Xiong, H., Li, J., Wu, D., Xu, B. & Lu, Q. Benchmarking of business Cu catalysts in CO2 electro-reduction utilizing a gas-diffusion sort microfluidic stream electrolyzer. Chem. Commun. 59, 5615–5618 (2023).
Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an rising platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).
Lewis, N. S. Analysis alternatives to advance photo voltaic power utilization. Science 351, aad1920 (2016).
Franco, F., Rettenmaier, C., Jeon, H. S. & Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 discount: from atoms and molecules to nanostructured supplies. Chem. Soc. Rev. 49, 6884–6946 (2020).
Cao, R. Throughout the board: Rui Cao on electrocatalytic CO2 discount. ChemSusChem 15, e202201788 (2022).
Wu, Y., Liang, Y. & Wang, H. Heterogeneous molecular catalysts of steel phthalocyanines for electrochemical CO2 discount reactions. Acc. Chem. Res. 54, 3149–3159 (2021).
Su, J. et al. Pressure enhances the exercise of molecular electrocatalysts by way of carbon nanotube helps. Nat. Catal. 6, 818–828 (2023).
Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).
Ren, X. et al. In-situ spectroscopic probe of the intrinsic construction characteristic of single-atom middle in electrochemical CO/CO2 discount to methanol. Nat. Commun. 14, 3401 (2023).
Chan, T. et al. Function of mass transport in electrochemical CO2 discount to methanol utilizing immobilized cobalt phthalocyanine. ACS Appl. Power Mater. 7, 3091–3098 (2024).
Yao, L., Rivera-Cruz, Okay. E., Zimmerman, P. M., Singh, N. & McCrory, C. C. L. Electrochemical CO2 discount to methanol by cobalt phthalocyanine: quantifying CO2 and CO binding strengths and their affect on methanol manufacturing. ACS Catal. 14, 366–372 (2023).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).
Wu, Y., Hu, G., Rooney, C. L., Brudvig, G. W. & Wang, H. Heterogeneous nature of electrocatalytic CO/CO2 discount by cobalt phthalocyanines. ChemSusChem 13, 6296–6299 (2020).
Shi, L. L., Li, M., You, B. & Liao, R. Z. Theoretical examine on the electro-reduction of carbon dioxide to methanol catalyzed by cobalt phthalocyanine. Inorg. Chem. 61, 16549–16564 (2022).
Liu, X. Y., Li, B. Q., Ni, B., Wang, L. & Peng, H. J. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. J. Power Chem. 64, 263–275 (2022).
Rooney, C. L. et al. Energetic websites of cobalt phthalocyanine in electrocatalytic CO2 discount to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).
Chen, X., Wei, D. & Ahlquist, M. S. G. Aggregation and important distinction in reactivity therein: blocking the CO2-to-CH3OH response. Organometallics 40, 3087–3093 (2021).
Tan, Y. C., Lee, Okay. B., Tune, H. & Oh, J. Modulating native CO2 focus as a normal technique for enhancing C–C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).
Weng, L. C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 discount. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).
Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 discount. Nat. Power 5, 684–692 (2020).
Jiang, Z. et al. Molecular catalyst with close to 100% selectivity for CO2 discount in acidic electrolytes. Adv. Power Mater. 13, 2203603 (2022).
Cheon, S., Li, J. & Wang, H. In situ generated CO permits high-current CO2 discount to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).
Xiong, M., Gao, Z. & Qin, Y. Spillover in heterogeneous catalysis: new insights and alternatives. ACS Catal. 11, 3159–3172 (2021).
Xiong, M. et al. In situ tuning of digital construction of catalysts utilizing controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 11, 4773 (2020).
Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction towards ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).
Chen, J. et al. Accelerated switch and spillover of carbon monoxide by tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem. Int. Ed. 62, e202215406 (2023).
Gao, J. et al. Selective C–C coupling in carbon dioxide electroreduction by way of environment friendly spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).
Li, J., Maresi, I., Lum, Y. & Ager, J. W. Results of floor diffusion in electrocatalytic CO2 discount on Cu revealed by kinetic Monte Carlo simulations. J. Chem. Phys. 155, 164701 (2021).
Zhu, Q. S. et al. The solvation surroundings of molecularly dispersed cobalt phthalocyanine determines methanol selectivity throughout electrocatalytic CO2 discount. Nat. Catal. 7, 987–999 (2024).
Li, J. Y., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO discount. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).
Malkani, A. S. et al. Understanding the electrical and nonelectric subject elements of the cation impact on the electrochemical CO discount response. Sci. Adv. 6, eabd2569 (2020).
Resasco, J. et al. Promoter results of alkali steel cations on the electrochemical discount of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).
Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Plasmon-resonant vibrational sum frequency technology of electrochemical interfaces: direct statement of carbon dioxide electroreduction on gold. J. Phys. Chem. A 124, 8057–8064 (2020).
Zhu, Q. S., Wallentine, S. Okay., Deng, G. H., Rebstock, J. A. & Baker, L. R. The solvation-induced Onsager response subject quite than the double-layer subject controls CO discount on gold. JACS Au 2, 472–482 (2022).
Jouny, M., Luc, W. & Jiao, F. Normal techno-economic evaluation of CO2 electrolysis techniques. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).
Zenyuk, I. V., Das, P. Okay. & Weber, A. Z. Understanding impacts of catalyst-layer thickness on fuel-cell efficiency by way of mathematical modeling. J. Electrochem. Soc. 163, F691–F703 (2016).
Sabharwal, M. & Secanell, M. Understanding the impact of porosity and pore measurement distribution on low loading catalyst layers. Electrochim. Acta 419, 140410 (2022).