1.7 C
United States of America
Wednesday, January 1, 2025

Nanoparticle and microparticle-based methods for enhanced oral insulin supply: A scientific overview and meta-analysis | Journal of Nanobiotechnology


  • Illness, N.I.o.D.a.D.a.Ok. What’s diabetes? 2023 [cited 2023 October 20]; Out there from: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes.

  • Zhang S, Staples AE. Microfluidic-based methods for the administration of diabetes. Drug Deliv Transl Res. 2024;14:2989.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeedi P, et al. International and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: outcomes from the Worldwide Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2019;157: 107843.

    Article 
    PubMed 

    Google Scholar
     

  • Saeedi P, et al. Mortality attributable to diabetes in 20–79 years previous adults, 2019 estimates: outcomes from the Worldwide Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2020;162: 108086.

    Article 
    PubMed 

    Google Scholar
     

  • Mobasseri M, et al. Prevalence and incidence of sort 1 diabetes on the planet: a scientific overview and meta-analysis. Well being Promot Perspect. 2020;10(2):98–115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collaborators GD. International, regional, and nationwide burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: asystematic evaluation for the International Burden of Illness Examine 2021. The Lancet. 2023;402(10397):31.


    Google Scholar
     

  • Di Pietrantonio N, et al. Function of epigenetics and metabolomics in predicting endothelial dysfunction in sort 2 diabetes. Adv Biol (Weinh). 2023;7(9): e2300172.

    Article 
    PubMed 

    Google Scholar
     

  • Nørlev JTD, et al. Quantification of insulin adherence in adults with insulin-treated sort 2 diabetes: a scientific overview. Diabetes Metab Syndr. 2023;17(12): 102908.

    Article 
    PubMed 

    Google Scholar
     

  • Li SH, et al. Steel-polyphenol microgels for oral supply of puerarin to alleviate the onset of diabetes. Drug Deliv Transl Res. 2024;14(3):757–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan SY, et al. Kind 1 and a pair of diabetes mellitus: a overview on present therapy method and gene remedy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364–72.

    Article 
    PubMed 

    Google Scholar
     

  • Yoon J-W, Jun H-S. Current advances in insulin gene remedy for sort 1 diabetes. Traits Mol Med. 2002;8(2):6.

    Article 

    Google Scholar
     

  • Kono TM, et al. Human adipose-derived stromal/stem cells shield towards STZ-induced hyperglycemia: evaluation of hASC-derived paracrine effectors. Stem Cells. 2014;32(7):1831–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sher EK, et al. Novel therapeutical approaches based mostly on neurobiological and genetic methods for diabetic polyneuropathy—a overview. Diabetes Metab Syndr. 2023;17(11): 102901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Maalouf IR, Capoccia Ok, Priefer R. Non-invasive methods of administering insulin. Diabetes Metab Syndr. 2022;16(4): 102478.

    Article 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. Why most oral insulin formulations don’t attain medical trials. Ther Deliv. 2015;6(8):973–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora S, et al. Early detection of cutaneous problems of insulin remedy in sort 1 and sort 2 diabetes mellitus. Prim Care Diabetes. 2021;15(5):859–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson T, Kerr D. Pores and skin-related problems of insulin remedy: epidemiology and rising administration methods. Am J Clin Dermatol. 2003;4(10):661–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hammad RW, et al. Cubosomal functionalized block copolymer platform for twin supply of linagliptin and empagliflozin: current advances in synergistic methods for maximizing management of high-risk sort II diabetes. Drug Deliv Transl Res. 2024;14(3):678–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trief PM, et al. Incorrect insulin administration: an issue that warrants consideration. Clin Diabetes. 2016;34(1):25–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiMeglio LA, Evans-Molina C, Oram RA. Kind 1 diabetes. Lancet J. 2018;391(10138):2449–62.

    Article 

    Google Scholar
     

  • Zheng Y, Ley SH, Hu FB. International aetiology and epidemiology of sort 2 diabetes mellitus and its problems. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article 
    PubMed 

    Google Scholar
     

  • Pandey V, et al. Chapter 18—excipient toxicity and security. In: Tekade RK, editor., et al., Pharmacokinetics and toxicokinetic issues. New York: Educational Press; 2022. p. 487–511.

    Chapter 

    Google Scholar
     

  • Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug supply. Curr Pathobiol Rep. 2021;9(4):133–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil AG, et al. Toxicity and biodistribution of orally administered casein nanoparticles. Meals Chem Toxicol. 2017;106(Pt A):477–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harugade A, Sherje A, Pethe A. Chitosan: a overview on properties, organic actions and up to date progress in biomedical functions. React Funct Polym. 2023;1991.

  • Wang W, et al. Chitosan derivatives and their utility in biomedicine. Int J Mol Sci. 2020;21(2):487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, et al. Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction by way of modulating COX-2 and VCAM-1 expression in rats with diabetes mellitus. Int J Nanomed. 2018;13:6829–37.

    Article 
    CAS 

    Google Scholar
     

  • Tian H, et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to boost oral supply of insulin. Adv Healthc Mater. 2018;7(17): e1800285.

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal A, et al. Folate appended chitosan nanoparticles increase the soundness, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5:105179–93.

    Article 
    CAS 

    Google Scholar
     

  • Papakostidis C, Giannoudis PV. Meta-analysis. What have we discovered? Damage. 2023;54(Suppl 3):S30–4.

    Article 
    PubMed 

    Google Scholar
     

  • Wang XM, et al. A short introduction of meta-analyses in medical follow and analysis. J Gene Med. 2021;23(5): e3312.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng T, et al. Rational design of oral supply nanosystems for hypoglycemic peptides. Nano Immediately. 2023;53: 102031.

    Article 
    CAS 

    Google Scholar
     

  • Web page MJ, et al. The PRISMA 2020 assertion: an up to date guideline for reporting systematic critiques. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan RL, et al. Figuring out the PECO: a framework for formulating good inquiries to discover the affiliation of environmental and different exposures with well being outcomes. Environ Int. 2018;121(Pt 1):1027–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyatt GH, et al. GRADE tips: 2. Framing the query and deciding on essential outcomes. J Clin Epidemiol. 2011;64(4):395–400.

    Article 
    PubMed 

    Google Scholar
     

  • Ouzzani M, et al. Rayyan-a net and cellular app for systematic critiques. Syst Rev. 2016;5(1):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiloke C, Phulukdaree A, Chuturgoon AA. The chemotherapeutic potential of gold nanoparticles towards human carcinomas: a overview. In: Andrew W, editor. Nanoarchitectonics for good supply and drug focusing on. New York: Elsevier; 2016. p. 783–811.

    Chapter 

    Google Scholar
     

  • Badwaik H, et al. Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical facets. In: Research in pure merchandise chemistry. New York: Elsevier; 2019. p. 415–60.


    Google Scholar
     

  • ImageJ. [cited 01/07/2024; Available from: https://imagej.net/ij/.

  • The jamovi project. jamovi (Version 2.3) [Computer Software]. Out there from: https://www.jamovi.org.

  • Cochrane.org. Chapter 10: Analysing information and endeavor meta-analyses. 2024; Out there from: https://coaching.cochrane.org/handbook/present/chapter-10.

  • Schneider A, Hommel G, Blettner M. Linear regression evaluation: half 14 of a collection on analysis of scientific publications. Dtsch Arztebl Int. 2010;107(44):776–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeturu Ok, Srinivasa Rao ASR, Rao CR. Chapter 3—Machine studying algorithms, functions, and practices in information science. In: Ideas and strategies for information science. New York: Elsevier; 2020. p. 81–206.

    Chapter 

    Google Scholar
     

  • Hooijmans CR, et al. SYRCLE’s threat of bias device for animal research. BMC Med Res Methodol. 2014;14:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raguraman V, Jayasri MA, Suthindhiran Ok. Magnetosome mediated oral Insulin supply and its potential use in diabetes administration. J Mater Sci Mater Med. 2020;31(8):75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, et al. Cost-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for environment friendly oral insulin supply. Theranostics. 2021;11(9):4452–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, et al. Preparation of chitosan-based multifunctional nanocarriers overcoming a number of limitations for oral supply of insulin. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):278–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming a number of limitations to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, et al. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin supply. Polym Chem. 2016;7:3189–99.

    Article 
    CAS 

    Google Scholar
     

  • Sheng J, et al. Enhancing insulin oral absorption through the use of mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Management Launch. 2016;233:181–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar S, et al. Multifunctional composite microcapsules for oral supply of insulin. Int J Mol Sci. 2016;18(1):54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KS, et al. Immense insulin intestinal uptake and lymphatic transport utilizing bile acid conjugated partially uncapped liposome. Mol Pharm. 2018;15(10):4756–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JU, et al. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin supply utilizing response floor methodology. Int J Pharm. 2020;588: 119736.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alibolandi M, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral supply of insulin: in vitro and in vivo analysis. J Management Launch. 2016;227:58–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Remawi M, et al. Chitosan/lecithin liposomal nanovesicles as an oral insulin supply system. Pharm Dev Technol. 2017;22(3):390–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaral M, et al. How can biomolecules enhance mucoadhesion of oral insulin? A complete perception utilizing. Biomolecules. 2020;10(5):675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Y, et al. Nanoparticles with floor options of dendritic oligopeptides as potential oral drug supply methods. J Mater Chem B. 2020;8(13):2636–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balabushevich NG, et al. Layer-by-layer adsorption of biopolyelectrolytes as a common method to fabrication of protein-loaded microparticles. Moscow College Chemistry Bulletin. 2014.

  • Chen T, et al. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral supply of insulin. J Microencapsul. 2019;36(1):96–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, et al. Cp1-11 peptide/insulin advanced loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019;562:23–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho HJ, et al. Chondroitin sulfate-capped gold nanoparticles for the oral supply of insulin. Int J Biol Macromol. 2014;63:15–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsayed AM, et al. Low molecular weight chitosan–insulin complexes solubilized in a combination of self-assembled labrosol and plurol oleaque and their glucose discount exercise in rats. Mar Medicine. 2018;16(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin mobile uptake and improved in vivo hypoglycemic exercise. Int J Pharm. 2019;571: 118708.

    Article 
    PubMed 

    Google Scholar
     

  • Fang Y, et al. Gastrointestinal responsive polymeric nanoparticles for oral supply of insulin: optimized preparation, characterization, and in vivo analysis. J Pharm Sci. 2019;108(9):2994–3002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral supply of protein medication by overcoming a number of gastrointestinal limitations. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He H, et al. VB12-coated Gel-Core-SLN containing insulin: one other approach to enhance oral absorption. Int J Pharm. 2015;493(1–2):451–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Z, et al. Scalable manufacturing of core–shell nanoparticles by flash nanocomplexation to boost mucosal transport for oral supply of insulin. Nanoscale. 2018;10(7):3307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Wang J, Qiu L. Polymeric nano-vesicles by way of intermolecular motion to load and orally ship insulin with enhanced hypoglycemic impact. RSC Adv. 2020;10(13):7887–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inchaurraga L, et al. Zein-based nanoparticles for the oral supply of insulin. Drug Deliv Transl Res. 2020;10(6):1601–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, et al. Chitosan modified cerasomes incorporating poly (vinyl pyrrolidone) for oral insulin supply. RSC Adv. 2014;4:58137–44.

    Article 
    CAS 

    Google Scholar
     

  • Kassem M, et al. Formulation, characterization and in vivo utility of oral insulin nanotechnology utilizing completely different biodegradable polymers: superior drug supply system. Int J Pharm Sci Res. 2018;9:3664–77.

    CAS 

    Google Scholar
     

  • Kumari Y, et al. Modified apple polysaccharide capped gold nanoparticles for oral supply of insulin. Int J Biol Macromol. 2020;149:976–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, et al. ZOT-derived peptide and chitosan functionalized nanocarrier for oral supply of protein drug. Biomaterials. 2016;103:160–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SH, et al. Enhanced oral supply of insulin by way of the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit. J Nanobiotechnol. 2020;18(1):104.

    Article 
    CAS 

    Google Scholar
     

  • Li X, et al. Intestinal mucosa permeability following oral insulin supply utilizing core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, et al. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin supply. Acta Pharm Sin B. 2022;12(3):1460–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin supply: preparation and useful analysis. Int J Nanomed. 2016;11:761–9.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, et al. A novel ligand conjugated nanoparticles for oral insulin supply. Drug Deliv. 2016;23(6):2015–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Environment friendly mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin supply. J Management Launch. 2016;222:67–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Twin stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin provider for intestine-targeted supply and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Iron-mimic peptide converts transferrin from foe to pal for orally focusing on insulin supply. J Mater Chem B. 2018;6(4):593–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Angiopep-2-functionalized nanoparticles improve transport of protein medication throughout intestinal epithelia by self-regulation of focused receptors. Biomater Sci. 2021;9(8):2903–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the therapy of sort 1 and sort 2 diabetes. Eur J Pharm Biopharm. 2017;113:88–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-López AL, et al. Arabinoxylans-based oral insulin supply system focusing on the colon: simulation in a human intestinal microbial ecosystem and analysis in diabetic rats. Prescription drugs (Basel). 2022;15(9):1062.

    Article 
    PubMed 

    Google Scholar
     

  • Mudassir J, et al. Self-assembled insulin and nanogels polyelectrolyte advanced (Ins/NGs-PEC) for oral insulin supply: characterization, lyophilization and in-vivo analysis. Int J Nanomed. 2019;14:4895–909.

    Article 
    CAS 

    Google Scholar
     

  • Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin supply. Pharm Dev Technol. 2021;26(2):157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a possible oral drug supply system. Acta Pharm. 2017;67(2):149–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for environment friendly oral insulin supply. Biomater Sci. 2021;9(3):685–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reboredo C, et al. Zein-based nanoparticles as oral carriers for insulin supply. Pharmaceutics. 2021;14(1):39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma C. Simultaneous impact of thiolation and carboxylation of chitosan particles in the direction of mucoadhesive oral insulin supply functions: an in vitro and in vivo analysis. J Biomed Nanotechnol. 2015;11:11.

    Article 

    Google Scholar
     

  • Shan W, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral supply of insulin. ACS Nano. 2015;9(3):2345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan W, et al. Enhanced oral supply of protein medication utilizing zwitterion-functionalized nanoparticles to beat each the diffusion and absorption limitations. ACS Appl Mater Interfaces. 2016;8(38):25444–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Preparation and characterization of glycoprotein-resistant starch advanced as a coating materials for oral bioadhesive microparticles for colon-targeted polypeptide supply. J Agric Meals Chem. 2015;63(16):4138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonia TA, Sharma CP. pH delicate thiolated cationic hydrogel for oral insulin supply. J Biomed Nanotechnol. 2014;10(4):642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhakar S, et al. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral supply of insulin in vivo. Int J Biol Macromol. 2020;150:281–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar L, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin launch in vivo. Polym Chem. 2014;5:1999–2009.

    Article 
    CAS 

    Google Scholar
     

  • Solar L, et al. Scalable manufacturing of enteric encapsulation methods for site-specific oral insulin supply. Biomacromol. 2019;20(1):528–38.

    Article 
    CAS 

    Google Scholar
     

  • Tan X, et al. Hydrophilic and electroneutral nanoparticles to beat mucus trapping and improve oral supply of insulin. Mol Pharm. 2020;17(9):3177–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urimi D, et al. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech. 2019;20(3):131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma A, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive provider for improved oral supply of insulin. Acta Biomater. 2016;31:288–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, et al. pH-responsive and mucoadhesive nanoparticles for enhanced oral insulin supply: the impact of hyaluronic acid with completely different molecular weights. Pharmaceutics. 2023;15(3):820.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu S, et al. A supply system for oral administration of proteins/peptides via bile acid transport channels. J Pharm Sci. 2019;108(6):2143–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing L, et al. Complying with the physiological capabilities of Golgi equipment for secretory exocytosis facilitated oral absorption of protein medication. J Mater Chem B. 2021;9(6):1707–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, et al. Novel strong lipid nanoparticle with endosomal escape perform for oral supply of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZH, et al. N-octyl-N-Arginine chitosan micelles as an oral supply system of insulin. J Biomed Nanotechnol. 2013;9(4):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang P, et al. Goblet cell focusing on nanoparticle containing drug-loaded micelle cores for oral supply of insulin. Int J Pharm. 2015;496(2):993–1005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin supply. J Mater Chem B. 2018;6(45):7451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, et al. Multifunctional nanoparticles allow environment friendly oral supply of biomacromolecules by way of enhancing payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, et al. A nanocomposite car based mostly on steel–natural framework nanoparticle included biodegradable microspheres for enhanced oral insulin supply. ACS Appl Mater Interfaces. 2020;12(20):22581–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, et al. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral supply of insulin. Mol Pharm. 2020;17(1):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, et al. Oral supply of insulin with clever glucose-responsive swap for blood glucose regulation. J Nanobiotechnol. 2020;18(1):96.

    Article 
    CAS 

    Google Scholar
     

  • Chaturvedi Ok, et al. Oral insulin supply utilizing deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond). 2015;10(10):1569–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. The mix of endolysosomal escape and basolateral stimulation to beat the difficulties of “straightforward uptake arduous transcytosis” of ligand-modified nanoparticles in oral drug supply. Nanoscale. 2018;10(3):1494–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XB, et al. Phospholipid advanced based mostly nanoemulsion system for oral insulin supply: preparation, in vitro, and in vivo evaluations. Int J Nanomed. 2019;14:3055–67.

    Article 
    CAS 

    Google Scholar
     

  • Wu L, et al. Bioinspired butyrate-functionalized nanovehicles for focused oral supply of biomacromolecular medication. J Management Launch. 2017;262:273–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, et al. Biomimetic viruslike and cost reversible nanoparticles to sequentially overcome mucus and epithelial limitations for oral insulin supply. ACS Appl Mater Interfaces. 2018;10(12):9916–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, et al. Selling apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Management Launch. 2020;323:151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, et al. Preparation, characterization, and analysis in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral supply of insulin. Int J Pharm. 2013;454(1):278–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. A technique for creating efficient orally-delivered nanoparticles via modulation of the floor “hydrophilicity/hydrophobicity steadiness.” J Mater Chem B. 2017;5(6):1302–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, et al. Ldl cholesterol moieties as constructing blocks for assembling nanoparticles to realize efficient oral supply of insulin. Biomater Sci. 2020;8(14):3979–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guha A, et al. pH responsive cylindrical MSN for oral supply of insulin-design, fabrication and analysis. Drug Deliv. 2016;23(9):3552–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia X, et al. Multi-functional self-assembly nanoparticles originating from small molecule pure product for oral insulin supply via modulating tight junctions. J Nanobiotechnol. 2022;20(1):116.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, et al. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as efficient enteric carriers for oral insulin supply. Biomacromol. 2018;19(6):2123–36.

    Article 
    CAS 

    Google Scholar
     

  • Morales-Burgos AM, et al. Extremely cross-linked arabinoxylans microspheres as a microbiota-activated provider for colon-specific insulin supply. Eur J Pharm Biopharm. 2021;163:16–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Resistant starch film-coated microparticles for an oral colon-specific polypeptide supply system and its launch behaviors. J Agric Meals Chem. 2014;62(16):3599–609.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Z, et al. Scalable manufacturing of therapeutic protein nanoparticles utilizing flash nanoprecipitation. Adv Healthc Mater. 2019;8(6): e1801010.

    Article 
    PubMed 

    Google Scholar
     

  • Turner PV, et al. Administration of gear to laboratory animals: routes of administration and components to think about. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovshova T, et al. Optimization of strategies for dedication of the encapsulation effectivity of doxorubicin within the nanoparticles based mostly on poly(lactic-co-glycolic acid) (PLGA). Drug Dev Regis. 2020;9:113–8.

    Article 
    CAS 

    Google Scholar
     

  • Kamelnia R, et al. Bettering the soundness of insulin via efficient chemical modifications: a complete overview. Int J Pharm. 2024;661: 124399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfatama M, et al. A complete overview of oral chitosan drug supply methods: functions for oral insulin supply. Nanotechnol Rev. 2024;13(1):20230205.

    Article 
    CAS 

    Google Scholar
     

  • Caturano A, et al. Advances in Nanomedicine for Precision Insulin Supply. Prescription drugs (Basel). 2024;17(7):945.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhumkar DR, et al. Chitosan diminished gold nanoparticles as novel carriers for transmucosal supply of insulin. Pharm Res. 2007;24(8):1415–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloomgarden Z. Novel approaches to the therapy of sort 1 diabetes. J Diabetes. 2022;14(11):724–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent method. J Neuroendocrinol. 2021;33(4): e12941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dube S, et al. Evaluation of insulin motion on carbohydrate metabolism: physiological and non-physiological strategies. Diabet Med. 2013;30(6):664–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeva-Andany MM, et al. Glycogen metabolism in people. BBA Clin. 2016;5:85–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco NH. Animal experiments in biomedical analysis: a historic perspective. Animals (Basel). 2013;3(1):238–73.

    Article 
    PubMed 

    Google Scholar
     

  • Scridon A, et al. Wistar rats with long-term streptozotocin-induced sort 1 diabetes mellitus replicate essentially the most related medical, biochemical, and hematologic options of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai relevante caracteristici clinice, biochimice si hematologice ale diabetului uman. Revista Romana de Medicina de Laborator. 2015. 23.

  • Nagy G, et al. New therapeutic approaches for sort 1 diabetes: Illness-modifying therapies. World J Diabetes. 2022;13(10):835–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkel L, et al. Fetal programming of the endocrine pancreas: influence of a maternal low-protein eating regimen on gene expression within the perinatal rat pancreas. Int J Mol Sci. 2022;23:11057. https://doi.org/10.3390/ijms231911057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghasemi A, Jeddi S, Kashfi Ok. The laboratory rat: age and physique weight matter. EXCLI J. 2021;20:1431–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iannaccone PM, Jacob HJ. Rats! Dis Mannequin Mech. 2009;2(5–6):206–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D. Benefits and drawbacks of various insulin administration strategies for the therapy of diabetes. Adv Humanit Res. 2023;3:311–5.


    Google Scholar
     

  • Wang M, et al. Versatile oral insulin supply nanosystems: from supplies to nanostructures. Int J Mol Sci. 2022;23(6):3362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma CP. Oral supply of therapeutic protein/peptide for diabetes–future views. Int J Pharm. 2013;440(1):48–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain KK. An summary of drug supply methods. Strategies Mol Biol. 2020;2059:1–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyam S, Nordin NA, Alfatama M. Current progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical views of oral insulin supply. Prescription drugs (Basel). 2020;13(10):307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Neises G. “Human” insulin versus animal insulin in individuals with diabetes mellitus. Cochrane Database Syst Rev. 2005;2005(1): CD003816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirst JA, et al. The necessity for randomization in animal trials: an outline of systematic critiques. PLoS ONE. 2014;9(6): e98856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahan BC, Rehal S, Cro S. Threat of choice bias in randomised trials. Trials. 2015;16:405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danaei M, et al. Affect of particle measurement and polydispersity index on the medical functions of lipidic nanocarrier methods. Pharmaceutics. 2018;10(2):57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Ok, et al. Polymers and inorganic nanoparticles: a profitable mixture in the direction of assembled nanostructures for most cancers imaging and remedy. Nano Toady. 2021;36: 101046.

    Article 
    CAS 

    Google Scholar
     

  • Biriukov D, Fibich P, Předota M. Zeta potential dedication from molecular simulations. J Phys Chem C. 2020;124(5):3159–70.

    Article 
    CAS 

    Google Scholar
     

  • Eldridge JA, et al. Nanoparticle ζ-potential measurements utilizing tunable resistive pulse sensing with variable strain. J Colloid Interface Sci. 2014;429:45–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, et al. Functions and challenges of ultra-small particle measurement nanoparticles in tumor remedy. J Management Launch. 2023;353:699–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ACTTR. What Does “Span” of Particle Dimension Imply? 2020; Out there from: https://www.acttr.com/en/en-faq/en-faq-particle-size-analyzer/411-en-faq-particle-span-meaning.html.

  • Liu Y, et al. Growth of high-drug-loading nanoparticles. ChemPlusChem. 2020;85(9):2143–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordillo-Galeano A, Mora-Huertas CE. Strong lipid nanoparticles and nanostructured lipid carriers: a overview emphasizing on particle construction and drug launch. Eur J Pharm Biopharm. 2018;133:285–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankalapalli S, Kolapalli VR. Polyelectrolyte complexes: a overview of their applicability in drug supply know-how. Indian J Pharm Sci. 2009;71(5):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankerfors C. Polyelectrolyte complexes: preparation, characterization, and use for management of moist and dry adhesion between surfaces. In: Chemical science and engineering. 2012, HTJ: Stockholm. p. 58.

  • Wong CY, Al-Salami H, Dass CR. Fabrication methods for the preparation of orally administered insulin nanoparticles. J Drug Goal. 2021;29(4):365–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guadarrama-Escobar OR, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, et al. Oral insulin supply platforms: methods to handle the organic limitations. Angew Chem Int Ed Engl. 2020;59(45):19787–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langguth P, et al. The problem of proteolytic enzymes in intestinal peptide supply. J Management Launch. 1997;46(1–2):18.


    Google Scholar
     

  • Alai MS, Lin WJ, Pingale SS. Utility of polymeric nanoparticles and micelles in insulin oral supply. J Meals Drug Anal. 2015;23(3):351–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement via tight junction modulation. Knowledgeable Opin Drug Deliv. 2013;10(1):103–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikh R, et al. Mucoadhesive drug supply methods. J Pharm Bioallied Sci. 2011;3(1):89–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makhlof A, Tozuka Y, Takeuchi H. Design and analysis of novel pH-sensitive chitosan nanoparticles for oral insulin supply. Eur J Pharm Sci. 2011;42(5):445–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieterich W, Schink M, Zopf Y. Microbiota within the gastrointestinal tract. Med Sci (Basel). 2018;6(4):116.

    CAS 
    PubMed 

    Google Scholar
     

  • Sousa de Almeida M, et al. Understanding nanoparticle endocytosis to enhance focusing on methods in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneguin AB, et al. The position of polysaccharides from pure sources to design oral insulin micro- and nanoparticles meant for the therapy of diabetes mellitus: a overview. Carbohydr Polym. 2021;256: 117504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes MA, et al. Intestinal uptake of insulin nanoparticles: details or myths? Curr Pharm Biotechnol. 2014;15(7):629–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barfar A, et al. Oral insulin supply: a overview on current developments and novel methods. Curr Drug Deliv. 2024;21(6):887–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa C, et al. All-in-one microfluidic meeting of insulin-loaded pH-responsive nano-in-microparticles for oral insulin supply. Biomater Sci. 2020;8(12):3270–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noticed PE, et al. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA supply and mixture most cancers remedy. Nano Lett. 2019;19(9):5967–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, et al. Advances in nanomaterials for photodynamic remedy functions: standing and challenges. Biomaterials. 2020;237: 119827.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Multifunctional nano-in-micro supply methods for focused remedy in fundus neovascularization illnesses. J Nanobiotechnol. 2024;22(1):354.

    Article 

    Google Scholar
     

  • Bikram M, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for managed drug supply. J Management Launch. 2007;123(3):219–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. Cochrane Database Syst Rev. 2023;11(11):CD015385.

    PubMed 

    Google Scholar
     

  • Shorten PR, McMahon CD, Soboleva TK. Insulin transport inside skeletal muscle transverse tubule networks. Biophys J. 2007;93(9):3001–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyperlink FJ, Heng JYY. Unraveling the influence of pH on the crystallization of pharmaceutical proteins: a case research of human insulin. Cryst Development Des. 2022;22(5):3024–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev Biophys. 2008;41(3–4):205–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsi Ok. Interplay of detergent sclerosants with cell membranes. Phlebology. 2015;30(5):306–15.

    Article 
    PubMed 

    Google Scholar
     

  • Venkatesan J, et al. Seaweed polysaccharide-based nanoparticles: preparation and functions for drug supply. Polymers (Basel). 2016;8(2):30.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles