12.7 C
United States of America
Monday, March 3, 2025

Nanometre-resolution three-dimensional tomographic and vectorial near-field imaging in dielectric optical resonators


  • O’Brien, S. & Pendry, J. B. Photonic band-gap results and magnetic exercise in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002).

    Article 

    Google Scholar
     

  • Koshelev, Okay. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gan, X. et al. Excessive-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 13, 691–696 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical components. Science 345, 298–302 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Statement of intrinsic chiral sure states within the continuum. Nature 613, 474–478 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for full management of part and polarization with subwavelength spatial decision and excessive transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koshelev, Okay. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photon. 8, 102–112 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dorrah, A. H. & Capasso, F. Tunable structured mild with flat optics. Science 376, eabi6860 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West, P. R. et al. All-dielectric subwavelength metasurface focusing lens. Decide. Specific 22, 26212 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with excessive numerical apertures and enormous effectivity based mostly on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arbabi, A. & Faraon, A. Advances in optical metalenses. Nat. Photon. 17, 16–25 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M., Lee, D., Yang, Y., Kim, Y. & Rho, J. Reaching the best effectivity of spin Corridor impact of sunshine within the near-infrared utilizing all-dielectric metasurfaces. Nat. Commun. 13, 2036 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hentschel, M. et al. Dielectric Mie voids: confining mild in air. Gentle Sci. Appl. 12, 3 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rybin, M. V. et al. Excessive-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Odit, M. et al. Statement of supercavity modes in subwavelength dielectric resonators. Adv. Mater. 33, 2003804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. At the moment 12, 60–69 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced mild–matter interplay on the nanometre scale. Nature 418, 159–162 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bek, A., Vogelgesang, R. & Kern, Okay. Apertureless scanning close to discipline optical microscope with sub-10 nm decision. Rev. Sci. Instrum. 77, 043703 (2006).

    Article 

    Google Scholar
     

  • Ma, X. et al. 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes utilizing a nanometer-scale white mild supply. Nat. Commun. 12, 6868 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Moon, Okay. et al. Subsurface nanoimaging by THz pulse near-field microscopy. Nano Lett. 15, 549–552 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelayah, J. et al. Mapping floor plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Vesseur, E. J. R., De Waele, R., Kuttge, M. & Polman, A. Direct statement of plasmonic modes in Au nanowires utilizing high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 588, 616–619 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piazza, L. et al. Simultaneous statement of the quantization and the interference sample of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harutyunyan, H., Palomba, S., Renger, J., Quidant, R. & Novotny, L. Nonlinear dark-field microscopy. Nano Lett. 10, 5076–5079 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fixed, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical technology of floor plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Palomba, S., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. J. Decide. A 11, 114030 (2009).

    Article 

    Google Scholar
     

  • Schlickriede, C. et al. Imaging by means of nonlinear metalens utilizing second harmonic technology. Adv. Mater. 30, 1703843 (2018).

    Article 

    Google Scholar
     

  • Ali, R. F., Busche, J. A., Kamal, S., Masiello, D. J. & Gates, B. D. Close to-field enhancement of optical second harmonic technology in hybrid gold–lithium niobate nanostructures. Gentle Sci. Appl. 12, 99 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Metzger, B., Hentschel, M. & Giessen, H. Probing the near-field of second-harmonic mild round plasmonic nanoantennas. Nano Lett. 17, 1931–1937 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Environment friendly third harmonic technology and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 11, 953–960 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Third-harmonic technology and imaging with resonant Si membrane metasurface. Opto-Electron. Adv. 6, 220174 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Frischwasser, Okay. et al. Actual-time sub-wavelength imaging of floor waves with nonlinear near-field optical microscopy. Nat. Photon. 15, 442–448 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Lin, C.-Y., Nikolaenko, A., Raghunathan, V. & Potma, E. O. 4-wave mixing microscopy of nanostructures. Adv. Decide. Photon. 3, 1–52 (2011).

    Article 

    Google Scholar
     

  • Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental statement of electron-hole recollisions. Nature 483, 580–583 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, R.-B. & Zhu, B.-F. Excessive-order THz-sideband technology in semiconductors. AIP Conf. Proc. 893, 1455–1456 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, P. C. et al. Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papasimakis, N., Fedotov, V. A., Savinov, V., Raybould, T. A. & Zheludev, N. I. Electromagnetic toroidal excitations in matter and free area. Nat. Mater. 15, 263–271 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Dephasing of strong-field-driven excitonic autler-townes doublets revealed by time- and spectrum-resolved quantum-path interferometry. Phys. Rev. Lett. 133, 026901 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanblatt, E. R. et al. Quantitative chemically particular coherent diffractive imaging of reactions at buried interfaces with few nanometer precision. Nano Lett. 16, 5444–5450 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. Ghost hyperbolic floor polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Probing the band construction of topological silicon photonic lattices within the seen spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles