers. Pathol Res Pract. 2024;255: 155137.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moczko E, Poma A, Guerreiro A, de Vargas Sansalvador IP, Caygill S, Canfarotta F, Whitcombe MJ, Piletsky S. Floor-modified multifunctional MIP nanoparticles. Nanoscale. 2013;5(9):3733–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerreiro A, Poma A, Karim Ok, Moczko E, Takarada J, de Vargas-Sansalvador IP, Turner N, Piletska E, de Magalhães CS, Glazova N, Serkova A, Omelianova A, Piletsky S. Affect of surface-imprinted nanoparticles on trypsin exercise. Adv Healthcare Mater. 2014;3(9):1426–9.

    Article 
    CAS 

    Google Scholar
     

  • Poma A, Guerreiro A, Caygill S, Moczko E, Piletsky S. Automated reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv. 2014;4(8):4203–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu R, Poma A. Advances in molecularly imprinted polymers as drug supply programs. Molecules. 2021;26(12):3589.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Knowles JC, Poma A. Biodegradable and sustainable artificial antibodies—a perspective. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15051440.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Zhang P, Track H, Tang X, Hao Y, Guan Y, Chong T, Hussain S, Gao R. Unveiling a pH-responsive dual-androgen-blocking magnetic molecularly imprinted polymer for enhanced synergistic remedy of prostate most cancers. ACS Appl Mater Interfaces. 2024;16(4):4348–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soni V, Pandey V, Asati S, Jain P, Tekade RK. Design and fabrication of brain-targeted drug supply. In: Tekade RK, editor. Primary fundamentals of drug supply. Amsterdam: Educational Press; 2019. p. 539–93.

    Chapter 

    Google Scholar
     

  • Gou Ok, Wang Y, Guo X, Wang Y, Bian Y, Zhao H, Guo Y, Pang Y, Xie L, Li S, Li H. Carboxyl-functionalized mesoporous silica nanoparticles for the managed supply of poorly water-soluble non-steroidal anti-inflammatory medication. Acta Biomater. 2021;134:576–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham SH, Choi Y, Choi J. Stimuli-responsive nanomaterials for utility in antitumor remedy and drug supply. Pharmaceutics. 2020;12(7):630.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Hu P, Wang Y, Wu L, Qin Ok, Cheng H, Wang S, Pan B, Xin H, Zhang W, Wang X. Quick-acting black-phosphorus-assisted melancholy remedy with low toxicity. Adv Mater. 2020;32(2): e1906050.

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolen Y, Valente M, Tagit O, Jager E, Van Dinther EAW, van Riessen NK, Hruby M, Gileadi U, Cerundolo V, Figdor CG. Nanovaccine administration route is vital to acquire pertinent iNKt cell assist for sturdy anti-tumor T and B cell responses. Oncoimmunology. 2020;9(1):1738813.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Q, Merkel OM, Reineke JJ, da Rocha SR. Impact of the route of administration and PEGylation of poly (amidoamine) dendrimers on their systemic and lung mobile biodistribution. Mol Pharm. 2016;13(6):1866–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11(6):673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ensign LM, Cone R, Hanes J. Oral drug supply with polymeric nanoparticles: the gastrointestinal mucus limitations. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Lin Y, Gillies RJ. Tumor pH and its measurement. J Nucl Med. 2010;51(8):1167–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kruse CR, Singh M, Targosinski S, Sinha I, Sorensen JA, Eriksson E, Nuutila Ok. The impact of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo examine. Wound Restore Regen. 2017;25(2):260–9.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: mechanisms, fabrications, and purposes. Sci Complete Environ. 2024;946: 173865.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitulo M, Gnodi E, Meneveri R, Barisani D. Interactions between nanoparticles and gut. Int J Mol Sci. 2022;23(8):4339.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barua S, Mitragotri S. Challenges related to penetration of nanoparticles throughout cell and tissue limitations: a evaluate of present standing and future prospects. Nano At the moment. 2014;9(2):223–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seaside MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric nanoparticles for drug supply. Chem Rev. 2024;124(9):5505–616.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, Suzuki M, Pattnaik BR, Saha Ok, Gong S. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein advanced for in vivo genome modifying. Nat Nanotechnol. 2019;14(10):974–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM. Nanotechnology enabled modulation of signaling pathways impacts physiologic responses in intact vascular tissue. Tissue Eng Half A. 2019;25(5–6):416–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox dual-responsive polyplex with efficient endosomal escape for codelivery of siRNA and doxorubicin in opposition to drug-resistant most cancers cells. ACS Appl Mater Interfaces. 2019;11(18):16296–310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold nanoparticle dimension and form results on mobile uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug Chem. 2017;28(6):1791–800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Y, Ding H. pH-responsive nanoparticles for most cancers immunotherapy: a short evaluate. Nanomaterials. 2020;10(8):1613.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome modifying. J Nanobiotechnol. 2022;20(1):354.

    Article 
    CAS 

    Google Scholar
     

  • Ran T, Zhigang X. Gene remedy: a double-edged sword with nice powers. Mol Cell Biochem. 2020;474(1-2):73-81. https://doi.org/10.1007/s11010-020-03834-3.

  • Uddin F, Rudin CM, Sen T. CRISPR gene remedy: purposes limitations and implications for the longer term. Entrance Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387.

  • Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. Nat Rev Methodology Prim. 2022;2(1):24.

    Article 
    CAS 

    Google Scholar
     

  • Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene supply for most cancers and different genetic illnesses. Knowledgeable Opin Drug Deliv. 2023;20(4):523–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinturkar KA, Misra A. Challenges and alternatives in gene supply. In: Misra A, editor. Challenges in supply of therapeutic genomics and proteomics. Amsterdam: Elsevier; 2011. p. 45–82.

    Chapter 

    Google Scholar
     

  • Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in applied sciences for therapeutic mRNA supply. Mol Ther. 2019;27(4):710–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and challenges within the supply of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102. https://doi.org/10.3390/pharmaceutics12020102.

  • Jiao L, Solar Z, Solar Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene supply in cardiovascular illnesses. Entrance Bioeng Biotechnol. 2024;12:1349077. https://doi.org/10.3389/fbioe.2024.1349077.

  • Durymanov M, Reineke J. Non-viral supply of nucleic acids: perception into mechanisms of overcoming intracellular limitations. Entrance Pharmacol. 2018;9:971.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Rising purposes of nanotechnology in healthcare programs: grand challenges and views. Pharmaceuticals21. 2021;14(8):707.

    Article 
    CAS 

    Google Scholar
     

  • Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Medication. 2021;81(4):495–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson B, Geetha KM. Lipid nanoparticles within the improvement of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol. 2022;74: 103553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong Z, Alves CS, Wang J, Li A, Liu J, Shen M, Rodrigues J, Tomas H, Shi X. Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene supply to inhibit most cancers cell metastasis. Acta Biomater. 2019;99:320–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Organic options of nanoparticles: protein corona formation and interplay with the immune system. Pharmaceutics. 2022;14(12):2605. https://doi.org/10.3390/pharmaceutics14122605.

  • Yao J, Fan Y, Li Y, Huang L. Methods on the nuclear-targeted supply of genes. J Drug Goal. 2013;21(10):926–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CS, Chang CH, Tzeng TY, Lin AM, Lo YL. Gene-editing by CRISPR-Cas9 together with anthracycline remedy by way of tumor microenvironment-switchable, EGFR-targeted, and nucleus-directed nanoparticles for head and neck most cancers suppression. Nanoscale Horiz. 2021;6(9):729–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Długosz O, Matyjasik W, Hodacka G, Szostak Ok, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic nanomaterials utilized in anti-cancer therapies: additional developments. Nanomaterials. 2023;13(6):1130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Latest advances in tumor concentrating on by way of EPR impact for most cancers remedy. J Pers Med. 2021;11(6):571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive concentrating on of nanoparticles to most cancers: a complete evaluate of the literature. Mol Clin Oncol. 2014;2(6):904–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahan S, Karim ME, Chowdhury EH. Nanoparticles concentrating on receptors on breast most cancers for environment friendly supply of chemotherapeutics. Biomedicines. 2021;9(2):114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation remedy of human breast most cancers. Eur J Pharm Sci. 2020;153: 105487.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an rising platform for most cancers remedy. Nanoenabled Med Appl. 2020. https://doi.org/10.1038/nnano.2007.387.

    Article 

    Google Scholar
     

  • Piktel E, Niemirowicz Ok, Watek M, Wollny T, Deptula P, Bucki R. Latest insights in nanotechnology-based medication and formulations designed for efficient anti-cancer remedy. J Nanobiotechnol. 2016;14(1):39.

    Article 

    Google Scholar
     

  • Wojtynek NE, Mohs AM. Picture-guided tumor surgical procedure: the rising function of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(4): e1624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, You X, Dai C, Tong T, Wu J. Hemostatic nanotechnologies for exterior and inside hemorrhage administration. Biomater Sci. 2020;8(16):4396–412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malik A, Rehman FU, Shah KU, Naz SS, Qaisar S. Hemostatic methods for uncontrolled bleeding: a complete replace. J Biomed Mater Res B Appl Biomater. 2021;109(10):1465–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Li M, Huang Y, Guo B. An built-in technique for fast hemostasis throughout tumor resection and prevention of postoperative tumor recurrence of hepatocellular carcinoma by antibacterial form reminiscence cryogel. Small. 2021;17(38): e2101356.

    Article 
    PubMed 

    Google Scholar
     

  • Track G, Cheng L, Chao Y, Yang Ok, Liu Z. Rising nanotechnology and superior supplies for most cancers radiation remedy. Adv Mater. 2017;29(32):1700996.

    Article 

    Google Scholar
     

  • Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Rising methods of nanomaterial-mediated tumor radiosensitization. Adv Mater. 2019;31(3): e1802244.

    Article 
    PubMed 

    Google Scholar
     

  • Jin J, Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: current advances and future challenges. J Nanobiotechnoly. 2020;18(1):75.

    Article 
    CAS 

    Google Scholar
     

  • Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for tuning engineered nanomaterials to boost radiation remedy of most cancers. Adv Sci. 2020;7(24):2003584.

    Article 
    CAS 

    Google Scholar
     

  • Menon JU, Tumati V, Hsieh JT, Nguyen KT, Saha D. Polymeric nanoparticles for focused radiosensitization of prostate most cancers cells. J Biomed Mater Res A. 2015;103(5):1632–9.

    Article 
    PubMed 

    Google Scholar
     

  • Liu DX, Cao F, Xu ZF, Zhao CH, Liu ZK, Pang JD, Liu ZX, Moghiseh M, Butler A, Liang SX, Fan WJ, Yang J. Selective organ-targeting hafnium oxide nanoparticles with multienzyme-mimetic actions attenuate radiation-induced tissue injury. Adv Mater. 2024. https://doi.org/10.1002/adma.202308098.

    Article 
    PubMed 

    Google Scholar
     

  • Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a uncared for however essential side. Nat Rev Clin Oncol. 2016;13(11):659–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo C, Solar J, Solar B, He Z. Prodrug-based nanoparticulate drug supply methods for most cancers remedy. Development Pharmacol Sci. 2014;35(11):556–66.

    Article 
    CAS 

    Google Scholar
     

  • OuncesUC, Bolat ZB, Poma A, Guan L, Telci D, Sahin F, Battaglia G, Bozkır A. Prostate most cancers cell-specific BikDDA supply by focused polymersomes. Appl Nanosci. 2020;10(9):3389–401.

    Article 
    CAS 

    Google Scholar
     

  • Ellis E, Zhang Ok, Lin Q, Ye E, Poma A, Battaglia G, Loh XJ, Lee TC. Biocompatible pH-responsive nanoparticles with a core-anchored multilayer shell of triblock copolymers for enhanced most cancers remedy. J Mater Chem B. 2017;5(23):4421–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug supply in most cancers remedy and its function in overcoming drug resistance. Entrance Mol Biosci. 2020;7:193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng S, Zhao H, Zhan G, Zhao Y, Yang X. Injectable in situ forming hydrogels of thermosensitive polypyrrole nanoplatforms for exactly synergistic photothermo-chemotherapy. ACS Appl Mater Interfaces. 2020;12(7):7995–8005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Pang W, Jiang X, Ding S, Wei X, Gu B. Mild amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for reinforcing photodynamic anticancer remedy. Mild Sci Appl. 2022;11(1):47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Ok, Lin C, He Y, Lu L, Xu Ok, Tao B, Xia Z, Zeng R, Mao Y, Luo Z, Cai Ok. Engineering of cascade-responsive nanoplatform to inhibit lactate efflux for enhanced tumor chemo-immunotherapy. ACS Nano. 2020;14(10):14164–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, Yuan G, Xu Y, Gao Y, Mao Q, Zhang Y, Bai L, Li W, Wu A, Hu W, Pan Y, Zhou G. Photoacoustic and magnetic resonance imaging-based gene and photothermal remedy utilizing mesoporous nanoagents. Bioact Mater. 2022;9:157–67.

    PubMed 

    Google Scholar
     

  • Li X, Lovell JF, Yoon J, Chen X. Scientific improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.

    Article 
    PubMed 

    Google Scholar
     

  • Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy alternatives for nanomedicine. ACS Nano. 2023;17(9):7979–8003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo S, Track J, Zhang J, He Z, Solar B, Solar J. Nano-immunotherapy for every stage of most cancers mobile immunity: which, why, and what? Theranostics. 2021;11(15):7471–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheller EL, Krebsbach PH. Gene remedy: design and prospects for craniofacial regeneration. J Dent Res. 2009;88(7):585–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roma-Rodrigues C, Rivas-Garcia L, Baptista PV, Fernandes AR. Gene remedy in most cancers remedy: why go nano? Pharmaceutics. 2020;12(3):233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar R, Xiang J, Zhou Q, Piao Y, Tang J, Shao S, Zhou Z, Bae YH, Shen Y. The tumor EPR impact for most cancers drug supply: present standing, limitations, and options. Adv Drug Deliv Rev. 2022;191: 114614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam R, Maeda H, Fang J. Elements affecting the dynamics and heterogeneity of the EPR impact: pathophysiological and pathoanatomic options, drug formulations and physicochemical components. Knowledgeable Opin Drug Deliv. 2022;19(2):199–212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collignon P, Beggs JJ. Socioeconomic enablers for contagion: components impelling the antimicrobial resistance epidemic. Antibiotics. 2019. https://doi.org/10.3390/antibiotics8030086.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed remedy: molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productiveness. Sci Complete Environ. 2024;951: 175118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Invoice J. Harmonization dangers and rewards: nano-QSAR for agricultural nanomaterials. J Agric Meals Chem. 2024;72(6):2835–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19(1):23–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimi M, Asadi M, Akhavan O. Graphene-based nanomaterials in combating probably the most difficult viruses and immunogenic problems. ACS Biomater Sci Eng. 2022;8(1):54–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial nanomaterials: mechanisms, impacts on antimicrobial resistance and design rules. Angew Chem Int Ed Engl. 2023;62(17): e202217345.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goyal B, et al. Structural results of nanoparticles on their antibacterial exercise in opposition to multi-drug resistance. Inorganic Nano Metallic Chem. 2022; 1–13. https://doi.org/10.1080/24701556.2021.2025103.

  • Zhao X, Tang H, Jiang X. Deploying gold nanomaterials in combating multi-drug-resistant micro organism. ACS Nano. 2022;16(7):10066–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Mao J, Wu J, Mao Ok, Jia Y, Chen F, Liu J. Nano-bio interactions: biofilm-targeted antibacterial nanomaterials. Small. 2024;20(7): e2306135.

    Article 
    PubMed 

    Google Scholar
     

  • Le Ouay B, Stellacci F. Antibacterial exercise of silver nanoparticles: a floor science perception. Nano At the moment. 2015;10(3):339–54.

    Article 

    Google Scholar
     

  • Luan Y, Liu S, Pihl M, van der Mei HC, Liu J, Hizal F, Choi C-H, Chen H, Ren Y, Busscher HJ. Bacterial interactions with nanostructured surfaces. Curr Opin Coll Interface Sci. 2018;38:170–89.

    Article 
    CAS 

    Google Scholar
     

  • Solar M, Chan KF, Zhang Z, Wang L, Wang Q, Yang S, Chan SM, Chiu PWY, Sung JJY, Zhang L. Magnetic microswarm and fluoroscopy-guided platform for biofilm eradication in biliary stents. Adv Mater. 2022;34(34): e2201888.

    Article 
    PubMed 

    Google Scholar
     

  • Shi T, Hou X, Guo S, Zhang L, Wei C, Peng T, Hu X. Nanohole-boosted electron transport between nanomaterials and micro organism as an idea for nano–bio interactions. Nat Commun. 2021;12(1):493.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Wang R, Vedarethinam V, Huang L, Qian Ok. Superior supplies for exact detection and antibiotic-free inhibition of micro organism. Mater At the moment Adv. 2022;13: 100204.

    Article 
    CAS 

    Google Scholar
     

  • Chen SW, Xie J, Weng SH, Meng WY, Zheng JH, Huang BX, Zhan RM, Zhang WA, Tian J. A supramolecular photosensitizer for combating a number of antibiotic resistance by way of photodynamic biofilm dispersion. Chem Eng J. 2024;496: 153951.

    Article 
    CAS 

    Google Scholar
     

  • Zeng Y, Hu X, Cai Z, Qiu D, Ran Y, Ding Y, Shi J, Cai X, Pan Y. Photodynamic and nitric oxide therapy-based synergistic antimicrobial nanoplatform: a sophisticated root canal irrigation system for endodontic bacterial infections. J Nanobiotechnol. 2024;22(1):213.

    Article 
    CAS 

    Google Scholar
     

  • Tse Sum Bui B, Auroy T, Haupt Ok. Preventing antibiotic-resistant micro organism: promising methods orchestrated by molecularly imprinted polymers. Angew Chem Int Ed Engl. 2022;61(8):e202106493.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez JG, Piletska EV, Whitcombe MJ, Czulak J, Piletsky SA. Utility of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer-hexanoyl homoserine lactone. Chem Commun. 2019;55(18):2664–7.

    Article 

    Google Scholar
     

  • Han J, Poma A. Molecular targets for antibody-based anti-biofilm remedy in infective endocarditis. Polymers. 2022. https://doi.org/10.3390/polym14153198.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Gao Y, Huang Y, Jin Q, Ji J. Inhibiting quorum sensing by energetic focused ph-sensitive nanoparticles for enhanced antibiotic remedy of biofilm-associated bacterial infections. ACS Nano. 2023;17(11):10019–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: the brand new antimicrobial magic bullet. ACS Infect Dis. 2022;8(4):693–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Hu C, Shao L. The antimicrobial exercise of nanoparticles: current scenario and prospects for the longer term. Int J Nanomed. 2017;12:1227–49.

    Article 
    CAS 

    Google Scholar
     

  • Xu XC, Zhang J, Liu S, Wang CH, Wang HY, Fan HH, Tong YG, Liu HY, Zhou DS. New advances in nanomaterial-based antiviral methods. Small Struct. 2022;3(7):2200021.

    Article 
    CAS 

    Google Scholar
     

  • Ye SY, Shao Ok, Li ZH, Guo N, Zuo YP, Li Q, Lu ZC, Chen L, He QG, Han HY. Antiviral exercise of graphene oxide: how sharp edged construction and cost matter. ACS Appl Mater Interfaces. 2015;7(38):21571–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, Fang L, Xiao S, Liang J. Glycyrrhizic-acid-based carbon dots with excessive antiviral exercise by multisite inhibition mechanisms. Small. 2020;16(13): e1906206.

    Article 
    PubMed 

    Google Scholar
     

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral motion of silver nanoparticles in opposition to HIV-1. J Nanobiotechnol. 2010;8(1):1.

    Article 

    Google Scholar
     

  • Rafiei S, Rezatofighi SE, Roayaei Ardakani M, Rastegarzadeh S. Gold nanoparticles impair foot-and-mouth illness virus replication. IEEE Trans Nanobiosci. 2016;15(1):34–40.

    Article 

    Google Scholar
     

  • Sankarakumar N, Tong YW. Stopping viral infections with polymeric virus catchers: a novel nanotechnological strategy to anti-viral remedy. J Mater Chem B. 2013;1(15):2031–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal S, Prathipati PK, Belshan M, Destache CJ. A possible long-acting bictegravir loaded nano-drug supply system for HIV-1 an infection: a proof-of-concept examine. Antiviral Res. 2019;167:83–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs display low neurotoxicity and excessive antiviral exercise in opposition to HIV an infection within the mind. Nanomedicine. 2014;10(1):177–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, Cavalli R. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical remedy of herpesviruses infections. Pharmaceutics. 2018;10(2):46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as high quality by design (QbD) strategy for formulation improvement of novel dosage types for efficient drug remedy. J Management Releas. 2020;327:500–11.

    Article 
    CAS 

    Google Scholar
     

  • Soltani M, Moradi Kashkooli F, Souri M, Zare Harofte S, Harati T, Khadem A, Haeri Pour M, Raahemifar Ok. Enhancing scientific translation of most cancers utilizing nanoinformatics. Cancers. 2021;13(10):24.

    Article 

    Google Scholar
     

  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44(10):1029–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murar M, Albertazzi L, Pujals S. Superior optical imaging-guided nanotheranostics in direction of customized most cancers drug supply. Nanomaterials. 2022;12(3):399.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mura S, Couvreur P. Nanotheranostics for customized drugs. Adv Drug Deliv Rev. 2012;64(13):1394–416.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking most cancers nanotheranostics. Nat Rev Mater. 2017;2(7):1–18.

    Article 
    CAS 

    Google Scholar
     

  • Solar T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug supply in most cancers remedy. Angew Chem Int Ed Engl. 2014. https://doi.org/10.1002/anie.201403036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty Y, Prabhu P, Prabhakar B. Rising vistas in theranostic drugs. Int J Pharm. 2019;558:29–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shende P, Jain S. Polymeric nanodroplets: an rising pattern in gaseous supply system. J Drug Goal. 2019;27(10):1035–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • dos Santos J, de Oliveira RS, de Oliveira TV, Velho MC, Konrad MV, da Silva GS, Deon M, Beck RC. 3D printing and nanotechnology: a multiscale alliance in customized drugs. Adv Funct Mater. 2021;31(16):2009691.

    Article 

    Google Scholar
     

  • Agrahari V, Agrahari V, Chou ML, Chew CH, Noll J, Burnouf T. Clever micro-/nanorobots as drug and cell provider units for biomedical therapeutic development: promising improvement alternatives and translational challenges. Biomaterials. 2020;260: 120163.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sainz V, Conniot J, Matos AI, Peres C, Zupancic E, Moura L, Silva LC, Florindo HF, Gaspar RS. Regulatory elements on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a evaluate of FDA-approved supplies and scientific trials to this point. Pharm Res. 2016;33(10):2373–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gresham G. ClinicalTrials.gov. In: Piantadosi S, Meinert CL, editors. Ideas and observe of scientific trials. Cham: Springer Worldwide Publishing; 2020. p. 1–18.


    Google Scholar
     

  • Thapa RK, Kim JO. Nanomedicine-based business formulations: present developments and future prospects. J Pharm Investig. 2023;53(1):19–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • P. Analysis, nanomedicine market (by modality: therapies, diagnostics; by utility: drug supply, diagnostic imaging, vaccines, regenerative drugs, implants, others; by nanomolecule kind: nanoparticles, nanoshells, nanotubes, nanodevices; by indication: oncological illnesses, infectious illnesses, cardiovascular illnesses, others)—international {industry} evaluation, dimension, share, progress, traits, regional outlook, and forecast 2023–2032. 2023. https://www.precedenceresearch.com/nanomedicine-market. Accessed 25 Feb 2024.

  • M. Intelligence, nanomedicine market dimension & share evaluation—progress traits & forecasts (2024–2029). 2023. https://www.mordorintelligence.com/industry-reports/healthcare-nanotechnology-nanomedicine-market. Accessed 25 Feb 2024.

  • Roco MC. Nationwide nanotechnology initiative at 20 years: enabling new horizons. J Nanopart Res. 2023;25(10):197.

    Article 

    Google Scholar
     

  • G.V. Analysis, nanomedicine market dimension, share & traits evaluation report by utility (drug supply), by indication (scientific oncology, infectious illnesses), by molecule kind, by area, and section forecasts, 2023–2030, 2023. https://www.grandviewresearch.com/industry-analysis/nanomedicine-market. Accessed 21 Feb 2024.

  • Kumar R, Dkhar DS, Kumari R, Divya S, Mahapatra VK, Dubey P. Chandra. Lipid based mostly nanocarriers: manufacturing strategies, ideas, and commercialization side. J Drug Deliv Sci Technol. 2022;74:103526.

    Article 
    CAS 

    Google Scholar
     

  • Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: developments and innovation within the manufacturing course of. Adv Drug Deliv Rev. 2020;154–155:102–22.

    Article 
    PubMed 

    Google Scholar
     

  • Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Present approaches of nanomedicines available in the market and numerous stage of scientific translation. Acta Pharm Sin B. 2022;12(7):3028–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halwani AA. Growth of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Xie J, Dong X, Mei L, Zhao M, Leng Z, Hu H, Li L, Gu Z, Zhao Y. Clinically accepted carbon nanoparticles with oral administration for intestinal radioprotection by way of defending the small intestinal crypt stem cells and sustaining the stability of intestinal flora. Small. 2020;16(16): e1906915.

    Article 
    PubMed 

    Google Scholar
     

  • Jones AD third, Mi G, Webster TJ. A standing report on FDA approval of medical units containing nanostructured supplies. Development Biotechnol. 2019;37(2):117–20.

    Article 
    CAS 

    Google Scholar
     

  • Darrow JJ, Avorn J, Kesselheim AS. FDA regulation and approval of medical units: 1976–2020. JAMA. 2021;326(5):420–32.

    Article 
    PubMed 

    Google Scholar
     

  • FDA. 510(ok) premarket notification database. 2024. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm. Accessed 20 June 2024.

  • FDA. Premarket approval (PMA) database. 2024. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm. Accessed 20 June 2024.

  • Cornelissen A, Sakamoto A, Sato Y, Kawakami R, Mori M, Kawai Ok, Kutyna M, Fernandez R, Ghosh S, Barakat M, Virmani R, Finn A. COBRA PzF coronary stent in scientific and preclinical research: setting the stage for brand spanking new antithrombotic methods? Fut Cardiol. 2022;18(3):207–17.

    Article 
    CAS 

    Google Scholar
     

  • NMPA. Nationwide medical merchandise administration database. 2024. https://www.nmpa.gov.cn/datasearch/home-index.html#class=ylqx. Accessed 20 June 2024.

  • Kunrath MF, Diz FM, Magini R, Galarraga-Vinueza ME. Nanointeraction: the profound affect of nanostructured and nano-drug supply biomedical implant surfaces on cell habits. Adv Colloid Interface Sci. 2020;284: 102265.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mavioglu I. Inner thoracic artery harvesting with a LigaSure machine. Asian Cardiovasc Thorac Ann. 2019;27(8):707–9.

    Article 
    PubMed 

    Google Scholar
     

  • Selvakumar J, Radhika B, Shamini S, Mahendra J, Preethi R, Shyma M, Poorani R. Rising nanotechnologies in dentistry: a evaluate. World J Pharmaceutical Res. 2019;8(13):599–620.

    CAS 

    Google Scholar
     

  • Maak TG, Wylie JD. Medical machine regulation: a comparability of america and the European Union. J Am Acad Orthop Surg. 2016;24(8):537–43.

    Article 
    PubMed 

    Google Scholar
     

  • EUDAMED. European database on medical units. 2024. https://ec.europa.eu/instruments/eudamed/#/display/residence. Accessed 20 June 2024.

  • Maier-Hauff Ok, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A. Efficacy and security of intratumoral thermotherapy utilizing magnetic iron-oxide nanoparticles mixed with exterior beam radiotherapy on sufferers with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.

    Article 
    PubMed 

    Google Scholar
     

  • Amato SF. Regulatory methods for biomaterials and medical units within the USA: classification, design, and threat evaluation. In: Amato SF, Ezzell RM, editors. Regulatory affairs for biomaterials and medical units. Cambridge: Woodhead publishing; 2015. p. 27–46.

    Chapter 

    Google Scholar
     

  • Aronson JK, Heneghan C, Ferner RE. Medical units: definition, classification, and regulatory implications. Drug Saf. 2020;43(2):83–93.

    Article 
    PubMed 

    Google Scholar
     

  • Neifert N, Martini ML, Yuk F, McNeill IT, Caridi JM, Steinberger J, Oermann EK. Predicting traits in cervical spinal surgical procedure in america from 2020 to 2040. World Neurosurg. 2020;141:e175–81.

    Article 
    PubMed 

    Google Scholar
     

  • Winkelmann J, Gomez Rossi J, van Ginneken E. Oral well being care in Europe: financing, entry and provision. Well being Syst Transit. 2022;24(2):1–176.

    PubMed 

    Google Scholar
     

  • Jiang H, Zhang P, Gu Ok, Gong Y, Peng P, Shi Y, Ai D, Chen W, Fu C. Price-effectiveness evaluation of a community-based colorectal most cancers screening program in Shanghai, China. Entrance Public Well being. 2022;10: 986728.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh AV, Bhardwaj P, Upadhyay AK, Pagani A, Upadhyay J, Bhadra J, Tisato V, Thakur M, Gemmati D, Mishra R, Zamboni P. Navigating regulatory challenges in molecularly tailor-made nanomedicine. Explor BioMat-X. 2024;1(2):124–34.

    Article 

    Google Scholar
     

  • Ma X, Poma A. Scientific translation and envisioned influence of nanotech for an infection management: economic system, authorities coverage and public consciousness. In: Poma A, Rizzello L, editors. Nanotechnology instruments for an infection management. Amsterdam: Elsevier; 2025. p. 299–392.

    Chapter 

    Google Scholar
     

  • Denny KH. Acute, subacute, subchronic, and persistent basic toxicity testing for preclinical drug improvement. In: Faqi AS, editor. A complete information to toxicology in nonclinical drug improvement. Amsterdam: Educational Press; 2024. p. 149–71.

    Chapter 

    Google Scholar
     

  • Vrbanac J, Slauter R. Overview of ADME science. In: Faqi AS, editor. A complete information to toxicology in nonclinical drug improvement. Amsterdam: Educational Press; 2024. p. 49–82.

    Chapter 

    Google Scholar
     

  • Hasirci V, Hasirci N. Design and manufacturing necessities for medical units. In: Hasirci V, Hasirci N, editors. Fundamentals of biomaterials. Cham: Springer Worldwide Publishing; 2024. p. 363–88.

    Chapter 

    Google Scholar
     

  • Webster TJ. Security of nanoparticles. Berlin: Springer; 2008.


    Google Scholar
     

  • Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines at present in the marketplace: challenges and alternatives. Nanomedicine. 2019;14(1):93–126.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore TJ, Heyward J, Anderson G, Alexander GC. Variation within the estimated prices of pivotal scientific profit trials supporting the US approval of recent therapeutic brokers, 2015–2017: a cross-sectional examine. BMJ Open. 2020;10(6): e038863.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulkes R, Man E, Thind J, Yeung S, Pleasure A, Hoskins C. The regulation of nanomaterials and nanomedicines for scientific utility: present and future views. Biomater Sci. 2020;8(17):4653–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel DM, Patel NN, Patel JK. Nanomedicine scale-up applied sciences: feasibilities and challenges. In: Patel JK, Pathak YV, editors. Rising applied sciences for nanoparticle manufacturing. Cham: Springer Worldwide Publishing; 2021. p. 511–39.


    Google Scholar
     

  • Sharma A, Gamta V, Luthra G. The significance of fine manufacturing practices (GMP) within the healthcare {industry}. J Pharm Res Int. 2023;35(18):75–90.

    Article 

    Google Scholar
     

  • Lin PC, Lin S, Wang PC, Sridhar R. Strategies for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32(4):711–26.

    Article 
    PubMed 

    Google Scholar
     

  • Malik S, Muhammad Ok, Waheed Y. Rising purposes of nanotechnology in healthcare and drugs. Molecules. 2023. https://doi.org/10.3390/molecules28186624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atalla Ok, et al. Moral, privateness, and mental property points in nanomedicine. Wirel Comput Med Nano Cloud Moral Authorized Implic. 2016; 567–600. https://doi.org/10.1002/9781118993620.ch20.

  • Ioan BG, Hanganu B. Third-party sharing of genetic data. In: Hostiuc S, editor. Scientific ethics on the crossroads of genetic and reproductive applied sciences. Amsterdam: Educational Press; 2023. p. 401–29.

    Chapter 

    Google Scholar
     

  • Uskokovic V. Nanomedicine for the poor: a misplaced trigger or an thought whose time has but to return? Nanomedicine. 2021;16(14):1203–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki Y. Asbestos-induced mesothelial damage and carcinogenesis: involvement of iron and reactive oxygen species. Pathol Int. 2022;72(2):83–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin RT, Chien LC, Jimba M, Furuya S, Takahashi Ok. Implementation of nationwide insurance policies for a complete asbestos ban: a worldwide comparability. Lancet Planet Well being. 2019;3(8):e341–8.

    Article 
    PubMed 

    Google Scholar
     

  • Morawska L, Buonanno G. The physics of particle formation and deposition throughout respiration. Nat Rev Phys. 2021;3(5):300–1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz H, Tougher V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A. Cardiovascular results of high-quality and ultrafine particles. J Aerosol Med. 2005;18(1):1–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB. Analysis methods for security analysis of nanomaterials, half IV: threat evaluation of nanoparticles. Toxicol Sci. 2006;89(1):42–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romeo D, Hischier R, Nowack B, Jolliet O, Fantke P, Wick P. In vitro-based human toxicity impact components: challenges and alternatives for nanomaterial influence evaluation. Environ Sci Nano. 2022;9(6):1913–25.

    Article 
    CAS 

    Google Scholar
     

  • Gambardella C, Pinsino A. Nanomaterial ecotoxicology within the terrestrial and aquatic surroundings: a scientific evaluate. Toxics. 2022;10(7):393.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John AT, Wadhwa S, Mathur A. Nanotoxicology: publicity, mechanism, and results on human well being. New Entrance Environ Toxicol. 2022. https://doi.org/10.1007/978-3-030-72173-2_5.

    Article 

    Google Scholar
     

  • DeLoid GM, Wang Y, Kapronezai Ok, Lorente LR, Zhang R, Pyrgiotakis G, Konduru NV, Ericsson M, White JC, De La Torre-Roche R, Xiao H, McClements DJ, Demokritou P. An built-in methodology for assessing the influence of meals matrix and gastrointestinal results on the biokinetics and mobile toxicity of ingested engineered nanomaterials. Half Fibre Toxicol. 2017;14(1):40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi JH, Axson JL, Bergin IL, Ault AP. Nanoparticle digestion simulator reveals pH-dependent aggregation within the gastrointestinal tract. Anal Chem. 2020;92(18):12257–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary purposes and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogt A, Rancan F, Ahlberg S, Nazemi B, Choe CS, Darvin ME, Hadam S, Blume-Peytavi U, Loza Ok, Diendorf J, Epple M, Graf C, Ruhl E, Meinke MC, Lademann J. Interplay of dermatologically related nanoparticles with pores and skin cells and pores and skin. Beilstein J Nanotechnol. 2014;5(1):2363–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao M, Li B, Guo M, Liu Y, Zhang L, Wang Y, Hu B, Li J, Sutherland DS, Wang L, Chen C. In vivo percutaneous permeation of gold nanomaterials in client cosmetics: implication in dermal security evaluation of client nanoproducts. Nanotoxicology. 2021;15(1):131–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Results of carbon-based nanomaterials on vascular endothelia below physiological and pathological circumstances: interactions, mechanisms and potential therapeutic purposes. J Contr Releas. 2021;330:945–62.

    Article 
    CAS 

    Google Scholar
     

  • Feng L, Yang X, Liang S, Xu Q, Miller MR, Duan J, Solar Z. Silica nanoparticles set off the vascular endothelial dysfunction and prethrombotic state by way of miR-451 immediately regulating the IL6R signaling pathway. Half Fibre Toxicol. 2019;16(1):16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA. Mind microvascular endothelial cell affiliation and distribution of a 5 nm ceria engineered nanomaterial. Int J Nanomed. 2012;7:4023–36.

    Article 
    CAS 

    Google Scholar
     

  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G. Dimension dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary goal organs. Inhal Toxicol. 2009;2(sup1):55–60.

    Article 

    Google Scholar
     

  • Wang HT, Liu S, Track YK, Zhu BW, Tan MQ. Common existence of fluorescent carbon dots in beer and evaluation of their potential toxicity. Nanotoxicology. 2019;13(2):160–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, Kim YS, Track KS, Ryu HR, Sung JH, Park JD, Park HM, Track NW, Shin BS, Marshak D, Ahn Ok, Lee JE, Yu IJ. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Half Fibre Toxicol. 2013;10(1):36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kielbik P, Kaszewski J, Dabrowski S, Faudnez R, Witkowski BS, Wachnicki L, Zhydachevskyy Y, Sapierzynski R, Gajewski Z, Godlewski M, Godlewski MM. Switch of orally administered ZnO: Eu nanoparticles by means of the blood-testis barrier: the impact on kinetic sperm parameters and apoptosis in mice testes. Nanotechnology. 2019;30(45): 455101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundarraj Ok, Manickam V, Raghunath A, Periyasamy M, Viswanathan MP, Perumal E. Repeated publicity to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol. 2017;32(2):594–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Yang L, Kuang H, Yang P, Aguilar ZP, Wang A, Fu F, Xu H. Acute toxicity of quantum dots on late being pregnant mice: results of nanoscale dimension and floor coating. J Hazard Mater. 2016;318:61–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • N’Dea S, Nelson KM, Dang MN, Gleghorn JP, Day ES. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age, nanomedicine: nanotechnology. Biol Med. 2021;36: 102412.


    Google Scholar
     

  • Farkas A, Balashazy I, Szocs Ok. Characterization of regional and native deposition of inhaled aerosol medication within the respiratory system by computational fluid and particle dynamics strategies. J Aerosol Med. 2006;19(3):329–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip mannequin for nanotoxicity testing. Toxicol Res. 2018;7(6):1048–60.

    Article 
    CAS 

    Google Scholar
     

  • Lu X, Zhu T, Chen C, Liu Y. Proper or left: the function of nanoparticles in pulmonary illnesses. Int J Mol Sci. 2014;15(10):17577–600.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Jin W, Ma J. Lung irritation perturbation by engineered nanoparticles. Entrance Bioeng Biotechnol. 2023;11:1199230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heringa MB, Peters RJB, Bleys R, van der Lee MK, Tromp PC, van Kesteren PCE, van Eijkeren JCH, Undas AK, Oomen AG, Bouwmeester H. Detection of titanium particles in human liver and spleen and doable well being implications. Half Fibre Toxicol. 2018;15(1):15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y, Gu W, Zhang B, Wang X. In vitro examine on the toxicity of nanoplastics with completely different costs to murine splenic lymphocytes. J Hazard Mater. 2022;424(Pt B): 127508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Huang T, Wang Y, Pan B, Zhang L, Zhang Q, Niu Q. Toxicity of alumina nanoparticles within the immune system of mice. Nanomedicine. 2020;15(9):927–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nabeh M, Taalab Y, Abd El Wahab D, Asker S, Elbedwehy A, El Harouny M. Silver nanotoxicity on kidneys and ovaries of feminine albino rats. Mansoura J Forensic Med Clin Toxicol. 2020;28(2):1–14.


    Google Scholar
     

  • Ryabova YV, Minigalieva IA, Sutunkova MP, Klinova SV, Tsaplina AK, Valamina IE, Petrunina EM, Tsatsakis AM, Mamoulakis C, Stylianou Ok, Kuzmin SV, Privalova LI, Katsnelson BA. Poisonous kidney injury in rats following subchronic intraperitoneal publicity to component oxide nanoparticles. Toxics. 2023;11(9):791.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousef MI, Roychoudhury S, Jafaar KS, Slama P, Kesari KK, Kamel MA. Aluminum oxide and zinc oxide induced nanotoxicity in rat mind, coronary heart, and lung. Physiol Res. 2022;71(5):677–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and rising toxicity evaluation strategies. Sci Complete Environ. 2021;800: 149584.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babiker F, Benter IF, Akhtar S. Nanotoxicology of dendrimers within the mammalian coronary heart: ex vivo and in vivo administration of G6 PAMAM nanoparticles impairs restoration of cardiac perform following ischemia-reperfusion damage. Int J Nanomed. 2020;15:4393–405.

    Article 
    CAS 

    Google Scholar
     

  • Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled supplies might induce extreme neurotoxicity upon persistent publicity to mind tissues: a vital appraisal and up to date updates on predisposing components, underlying mechanism, and future prospects. J Contr Releas. 2020;328:873–94.

    Article 
    CAS 

    Google Scholar
     

  • Boyes WK, van Thriel C. Neurotoxicology of nanomaterials. Chem Res Toxicol. 2020;33(5):1121–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey MR, Ansoborlo E, Guilmette RA, Paquet F. Updating the ICRP human respiratory tract mannequin. Radiat Prot Dosim. 2007;127(1–4):31–4.

    Article 
    CAS 

    Google Scholar
     

  • Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled high-quality and ultrafine particles by way of direct and alveolar macrophage-associated routes. Arch Toxicol. 2009;83(5):429–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to beat organic limitations towards precision drug supply. J Nanobiotechnol. 2022;20(1):395.

    Article 

    Google Scholar
     

  • Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How nanoparticles open the paracellular route of organic limitations: mechanisms. Appl Prospect ACS Nano. 2022;16(10):15627–52.

    Article 
    CAS 

    Google Scholar
     

  • Jia J, Wang Z, Yue T, Su G, Teng C, Yan B. Crossing organic limitations by engineered nanoparticles. Chem Res Toxicol. 2020;33(5):1055–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug supply throughout being pregnant. Adv Drug Deliv Rev. 2020;160:244–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egorova KS, Ananikov VP. Toxicity of metallic compounds: data and myths. Organometallics. 2017;36(21):4071–90.

    Article 
    CAS 

    Google Scholar
     

  • Zhang A, Meng Ok, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci. 2020;284: 102261.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence examine of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4(9):577–80.

    Article 
    PubMed 

    Google Scholar
     

  • Walczak AP, Hendriksen PJ, Woutersen RA, van der Zande M, Undas AK, Helsdingen R, van den Berg HH, Rietjens IM, Bouwmeester H. Bioavailability and biodistribution of in another way charged polystyrene nanoparticles upon oral publicity in rats. J Nanopart Res. 2015;17:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug supply programs. Knowledgeable Opin Drug Deliv. 2011;8(3):343–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED. Mechanisms of alveolar epithelial translocation of an outlined inhabitants of nanoparticles. Am J Respir Cell Mol Biol. 2010;42(5):604–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AV, Bansod G, Mahajan M, Dietrich P, Singh SP, Rav Ok, Thissen A, Bharde AM, Rothenstein D, Kulkarni S, Invoice J. Digital transformation in toxicology: enhancing communication and effectivity in threat evaluation. ACS Omega. 2023;8(24):21377–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated mobile response is size-dependent. Nat Nanotechnol. 2008;3(3):145–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar V, Dasgupta N, Ranjan S. Nanotoxicology: toxicity analysis, threat evaluation and administration. Boca Raton: CRC Press; 2018.

    E-book 

    Google Scholar
     

  • Otani T, Furuse M. Tight junction construction and performance revisited. Development Cell Biol. 2020;30(10):805–17.

    Article 
    CAS 

    Google Scholar
     

  • Delva E, Tucker DK, Kowalczyk AP. The desmosome. Chilly Spring Harb Perspect Biol. 2009;1(2): a002543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Hole junctions. Compr Physiol. 2012;2(3):1981–2035.

    Article 
    PubMed 

    Google Scholar
     

  • Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM. The density of small tight junction pores varies amongst cell varieties and is elevated by expression of claudin-2. J Cell Sci. 2008;121(Pt 3):298–305.

    Article 
    PubMed 

    Google Scholar
     

  • Lee M, Ni N, Tang H, Li Y, Wei W, Kakinen A, Wan X, Davis TP, Track Y, Leong DT, Ding F, Ke PC. A framework of paracellular transport by way of nanoparticles-induced endothelial leakiness. Adv Sci. 2021;8(21):e2102519.

    Article 

    Google Scholar
     

  • Rosas-Hernandez H, Escudero-Lourdes C, Ramirez-Lee MA, Cuevas E, Lantz SM, Imam SZ, Majeed W, Bourdo SE, Paule MG, Biris AS, Ali SF. Cytotoxicity profile of pristine graphene on mind microvascular endothelial cells. J Appl Toxicol. 2019;39(7):966–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skalska J, Dabrowska-Bouta B, Frontczak-Baniewicz M, Sulkowski G, Struzynska L. A low dose of nanoparticulate silver induces mitochondrial dysfunction and autophagy in grownup rat mind. Neurotox Res. 2020;38(3):650–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch I, Dawson KA. Protein–nanoparticle interactions. Nano Enabled Med Appl. 2020; 231–250.

  • Demir E. A evaluate on nanotoxicity and nanogenotoxicity of various shapes of nanomaterials. J Appl Toxicol. 2021;41(1):118–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion power regulates mobile uptake. Phys Rev Lett. 2010;105(13): 138101.

    Article 
    PubMed 

    Google Scholar
     

  • Akcan R, Aydogan HC, Yildirim MS, Tastekin B, Saglam N. Nanotoxicity: a problem for future drugs. Turk J Med Sci. 2020;50(4):1180–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams Y, Sukhanova A, Nowostawska M, Davies AM, Mitchell S, Oleinikov V, Gun’ko Y, Nabiev I, Kelleher D, Volkov Y. Probing cell-type-specific intracellular nanoscale limitations utilizing size-tuned quantum dots. Small. 2009;5(22):2581–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Yuan H, von dem Bussche A, Creighton M, Harm RH, Kane AB, Gao H. Graphene microsheets enter cells by means of spontaneous membrane penetration at edge asperities and nook websites. Proc Natl Acad Sci U S A. 2013;110(30):12295–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological results of copper nanoparticles in vivo. Toxicol Lett. 2006;163(2):109–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y. Ultrahigh reactivity provokes nanotoxicity: clarification of oral toxicity of nano-copper particles. Toxicol Lett. 2007;175(1–3):102–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nel A, Xia T, Mädler L, Li N. Poisonous potential of supplies on the nanolevel. Science. 2006;311(5761):622–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unfried Ok, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF. Mobile responses to nanoparticles: goal buildings and mechanisms. Nanotoxicology. 2007;1(1):52–71.

    Article 
    CAS 

    Google Scholar
     

  • Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Position of oxidative injury in toxicity of particulates. Free Radic Res. 2010;44(1):1–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in regular physiological features and human illness. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng H, Xia T, George S, Nel AE. A predictive toxicological paradigm for the protection evaluation of nanomaterials. ACS Nano. 2009;3(7):1620–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohl Y, Runden-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of nanomaterials: superior in vitro fashions and excessive throughput strategies for human hazard assessment-a evaluate. Nanomaterials. 2020;10(10):1911.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I. Nanotoxicity of pure silica mediated by means of oxidant technology quite than glutathione depletion in human lung epithelial cells. Toxicology. 2010;276(2):95–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protecting impact of sulphoraphane in opposition to oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci. 2012;37(1):139–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential mobile toxicity in vitro. Environ Pollut. 2009;157(4):1127–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida T, Yoshikawa T, Nabeshi H, Tsutsumi Y. Relation evaluation between intracellular distribution of nanomateriarls, ROS technology and DNA injury. Yakugaku Zasshi. 2012;132(3):295–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: technology of reactive oxygen species. J Meals Drug Anal. 2014;22(1):64–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 2005;5(10):1561–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma HJ, Zhao JJ, Meng HB, Hu DM, Zhou Y, Zhang XY, Wang CR, Li J, Yuan JY, Wei Y. Carnosine-modified fullerene as a extremely enhanced ROS scavenger for mitigating acute oxidative stress. ACS Appl Mater Interfaces. 2020;12(14):16104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsaioun Ok, Blaauboer BJ, Hartung T. Proof-based absorption, distribution, metabolism, excretion (ADME) and its interaction with different toxicity strategies. Altex. 2016;33(4):343–58.

    Article 
    PubMed 

    Google Scholar
     

  • Bourquin J, Milosevic A, Hauser D, Lehner R, Clean F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, clearance, and long-term destiny of clinically related nanomaterials. Adv Mater. 2018;30(19): e1704307.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma R, Sharma PK, Malviya R. Modulation of form and size-dependent traits of nanoparticles. Curr Nanomed Former Latest Pat Nanomed. 2019;9(3):210–5.


    Google Scholar
     

  • Sung JH, Ji JH, Track KS, Lee JH, Choi KH, Lee SH, Yu IJ. Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Well being. 2011;27(2):149–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Da Silva RGT. The impact of silver nanoparticles: a persistent in vivo examine for the analysis of hepatic mitochondrial toxicity. Coimbra: Universidade de Coimbra; 2014.


    Google Scholar
     

  • Assad N, Sood A, Campen MJ, Zychowski KE. Metallic-induced pulmonary fibrosis. Curr Environ Well being Rep. 2018;5(4):486–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasa DR, Miranda RN, Kaura A, Francis AM, Campanale A, Boldrini R, Alexander J, Deva AK, Gravina PR, Medeiros LJ, Nast Ok, Butler CE, Clemens MW. World antagonistic occasion stories of breast implant-associated ALCL: a world evaluate of 40 authorities authority databases. Plast Reconstr Surg. 2017;139(5):1029–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whaley RD, Aldrees R, Dougherty RE, Prieto Granada C, Badve SS, Al Diffalha S. Breast implant capsule-associated squamous cell carcinoma: report of two sufferers. Int J Surg Pathol. 2022;30(8):900–7.

    Article 
    PubMed 

    Google Scholar
     

  • Schoberleitner I, Faserl Ok, Tripp CH, Pechriggl EJ, Sigl S, Brunner A, Zelger B, Hermann-Kleiter N, Baier L, Steinkellner T, Sarg B, Egle D, Brunner C, Wolfram D. Silicone implant floor microtopography modulates irritation and tissue restore in capsular fibrosis. Entrance Immunol. 2024;15:1342895.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Wang D, Peng F, Qiu J, Ouyang L, Qiao Y, Liu X. Nanostructural surfaces with completely different elastic moduli regulate the immune response by stretching macrophages. Nano Lett. 2019;19(6):3480–3489. https://doi.org/10.1021/acs.nanolett.9b00237.

  • Noris M, Remuzzi G. Overview of complement activation and regulation, seminars in nephrology. Amsterdam: Elsevier; 2013. p. 479–92.


    Google Scholar
     

  • Thangaraju P, Varthya SB. ISO 10993: organic analysis of medical units, medical machine tips and rules handbook. Berlin: Springer; 2022. p. 163–87.

    E-book 

    Google Scholar
     

  • Evans SJ, Clift MJ, Singh N, de Oliveira Mallia J, Burgum M, Wills JW, Wilkinson TS, Jenkins GJ, Doak SH. Essential evaluate of the present and future challenges related to superior in vitro programs in direction of the examine of nanoparticle (secondary) genotoxicity. Mutagenesis. 2017;32(1):233–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfuhler S, Downs TR, Allemang AJ, Shan Y, Crosby ME. Weak silica nanomaterial-induced genotoxicity might be defined by oblique DNA injury as proven by the OGG1-modified comet assay and genomic evaluation. Mutagenesis. 2017;32(1):5–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doak SH, Dusinska M. Nano genotoxicology: current and the longer term. Mutagenesis. 2017;32(1):1–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kazimirova A, El Yamani N, Rubio L, Garcia-Rodriguez A, Barancokova M, Marcos R, Dusinska M. Results of titanium dioxide nanoparticles on the Hprt gene mutations in V79 hamster cells. Nanomaterials. 2020;10(3):465.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartek J, Mistrik M, Bartkova J. Lengthy-distance inflammatory and genotoxic influence of most cancers in vivo. Proc Natl Acad Sci U S A. 2010;107(42):17861–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uygur B, Craig G, Mason MD, Ng AK. Cytotoxicity and genotoxicity of silver nanomaterials. Nanotech Confer Expo Technical Proceed. 2009;2:383.

    CAS 

    Google Scholar
     

  • Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles within the human lung most cancers cell line, A549. Arch Toxicol. 2011;85(7):743–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh S, D’Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV. Cytotoxic and genotoxic evaluation of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem. 2010;34(2):294–301.

    Article 
    CAS 

    Google Scholar
     

  • Kim YJ, Yang SI, Ryu JC. Cytotoxicity and genotoxicity of nano-silver in mammalian cell strains. Mol Cell Toxicol. 2010;6(2):119–25.

    Article 
    CAS 

    Google Scholar
     

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi EM, Pylkkanen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, Sirola Ok, Nykasenoja H, Karisola P, Stjernvall T, Vanhala E, Kiilunen M, Pasanen P, Makinen M, Hameri Ok, Joutsensaari J, Tuomi T, Jokiniemi J, Wolff H, Savolainen Ok, Matikainen S, Alenius H. Airway publicity to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci. 2010;113(2):422–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuama AN, Alzubaidi LH, Jameel MH, Abass KH, Bin Mayzan MZH, Salman ZN. Affect of electron-hole recombination mechanism on the photocatalytic efficiency of ZnO in water remedy: a evaluate. J Sol Gel Sci Technol. 2024;110(3):792–806.

    Article 
    CAS 

    Google Scholar
     

  • Pesci FM, Wang G, Klug DR, Li Y, Cowan AJ. Environment friendly suppression of electron-hole recombination in oxygen-deficient hydrogen-treated TiO(2) nanowires for photoelectrochemical water splitting. J Phys Chem C Nanomater Interfaces. 2013;117(48):25837–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L, Poland CA, Duffin R, Fokkens PHB, Boere AJF, Leseman D, Megson IL, Whitfield PD, Ziegler Ok, Tammireddy S, Hadjidemetriou M, Bussy C, Cassee FR, Newby DE, Kostarelos Ok, Miller MR. First-in-human managed inhalation of skinny graphene oxide nanosheets to check acute cardiorespiratory responses. Nat Nanotechnol. 2024;19(5):705–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Firouzamandi M, Hejazy M, Mohammadi A, Shahbazfar AA, Norouzi R. In vivo toxicity of oral administrated nano-SiO2: can meals components improve apoptosis? Biol Hint Elem Res. 2023;201(10):4769–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater remedy with nanomaterials for the longer term: a state-of-the-art evaluate. Environ Res. 2023;216(Pt 3): 114652.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Younis SA, Maitlo HA, Lee J, Kim KH. Nanotechnology-based sorption and membrane applied sciences for the remedy of petroleum-based pollution in pure ecosystems and wastewater streams. Adv Coll Interface Sci. 2020;275: 102071.

    Article 
    CAS 

    Google Scholar
     

  • Yadav N, Garg VK, Chhillar AK, Rana JS. Detection and remediation of pollution to take care of ecosustainability using nanotechnology: a evaluate. Chemosphere. 2021;280: 130792.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobori D, Dimitriadi A, Karasiali S, Tsoumaki-Tsouroufli P, Mastora M, Kastrinaki G, Feidantsis Ok, Printzi A, Koumoundouros G, Kaloyianni M. Frequent mechanisms activated within the tissues of aquatic and terrestrial animal fashions after TiO(2) nanoparticles publicity. Environ Int. 2020;138: 105611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park HG, Yeo MK. Comparability of gene expression modifications induced by publicity to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Mol Cell Toxicol. 2013;9(2):129–39.

    Article 
    CAS 

    Google Scholar
     

  • Helpful RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: present standing, data gaps, challenges, and future wants. Ecotoxicology. 2008;17(5):315–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF. Silver nanoparticle characterization utilizing single particle ICP-MS (SP-ICP-MS) and asymmetrical circulation subject circulation fractionation ICP-MS (AF4-ICP-MS). J Anal At Spectrom. 2012;27(7):1131–42.

    Article 
    CAS 

    Google Scholar
     

  • Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J. Characterization of silver nanoparticles utilizing flow-field circulation fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A. 2011;1218(27):4219–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spurgeon DJ, Lahive E, Schultz CL. Nanomaterial transformations within the surroundings: results of fixing publicity types on bioaccumulation and toxicity. Small. 2020;16(36): e2000618.

    Article 
    PubMed 

    Google Scholar
     

  • Adam V, Caballero-Guzman A, Nowack B. Contemplating the types of launched engineered nanomaterials in probabilistic materials circulation evaluation. Environ Ballot. 2018;243(Pt A):17–27.

    Article 
    CAS 

    Google Scholar
     

  • Aleksandra Z, Beatriz C, Ferreira MV, Diogo M, Louros J, Alessandra D, Massimo L, Piotr E, Chaud MV, Margreet M. Nanotoxicology and nanosafety: safety-by-design and testing at a look. Int J Environ Res Public Well being. 2020;17:4657.

    Article 

    Google Scholar
     

  • Zhao J, Lin M, Wang Z, Cao X, Xing B. Engineered nanomaterials within the surroundings: are they secure? Crit Rev Environ Sci Technol. 2020;51(14):1443–78.

    Article 

    Google Scholar
     

  • Liu J, Pennell KG, Harm RH. Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol. 2011;45(17):7345–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. Sulfidation of silver nanoparticles: pure antidote to their toxicity. Environ Sci Technol. 2013;47(23):13440–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Dimkpa C, Deng C, Elmer WH, Gardea-Torresdey J, White JC. Affect of engineered nanomaterials on rice (Oryza sativa L.): a vital evaluate of present data. Environ Pollut. 2022;297:118738.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frazier EA, Patil RP, Mane CB, Sanaei D, Asiri F, Web optimization SS, Sharifan H. Environmental publicity and nanotoxicity of titanium dioxide nanoparticles in irrigation water with the flavonoid luteolin. RSC Adv. 2023;13(21):14110–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tufenkji N, Elimelech M. Correlation equation for predicting single-collector effectivity in physicochemical filtration in saturated porous media. Environ Sci Technol. 2004;38(2):529–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Praetorius A. Growth of environmental destiny fashions for engineered nanoparticles. ETH Zurich. 2014.

  • Mech A, Rauscher H, Babick F, Hodoroaba VD, Wohlleben W, Marvin H, Weigel S, Brüngel R, Friedrich CM. The Nanodefine strategies manual-part 1: the nanodefiner framework and instruments. Luxembourg: Publications Workplace of the European Union; 2020.


    Google Scholar
     

  • Mech A, Rauscher H, Rasmussen Ok, Babick F, Hodoroaba V-D, Ghanem A, Wohlleben W, Marvin H, Brüngel R, Friedrich CM. The nanodefine strategies manual-part 2: analysis of strategies. Luxembourg: Publications Workplace of the European Union; 2020.


    Google Scholar
     

  • Mech A, Babick F, Hodoroaba VD, Ghane AM, Wohlleben W, Marvin H, Löschner Ok, Brüngel R, Friedrich CM. The nanodefine strategies handbook. Half 3: normal working procedures (SOPs): JRC117501. Luxembourg: European Union; 2020.


    Google Scholar
     

  • Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology. 2022;69:31–48.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles