11.7 C
United States of America
Monday, March 17, 2025

Nanoscale high-entropy floor engineering promotes selective glycerol electro-oxidation to glycerate at excessive present density


  • Da Silva Ruy, A. D., Ferreira, A. L. F., Bresciani, A. É., de Brito Alves, R. M. & Pontes, L. A. M. Market prospecting and evaluation of the financial potential of glycerol from biodiesel. In Biotechnological Purposes of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen Press, 2021).

  • Yan, Y. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen gasoline at excessive present densities. J. Am. Chem. Soc. 145, 6144–6155 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schichtl, Z. G., Conlin, S. Okay., Mehrabi, H., Nielander, A. C. & Coridan, R. H. Characterizing sustained solar-to-hydrogen electrocatalysis at low cell potentials enabled by crude glycerol oxidation. ACS Appl. Power Mater. 5, 3863–3875 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de Souza, M. B. C. et al. Bi-modified Pt electrodes towards glycerol electrooxidation in alkaline answer: results on exercise and selectivity. ACS Catal. 9, 5104–5110 (2019).

    Article 

    Google Scholar
     

  • Houache, M. S. E. et al. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: perception into product selectivity utilizing in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Maintain. Chem. Eng. 7, 14425–14434 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Xiao, Y. & Xiao, G. Sustainable value-added C3 chemical compounds from glycerol transformations: a mini assessment for heterogeneous catalytic processes. Chinese language J. Chem. Eng. 27, 1536–1542 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Valter, M., dos Santos, E. C., Pettersson, L. G. M. & Hellman, A. Partial electrooxidation of glycerol on close-packed transition steel surfaces: insights from first-principles calculations. J. Phys. Chem. C 124, 17907–17915 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dodekatos, G., Schünemann, S. & Tüysüz, H. Current advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dai, C. et al. Electrochemical manufacturing of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356, 14–21 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huang, B. et al. Seeded synthesis of hole PdSn intermetallic nanomaterials for extremely environment friendly electrocatalytic glycerol oxidation. Adv. Mater. 35, 2302233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution using an environment friendly MoOx/Pt Catalyst. Small 17, 2104288 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton course of utilizing a steady NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem. Int. Ed. 62, e202216083 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. et al. Response mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chem. Eng. Sci. 203, 228–236 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Holade, Y., Morais, C., Servat, Okay., Napporn, T. W. & Kokoh, Okay. B. Towards the electrochemical valorization of glycerol: Fourier remodel infrared spectroscopic and chromatographic research. ACS Catal. 3, 2403–2411 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jeffery, D. Z. & Camara, G. A. The formation of carbon dioxide throughout glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem. Commun. 12, 1129–1132 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Terekhina, I. & Johnsson, M. Enhancing glycerol electrooxidation efficiency on nanocubic PtCo Catalysts. ACS Appl. Mater. Interfaces 16, 56987–56996 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Excessive-entropy intermetallic PtRhBiSnSb nanoplates for extremely environment friendly alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for gasoline cells. Science 374, 459–464 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao, G. et al. Liquid steel for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity sides for oxygen discount in sensible gasoline cells. J. Am. Chem. Soc. 145, 11140–11150 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xing, F., Ma, J., Shimizu, Okay. I. & Furukawa, S. Excessive-entropy intermetallics on ceria as environment friendly catalysts for the oxidative dehydrogenation of propane utilizing CO2. Nat. Commun. 13, 5065 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. Excessive-entropy alloys in electrocatalysis: from fundamentals to purposes. Chem. Soc. Rev. 52, 8319–8373 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, H. et al. The self-complementary impact via sturdy orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B 312, 121431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Hydrogen-intercalation-induced lattice growth of Pd@Pt core–shell nanoparticles for extremely environment friendly electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 143, 11262–11270 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Construction and efficiency relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 292, 120164 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature gasoline cell catalysts. Chem. Rev. 104, 4613–4636 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Function of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemical compounds coproduction through glycerol electrooxidation. ACS Catal. 12, 14492–14506 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xing, Z., Li, J., Wang, S., Su, C. & Jin, H. Construction engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation response. Nano Res. 15, 3866–3871 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Improved oxygen discount exercise and sturdiness of dealloyed PtCox catalysts for proton change membrane gasoline cells: pressure, ligand, and particle dimension results. ACS Catal. 5, 176–186 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Roles of Mo floor dopants in enhancing the ORR efficiency of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Selling n-butane dehydrogenation over PtMn/SiO2 via structural evolution induced by a reverse water-gas shift response. ACS Catal. 12, 13506–13512 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution response (OER) on Ru, Ir, and Pt catalysts: a comparative examine of nanoparticles and bulk supplies. ACS Catal. 2, 1765–1772 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, W. et al. Correlating hydrogen oxidation and evolution exercise on platinum at totally different pH with measured hydrogen binding power. Nat. Commun. 6, 5848 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takimoto, D. et al. Platinum nanosheets synthesized through topotactic discount of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 14, 19 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, J., Yang, X. & Gong, M. Current advances in glycerol valorization through electrooxidation: catalyst, mechanism and system. Chinese language J. Catal. 43, 2966–2986 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Simões, M., Baranton, S. & Coutanceau, C. Electro-oxidation of glycerol at Pd based mostly nano-catalysts for an utility in alkaline gasoline cells for chemical compounds and power cogeneration. Appl. Catal. B 93, 354–362 (2010).

    Article 

    Google Scholar
     

  • Zhang, W.-Y., Zou, S.-Z. & Cai, W.-B. Current advances in glycerol electrooxidation on Pt and Pd: from response mechanisms to catalytic supplies. J. Electrochem. 27, 233–256 (2021).


    Google Scholar
     

  • Vo, T.-G., Ho, P.-Y. & Chiang, C.-Y. Operando mechanistic research of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B 300, 120723 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst—CuO. Appl. Catal. B 265, 118543 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kuhl, Okay. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition steel surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid gasoline on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nørskov, J. Okay. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Pang, X. et al. In situ electrochemical reconstitution of CF–CuO/CeO2 for environment friendly energetic species era. Inorg. Chem. 61, 8940–8954 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, Y., Wei, X., Han, S., Chen, L. & Shi, J. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic options. Angew. Chem. Int. Ed. 60, 21464–21472 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vo, T.-G. et al. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant manufacturing of value-added tartronic acid and hydrogen gasoline. Adv. Funct. Mater. 33, 2209386 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chang, Z., Huo, S., Zhang, W., Fang, J. & Wang, H. The tunable and extremely selective discount merchandise on Ag@Cu bimetallic catalysts towards CO2 electrochemical discount response. J. Phys. Chem. C 121, 11368–11379 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bu, L. et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for environment friendly oxygen discount electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles