-9.4 C
United States of America
Sunday, January 19, 2025

Nanobiotechnology boosts ferroptosis: alternatives and challenges | Journal of Nanobiotechnology


  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent type of nonapoptotic cell demise. Cell. 2012;149(5):1060–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell demise involving voltage-dependent anion channels. Nature. 2007;447(7146):864–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72(1):7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Nussinov R, Tsai C-J, Jang H. Anticancer drug resistance: an replace and perspective. Drug Resist Updat. 2021;59: 100796.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassannia B, Vandenabeele P, Vanden BT. Focusing on ferroptosis to iron out most cancers. Most cancers Cell. 2019;35(6):830–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in most cancers remedy: a novel method to reversing drug resistance. Mol Most cancers. 2022;21(1):47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, et al. Combinative remedy of β-elemene and cetuximab is delicate to KRAS mutant colorectal most cancers cells by inducing ferroptosis and inhibiting epithelial–mesenchymal transformation. Theranostics. 2020;10(11):5107–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020;585(7826):603–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell demise nexus linking metabolism, redox biology, and illness. Cell. 2017;171(2):273–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner V, Dullaart A, Bock A-Ok, Zweck A. The rising nanomedicine panorama. Nat Biotechnol. 2006;24(10):1211–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Teng Ok-X, Zhao L, Niu L-Y, Yang Q-Z. Extremely-small nano-assemblies as tumor-targeted and renal clearable theranostic agent for photodynamic remedy. Adv Mater. 2023;35(19): e2209789.

    Article 
    PubMed 

    Google Scholar
     

  • Fu X, Chen T, Music Y, Feng C, Chen H, Zhang Q, et al. mRNA supply by a pH-responsive DNA nano-hydrogel. Small. 2021;17(29): e2101224.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, et al. Exerting enhanced permeability and retention impact pushed supply by ultrafine iron oxide nanoparticles with T1–T2 switchable magnetic resonance imaging distinction. ACS Nano. 2017;11(5):4582–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Li Y, Wei Z, Yuan B, Wang Y, Akakuru OU, et al. Strain-induced amorphous zeolitic imidazole frameworks with decreased toxicity and elevated tumor accumulation improves therapeutic efficacy in vivo. Bioact Mater. 2021;6(3):740–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, et al. Alternatives and challenges for co-delivery nanomedicines based mostly on mixture of phytochemicals with chemotherapeutic medication in most cancers remedy. Adv Drug Deliv Rev. 2022;188: 114445.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing nanomaterials for most cancers sonodynamic immunotherapy. Adv Mater. 2023;35(33): e2211130.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging through nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji X, Tang Z, Liu H, Kang Y, Chen L, Dong J, et al. Nanoheterojunction-mediated thermoelectric technique for most cancers surgical adjuvant remedy and β-elemene mixture remedy. Adv Mater. 2023;35(8): e2207391.

    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Solar S, Feng Q, Wu G, Wu Y, Kong N, et al. Arsenene nanodots with selective killing results and their low-dose mixture with ß-elemene for most cancers remedy. Adv Mater. 2021;33(37): e2102054.

    Article 
    PubMed 

    Google Scholar
     

  • Newton Ok, Strasser A, Kayagaki N, Dixit VM. Cell demise. Cell. 2024;187(2):235–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular equipment of regulated cell demise. Cell Res. 2019;29(5):347–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor brokers utilizing artificial deadly chemical screening in engineered human tumor cells. Most cancers Cell. 2003;3(3):285–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang WS, Stockwell BR. Artificial deadly screening identifies compounds activating iron-dependent, nonapoptotic cell demise in oncogenic-RAS-harboring most cancers cells. Chem Biol. 2008;15(3):234–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and interprets oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell demise. Cell Metab. 2008;8(3):237–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping mobile lipid composition. Nat Chem Biol. 2017;13(1):91–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pisoschi AM, Pop A. The function of antioxidants within the chemistry of oxidative stress: a evaluate. Eur J Med Chem. 2015;97:55–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, et al. Iron as an rising therapeutic goal in critically ailing sufferers. Crit Care. 2023;27(1):475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galy B, Conrad M, Muckenthaler M. Mechanisms controlling mobile and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Jiang L, Chew SH, Hirayama T, Sekido Y, Toyokuni S. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma beneath hypoxia. Redox Biol. 2019;26: 101297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barroso MF, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Delerue-Matos C, Oliveira MBPP, Tuñón-Blanco P. DNA-based biosensor for the electrocatalytic dedication of antioxidant capability in drinks. Biosens Bioelectron. 2011;26(5):2396–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, et al. Cytosolic monothiol glutaredoxins operate in intracellular iron sensing and trafficking through their sure iron-sulfur cluster. Cell Metab. 2010;12(4):373–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, et al. Construction of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020;586(7831):807–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hentze MW, Kühn LC. Molecular management of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA. 1996;93(16):8175–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tybl E, Gunshin H, Gupta S, Barrientos T, Bonadonna M, Celma Nos F, et al. Management of systemic iron homeostasis by the three′ iron-responsive factor of divalent metallic transporter 1 in mice. Hemasphere. 2020;4(5): e459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh MC, Zhang D-L, Jeong SY, Kovtunovych G, Ollivierre-Wilson H, Noguchi A, et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice by translational derepression of HIF2α. Cell Metab. 2013;17(2):271–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell demise course of. Cell Res. 2016;26(9):1021–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou W, Xie Y, Music X, Solar X, Lotze MT, Zeh HJ, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaji S, Sharp P, Ramesh B, Srai SK. Inhibition of iron transport throughout human intestinal epithelial cells by hepcidin. Blood. 2004;104(7):2178–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D-L, Senecal T, Ghosh MC, Ollivierre-Wilson H, Tu T, Rouault TA. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood. 2011;118(10):2868–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protecting function of microglial HO-1 blockade in growing old: implication of iron metabolism. Redox Biol. 2021;38: 101789.

    Article 
    PubMed 

    Google Scholar
     

  • Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A, Kim J. Extra heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell illness. Blood. 2022;139(6):936–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang D, Minikes AM, Jiang X. Ferroptosis on the intersection of lipid metabolism and mobile signaling. Mol Cell. 2022;82(12):2215–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samovich SN, Mikulska-Ruminska Ok, Dar HH, Tyurina YY, Tyurin VA, Souryavong AB, et al. Strikingly excessive exercise of 15-lipoxygenase in the direction of di-polyunsaturated arachidonoyl/adrenoyl-phosphatidylethanolamines generates peroxidation indicators of ferroptotic cell demise. Angew Chem Int Ed Engl. 2024;63(9): e202314710.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in numerous species. Genes Dev. 2018;32(9–10):602–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. Perception into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28: 101328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, et al. Mobile metabolism: a key participant in most cancers ferroptosis. Most cancers Commun. 2024;44(2):185–204.

    Article 

    Google Scholar
     

  • Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation through the impairment of mitochondrial metabolism in Alzheimer’s illnesses. Redox Biol. 2021;41: 101947.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X-X, Xu X, Wang M-F, Xu H-Z, Peng X-C, Han N, et al. A nanoreactor boosts chemodynamic remedy and ferroptosis for synergistic most cancers remedy utilizing molecular amplifier dihydroartemisinin. J Nanobiotechnol. 2022;20(1):230.

    Article 
    CAS 

    Google Scholar
     

  • Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, Watson N, et al. Identification of the most important intestinal fatty acid transport protein. Mol Cell. 1999;4(3):299–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, et al. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res. 2017;45(5):2408–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug method for improved oral drug supply and remedy. Med Res Rev. 2019;39(2):579–607.

    Article 
    PubMed 

    Google Scholar
     

  • Shintoku R, Takigawa Y, Yamada Ok, Kubota C, Yoshimoto Y, Takeuchi T, et al. Lipoxygenase-mediated technology of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Most cancers Sci. 2017;108(11):2187–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Cai X, Li R. Ferroptosis induced by pollution: an rising mechanism in environmental toxicology. Environ Sci Technol. 2024;58(5):2166–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis by lipid metabolic gene expression modifications. Theranostics. 2017;7(13):3293–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xuan Y, Wang H, Yung MM, Chen F, Chan W-S, Chan Y-S, et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic exercise and redox-driven ferroptosis in ascites-derived ovarian most cancers cells. Theranostics. 2022;12(7):3534–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Zhou S, Tang Q, Xia H, Bi F. Ldl cholesterol metabolism: new features and therapeutic approaches in most cancers. Biochim Biophys Acta Rev Most cancers. 2020;1874(1): 188394.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Chakraborty B, Safi R, Kazmin D, Chang C-Y, McDonnell DP. Dysregulated ldl cholesterol homeostasis leads to resistance to ferroptosis rising tumorigenicity and metastasis in most cancers. Nat Commun. 2021;12(1):5103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 2024;626(7998):411–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the function of ferroptosis in most cancers. Nat Rev Clin Oncol. 2021;18(5):280–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects towards ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63(1):173–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated exercise throughout tumour suppression. Nature. 2015;520(7545):57–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 hyperlinks metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20(10):1181–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis nanomedicine: scientific challenges and alternatives for modulating tumor metabolic and immunological panorama. ACS Nano. 2023;17(16):15328–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis by lipid transforming. ACS Cent Sci. 2020;6(1):41–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamaï A, Cañeque T, Müller S, Mai TT, Hienzsch A, Ginestier C, et al. An iron hand over most cancers stem cells. Autophagy. 2017;13(8):1465–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of most cancers cells on a lipid peroxidase pathway. Nature. 2017;547(7664):453–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rennekamp AJ. The ferrous awakens. Cell. 2017;171(6):1225–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Fan T, Chen W, Li Y, Wang B. Current advances of two-dimensional supplies in good drug supply nano-systems. Bioact Mater. 2020;5(4):1071–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klochkov SG, Neganova ME, Nikolenko VN, Chen Ok, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the remedy of most cancers: current advances. Semin Most cancers Biol. 2021;69:190–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo R, Liu M, Tan T, Yang Q, Wang Y, Males L, et al. Rising significance and therapeutic potential of extracellular vesicles. Int J Biol Sci. 2021;17(10):2476–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang S, Wong KH, Hua P, He C, Yu H, Shao D, et al. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for most cancers remedy. Acta Biomater. 2022;140:492–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang C, Han M, Li R, Zhou L, Zhang Y, Duan L, et al. Curcumin nanoparticles inhibiting ferroptosis for the improved remedy of intracerebral hemorrhage. Int J Nanomed. 2021;16:8049–65.

    Article 
    CAS 

    Google Scholar
     

  • Xia Y, Tang Y, Huang Z, Ke N, Zheng Y, Zhuang W, et al. Artesunate-loaded stable lipid nanoparticles resist esophageal squamous cell carcinoma by inducing ferroptosis by inhibiting the AKT/mTOR signaling. Cell Sign. 2024;117: 111108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu C, Zhang F, Li B, Li Z, Xie X, Huang Y, et al. A self-assembly nano-prodrug for mixture remedy in triple-negative breast most cancers stem cells. Small. 2023;19(41): e2301600.

    Article 
    PubMed 

    Google Scholar
     

  • Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin supramolecular nanomedicine for mixed remedy of tumor through ferroptosis and necroptosis. Adv Healthc Mater. 2022;11(2): e2101926.

    Article 
    PubMed 

    Google Scholar
     

  • Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, et al. Inhalable biomineralized liposomes for cyclic Ca2+-burst-centered endoplasmic reticulum stress enhanced lung most cancers ferroptosis remedy. ACS Nano. 2023;17(6):5486–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H-J, Chen W, Wu G, Zhou J, Liu C, Tang Z, et al. Glutathione-scavenging nanoparticle-mediated PROTACs supply for focused protein degradation and amplified antitumor results. Adv Sci. 2023;10(16): e2207439.

    Article 

    Google Scholar
     

  • Zhang F, Li F, Lu G-H, Nie W, Zhang L, Lv Y, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in most cancers. ACS Nano. 2019;13(5):5662–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Z, Liu X, Zhang W, Zhang Ok, Pan L, Zhu M, et al. Biomimetic macrophage membrane-camouflaged nanoparticles induce ferroptosis by selling mitochondrial harm in glioblastoma. ACS Nano. 2023;17(23):23746–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ji Y, Hu N, Yu Q, Zhang X, Li J, et al. Ferroptosis-induced anticancer impact of resveratrol with a biomimetic nano-delivery system in colorectal most cancers remedy. Asian J Pharm Sci. 2022;17(5):751–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Y, Li L, Sui M, Jiang Q, Dong N, Shan A, Jiang J. Protein transduction system based mostly on tryptophan-zipper towards intracellular infections through inhibiting ferroptosis of macrophages. ACS Nano. 2023;17(13):12247–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou D-Y, Cheng D-B, Zhang N-Y, Wang Z-J, Hu X-J, Li X, et al. In vivo meeting enhanced binding impact augments tumor particular ferroptosis remedy. Nat Commun. 2024;15(1):454.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Fu F, Huang Z, Wang W, Chen M, Yue X, et al. Inhalable biomimetic protein corona-mediated nanoreactor for self-amplified lung adenocarcinoma ferroptosis remedy. ACS Nano. 2022;16(5):8370–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Li W, Li S, Chen S, Hu Z, He Z, et al. Fish oil-based microemulsion can effectively ship oral peptide blocking PD-1/PD-L1 and concurrently induce ferroptosis for most cancers immunotherapy. J Management Launch. 2024;365:654–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kou L, Solar R, Jiang X, Lin X, Huang H, Bao S, et al. Tumor microenvironment-responsive, multistaged liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced most cancers remedy. ACS Appl Mater Interfaces. 2020;12(27):30031–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Li Z, Yu N, Zhang L, Li H, Chen Y, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells. J Nanobiotechnol. 2023;21(1):355.

    Article 
    CAS 

    Google Scholar
     

  • Wang R, Music W, Zhu J, Shao X, Yang C, Xiong W, et al. Biomimetic nano-chelate diethyldithiocarbamate Cu/Fe for enhanced metalloimmunity and ferroptosis activation in glioma remedy. J Management Launch. 2024;368:84–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen NT, Kim J, Le XT, Lee WT, Lee ES, Oh KT, et al. Amplified fenton-based oxidative stress using ultraviolet upconversion luminescence-fueled nanoreactors for apoptosis-strengthened ferroptosis anticancer remedy. ACS Nano. 2023;17(1):382–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo X, Liu F, Deng J, Dai P, Qin Y, Li Z, et al. Electron-accepting micelles deplete decreased nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication. ACS Nano. 2020;14(11):14715–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Quan X, Li J, Huo J, Li X, Zhao Z, et al. Liposomes embedded with PEGylated iron oxide nanoparticles allow ferroptosis and mixture remedy in most cancers. Natl Sci Rev. 2023;10(1): nwac167.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12(12):12181–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Li F, Qiao R, Hu X, Liao H, Chen L, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano. 2018;12(12):12380–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Music W, Wang X, Xie Z, Zhang W, Jiang W, et al. Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific remedy. Biomaterials. 2021;277: 121100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan J, Wang Z, Huang X, Xue J, Zhang S, Guo X, Zhou S. Micro organism-derived outer-membrane vesicles hitchhike neutrophils to reinforce ischemic stroke remedy. Adv Mater. 2023;35(38): e2301779.

    Article 
    PubMed 

    Google Scholar
     

  • Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano. 2018;12(11):11355–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin J, Yang H, Zhang Y, Zou F, He H, Xie W, et al. Ferrocene-based polymeric nanoparticles carrying doxorubicin for oncotherapeutic mixture of chemotherapy and ferroptosis. Small. 2023;19(2): e2205024.

    Article 
    PubMed 

    Google Scholar
     

  • Wan X, Music L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based mostly on metal-organic frameworks for synergistic ferroptosis-starvation anticancer remedy. ACS Nano. 2020;14(9):11017–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, et al. Pervasive genomic harm in experimental intracerebral hemorrhage: therapeutic potential of a mechanistic-based carbon nanoparticle. ACS Nano. 2020;14(3):2827–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue Y, Zhang L, Liu F, Dai F, Kong L, Ma D, Han Y. Alkaline, “nanoswords” coordinate ferroptosis-like bacterial demise for antibiosis and osseointegration. ACS Nano. 2023;17(3):2711–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Ok, Xu Ok, He Y, Yang Y, Tan M, Mao Y, et al. Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast most cancers. ACS Nano. 2023;17(5):4667–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Ok, Xu Ok, He Y, Lu L, Mao Y, Gao P, et al. Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor. Small. 2021;17(40): e2102046.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Zhao D, Yang F, Ye C, Chen Z, Chen Y, et al. In situ self-assembled phytopolyphenol-coordinated clever nanotherapeutics for multipronged administration of ferroptosis-driven Alzheimer’s illness. ACS Nano. 2024;18(11):7890–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassanzadeh P, Atyabi F, Dinarvand R. Technical and engineering issues for designing therapeutics and supply programs. J Management Launch. 2023;353:411–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L-P, Wang H-J, Hu D, Hu J-H, Guan Z-R, Yu L-H, et al. β-Elemene induced ferroptosis through TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung most cancers. J Adv Res. 2024;62:257–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao P, Qiu J, Pan C, Tang Y, Chen M, Music H, et al. Potential roles and molecular mechanisms of bioactive elements in Curcumae Rhizoma towards breast most cancers. Phytomedicine. 2023;114: 154810.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, et al. Focused exosome-encapsulated erastin induced ferroptosis in triple adverse breast most cancers cells. Most cancers Sci. 2019;110(10):3173–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Feng N. Nanocarriers for the supply of lively elements and fractions extracted from pure merchandise utilized in conventional Chinese language drugs (TCM). Adv Colloid Interface Sci. 2015;221:60–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai B, Wu Q, Wang W, Zhang M, Han X, Li Q, et al. Preparation, characterization, pharmacokinetics and anticancer results of PEGylated β-elemene liposomes. Most cancers Biol Med. 2020;17(1):60–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z-Y, Chen G, Wang X, Xu R-C, Wang F, Qi Z-R, et al. Synergistic photochemo results based mostly on light-activatable twin prodrug nanoparticles for efficient most cancers remedy. Adv Healthc Mater. 2023;12(27): e2301133.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Han Y, Huang W, Jin M, Gao Z. The affect of the intestine microbiota on the bioavailability of oral medication. Acta Pharm Sin B. 2021;11(7):1789–812.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek M-J, Park J-H, Nguyen D-T, Kim D, Kim J, Kang I-M, Kim D-D. Bentonite as a water-insoluble amorphous stable dispersion matrix for enhancing oral bioavailability of poorly water-soluble medication. J Management Launch. 2023;363:525–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrow JP, Mazrad ZAI, Bush AI, Kempe Ok. Poly(2-oxazoline)—ferrostatin-1 drug conjugates inhibit ferroptotic cell demise. J Management Launch. 2022;350:193–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen P, Wu Q, Feng J, Yan L, Solar Y, Liu S, et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung most cancers cell progress and migration through calcium/calmodulin-dependent ferroptosis. Sign Transduct Goal Ther. 2020;5(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong N, Chen X, Feng J, Duan T, Liu S, Solar X, et al. Baicalin induces ferroptosis in bladder most cancers cells by downregulating FTH1. Acta Pharm Sin B. 2021;11(12):4045–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, et al. The triangular relationship between conventional Chinese language medicines, intestinal flora, and colorectal most cancers. Med Res Rev. 2024;44(2):539–67.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Fu J-L, Hao H-F, Jiao Y-N, Li P-P, Han S-Y. Metabolic reprogramming by conventional Chinese language drugs and its function in efficient most cancers remedy. Pharmacol Res. 2021;170: 105728.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical foundation and therapeutic elements. Sign Transduct Goal Ther. 2020;5(1):87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, et al. Molecular mechanisms of ferroptosis and their involvement in mind illnesses. Pharmacol Ther. 2023;244: 108373.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong R, Feng X, Solar J, Ling Z, Wang J, Li S, et al. Co-delivery of siNRF2 and sorafenib by a “click on” twin functioned hyperbranched nanocarrier for synergistically inducing ferroptosis in hepatocellular carcinoma. Small. 2024;20(21): e2307273.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Li X, Huang L. Anticancer actions of phytoconstituents and their liposomal focusing on methods towards tumor cells and the microenvironment. Adv Drug Deliv Rev. 2020;154–155:245–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoulikha M, Huang F, Wu Z, He W. COVID-19 irritation and implications in drug supply. J Management Launch. 2022;346:260–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Shi Q, Huang X, Koo S, Kong N, Tao W. mRNA-based most cancers therapeutics. Nat Rev Most cancers. 2023;23(8):526–43.

    Article 
    PubMed 

    Google Scholar
     

  • Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang X-J. Therapeutic siRNA: state-of-the-art. Sign Transduct Goal Ther. 2020;5(1):101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo W, Wu Z, Chen J, Guo S, You W, Wang S, et al. Nanoparticle supply of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by selling ferroptosis. J Immunother Most cancers. 2022;10(6): e004381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Hu Y, Yu B, Hu H, Xu F-J. Polysaccharide-based tumor microenvironment-responsive drug supply programs for most cancers remedy. J Management Launch. 2023;362:19–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic most cancers vaccines: developments, challenges, and prospects. Sign Transduct Goal Ther. 2023;8(1):450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The importance of glycolysis in tumor development and its relationship with the tumor microenvironment. Entrance Pharmacol. 2022;13:1091779.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z-H, Peng W-B, Zhang P, Yang X-P, Zhou Q. Lactate within the tumour microenvironment: from immune modulation to remedy. EBioMedicine. 2021;73: 103627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug supply programs for most cancers remedy. Int J Pharm. 2020;589: 119882.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S-X, Liang Z-M, Wu Q-B, Shou L, Huang X-X, Zhu Q-R, et al. A novel diagnostic and therapeutic technique for most cancers sufferers by integrating Chinese language drugs syndrome differentiation and precision drugs. Chin J Integr Med. 2022;28(10):867–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, et al. Most cancers cell membrane-based supplies for biomedical functions. Small. 2024;20(7): e2306540.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao J, Liu Y, Zhu L, Li J, Liu Y, Luo J, et al. Tumor cell membrane-coated steady electrochemical sensor for GLUT1 inhibitor screening. J Pharm Anal. 2023;13(6):673–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Zhang R, Wan Q, Hu R, Ma Y, Wang Z, et al. Malicious program-like nano-AIE aggregates based mostly on homologous focusing on technique and their photodynamic remedy in anticancer utility. Adv Sci. 2021;8(23): e2102561.

    Article 

    Google Scholar
     

  • Cruz ALS, Barreto EDA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with a number of features in most cancers hallmarks. Cell Demise Dis. 2020;11(2):105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids within the acidic tumor setting results in ferroptosis-mediated anticancer results. Cell Metab. 2021;33(8):1701–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–mind barrier: construction, regulation, and drug supply. Sign Transduct Goal Ther. 2023;8(1):217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Jo C, Lim W-G, Jung S, Lee YM, Lim J, et al. Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D most cancers remedy. Adv Mater. 2018;30: e1707557.

    Article 

    Google Scholar
     

  • Si J, Shao S, Shen Y, Wang Ok. Macrophages as lively nanocarriers for focused early and adjuvant most cancers chemotherapy. Small. 2016;12(37):5108–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Upton DH, Ung C, George SM, Tsoli M, Kavallaris M, Ziegler DS. Challenges and alternatives to penetrate the blood–mind barrier for mind most cancers remedy. Theranostics. 2022;12(10):4734–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X. Present methods for mind drug supply. Theranostics. 2018;8(6):1481–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, et al. Discovery of small-molecule compounds and pure merchandise towards Parkinson’s illness: pathological mechanism and structural modification. Eur J Med Chem. 2022;237: 114378.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle drug supply system for glioma and its efficacy enchancment methods: a complete evaluate. Int J Nanomed. 2020;15:2563–82.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Zeng H, You Y, Wang R, Tan T, Wang W, et al. Lively focusing on of orthotopic glioma utilizing biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J Nanobiotechnol. 2021;19(1):289.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Zhao L, Wang C, Wang L, Wu H, Music X, et al. Potent nanoreactor-mediated ferroptosis-based technique for the reversal of most cancers chemoresistance to sorafenib. Acta Biomater. 2023;159:237–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in most cancers remedy. Nat Rev Clin Oncol. 2021;18(12):773–91.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng X, Music X, Zhu G, Pan D, Li H, Hu J, et al. Nanomedicine combats drug resistance in lung most cancers. Adv Mater. 2024;36(3): e2308977.

    Article 
    PubMed 

    Google Scholar
     

  • Hellmann MD, Li BT, Chaft JE, Kris MG. Chemotherapy stays a necessary factor of personalised look after individuals with lung cancers. Ann Oncol. 2016;27(10):1829–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao W, Liu X, Lv Y, Lu G-H, Li F, Zhang F, et al. Nanolongan with a number of on-demand conversions for ferroptosis-apoptosis mixed anticancer remedy. ACS Nano. 2019;13(1):260–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Lovell JF, Yoon J, Chen X. Medical growth and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.

    Article 
    PubMed 

    Google Scholar
     

  • Geng L, Lu T, Jing H, Zhou Y, Liang X, Li J, Li N. Iron-based and BRD4-downregulated technique for amplified ferroptosis based mostly on pH-sensitive/NIR-II-boosted nano-matchbox. Acta Pharm Sin B. 2023;13(2):863–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vozenin M-C, Bourhis J, Durante M. In the direction of scientific translation of FLASH radiotherapy. Nat Rev Clin Oncol. 2022;19(12):791–803.

    Article 
    PubMed 

    Google Scholar
     

  • De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Prim. 2019;5(1):13.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng L, Ding S, Cao Y, Li C, Zhao B, Ma Z, et al. A MOF-based potent ferroptosis inducer for enhanced radiotherapy of triple adverse breast most cancers. ACS Nano. 2023;17(14):13195–210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang Z. The historical past and advances in most cancers immunotherapy: understanding the traits of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finck AV, Blanchard T, Roselle CP, Golinelli G, June CH. Engineered mobile immunotherapies in most cancers and past. Nat Med. 2022;28(4):678–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, et al. Thermal immuno-nanomedicine in most cancers. Nat Rev Clin Oncol. 2023;20(2):116–34.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao L-P, Hu J-H, Hu D, Wang H-J, Huang C-G, Luo R-H, et al. Hyperprogression, a problem of PD-1/PD-L1 inhibitors remedies: potential mechanisms and coping methods. Biomed Pharmacother. 2022;150: 112949.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, et al. Nanomedicine-mediated regulated cell demise in most cancers immunotherapy. J Management Launch. 2023;364:174–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. Ferroptosis, however not necroptosis, is essential in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28(1):218–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. Most cancers cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13(1):3676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Lim S-O, Yan M, Hsu JL, Yao J, Wei Y, et al. TYRO3 induces anti-PD-1/PD-L1 remedy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Make investments. 2021;131(8): e139434.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Inexperienced M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis throughout most cancers immunotherapy. Nature. 2019;569(7755):270–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei Z, Lei H, Wu J, Tang W, Wei Ok, Wang L, et al. Bioactive vanadium disulfide nanostructure with “twin” antitumor results of vanadate and fuel for immune-checkpoint blockade-enhanced most cancers immunotherapy. ACS Nano. 2023;17(17):17105–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang G, Xie L, Li B, Sang W, Yan J, Li J, et al. A nanounit technique reverses immune suppression of exosomal PD-L1 and is related to enhanced ferroptosis. Nat Commun. 2021;12(1):5733.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie L, Li J, Wang G, Sang W, Xu M, Li W, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector operate and impairs their antitumor capability. Cell Metab. 2021;33(5):1001–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zha S, Liu H, Li H, Li H, Wong Ok-L, All AH. Functionalized nanomaterials able to crossing the blood–mind barrier. ACS Nano. 2024;18(3):1820–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic panorama of iron and ferroptosis in heart problems. Nat Rev Cardiol. 2023;20(1):7–23.

    Article 
    PubMed 

    Google Scholar
     

  • Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a goal for cover towards cardiomyopathy. Proc Natl Acad Sci USA. 2019;116(7):2672–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders H-J. Acute kidney damage. Nat Rev Dis Prim. 2021;7(1):52.

    Article 
    PubMed 

    Google Scholar
     

  • Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, et al. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to enhance diabetic nephropathy. Biomed Pharmacother. 2022;156: 113953.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu M, Li H, Wang B, Wu Z, Wu S, Jiang G, et al. Baicalein ameliorates polymyxin B-induced acute renal damage by inhibiting ferroptosis through regulation of SIRT1/p53 acetylation. Chem Biol Work together. 2023;382: 110607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agur Z, Elishmereni M, Kheifetz Y. Personalizing oncology remedies by predicting drug efficacy, side-effects, and improved remedy: arithmetic, statistics, and their integration. Wiley Interdiscip Rev Syst Biol Med. 2014;6(3):239–53.

    Article 
    PubMed 

    Google Scholar
     

  • Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, et al. Enabling applied sciences for personalised and precision drugs. Traits Biotechnol. 2020;38(5):497–518.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Q, Zheng W, Jiang Y, Zhou P, Lai Y, Liu C, et al. Transcriptomic reveals the ferroptosis options of host response in a mouse mannequin of Zika virus an infection. J Med Virol. 2023;95(1): e28386.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai Y, Chen X, Si J, Mou X, Dong X. All-in-one nanomedicine: multifunctional single-component nanoparticles for most cancers theranostics. Small. 2021;17(52): e2103072.

    Article 
    PubMed 

    Google Scholar
     

  • Cai Y, Wei Z, Music C, Tang C, Han W, Dong X. Optical nano-agents within the second near-infrared window for biomedical functions. Chem Soc Rev. 2019;48(1):22–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Position of exosomal proteins in most cancers prognosis. Mol Most cancers. 2017;16(1):145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Liu D, Liu F, Wu Y, Peng X, Music F. Current advances of redox-responsive nanoplatforms for tumor theranostics. J Management Launch. 2021;332:269–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Zhang M-J, Wang J, Zhang T, Xue P, Kang Y, et al. Rising biomaterials imaging antitumor immune response. Adv Mater. 2022;34(42): e2204034.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles