19.2 C
United States of America
Tuesday, March 25, 2025

Micro/Nanoplastics in plantation agricultural merchandise: conduct course of, phytotoxicity below biotic and abiotic stresses, and controlling methods | Journal of Nanobiotechnology


  • Zhang J, Li D. Assessment on the prevalence, evaluation strategies, toxicity and well being results of micro-and nano-plastics within the surroundings. Environ Chem. 2021;40:28–40.

    CAS 

    Google Scholar
     

  • Zhao C, Yan Y, Su J, Li H, Wang B, Zhong Y, Hu B, Yang L. Analysis progress on the hurt and detection applied sciences of nanoplastics in aquatic surroundings. Environ Eng. 2019;37:64–70.


    Google Scholar
     

  • Zadravec M, Weiss R, Egert M, Hougs L, Vrhovnik IU, Marchis D, Schwinkendorf LM, Vancutsem J, Engblom L, Heuer A, et al. Survey amongst European and Canadian feed management models on monitoring packaging materials residues in feed by microscopy analyses. Ital J Anim Sci. 2024;23:981–8.

    Article 
    CAS 

    Google Scholar
     

  • Lee JY, Cha JHY, Ha Ok, Viaroli S. Microplastic air pollution in groundwater: a scientific overview. Environ Pollut Bioavailab. 2024;36:2299545.

    Article 

    Google Scholar
     

  • Yadav S, Gupta E, Patel A, Srivastava S, Mishra VK, Singh PC, Srivastava PK, Barik SK. Unravelling the rising threats of microplastics to agroecosystems. Rev Environ Sci Biotechnol. 2022;21:771–98.

    Article 
    CAS 

    Google Scholar
     

  • Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R. Microplastic air pollution in soils, crops, and animals: A overview of distributions, results and potential mechanisms. Sci Complete Environ. 2022;850:157857.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chae Y, Kim D, Kim SW, An YJ. Trophic switch and particular person impression of nano-sized polystyrene in a four-species freshwater meals chain. Sci Rep. 2018;8:284.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Thompson RC, Courtene-Jones W, Boucher J, Pahl S, Raubenheimer Ok, Koelmans AA. Twenty years of microplastic air pollution analysis—what have we discovered? Science. 2024;386:eadl2746.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivleva NP. Chemical evaluation of microplastics and nanoplastics: challenges, superior strategies, and views. Chem Rev. 2021;121:11886–936.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang F, Wang Q, Yan X, Zhang Y, Yan J, Zhong H, Zhou D, Luo Y, Zhu YG, Xing B, Wang Y. Threats to terrestrial crops from rising nanoplastics. ACS Nano. 2022;16:17157–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dawson AL, Kawaguchi S, King CK, Townsend KA, King R, Huston WM. Bengtson Nash SM: turning microplastics into nanoplastics via digestive fragmentation by Antarctic Krill. Nat Commun. 2018;9:1001.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Okeke ES, Okoye CO, Atakpa EO, Ita RE, Nyaruaba R, Mgbechidinma CL, Akan OD. Microplastics in agroecosystems-impacts on ecosystem capabilities and meals chain. Resour Conserv Recycl. 2022;177:105961.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Li S, Jian S, Ye F, Wang T, Gong L, Li X. Low temperature tolerance is impaired by polystyrene nanoplastics gathered in cells of barley (Hordeum vulgare L.) crops. J Hazard Mater. 2022;426:127826.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang M, Wang B, Ye R, Yu N, Xie Z, Hua Y, Zhou R, Tian B, Dai S. Proof and impacts of nanoplastic accumulation on crop grains. Adv Sci. 2022;9:2202336.

    Article 

    Google Scholar
     

  • Zhang C, Yue N, Li X, Shao H, Wang J, An L, Jin F. Potential translocation course of and results of polystyrene microplastics on strawberry seedlings. J Hazard Mater. 2023;449:131019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Li Q, Li R, Zhou J, Wang G. The distribution and impression of polystyrene nanoplastics on cucumber crops. Environ Sci Pollut Res Int. 2021;28:16042–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, Yin N, Yang J, Tu C, Zhang Y. Efficient uptake of submicrometre plastics by crop crops through a crack-entry mode. Nat Maintain. 2020;3:929–37.

    Article 

    Google Scholar
     

  • Zhang Y, Yang X, Luo ZX, Lai JL, Li C, Luo XG. Results of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea Mays L.) seedlings. Sci Complete Environ. 2022;806:150895.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian J, Liu W, Meng L, Wu J, Chao L, Zeb A, Solar Y. Foliar-applied polystyrene nanoplastics (PSNPs) scale back the expansion and dietary high quality of lettuce (Lactuca sativa L.). Environ Pollut. 2021;280:116978.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Wang J, Chen R, Feng Q, Zhan X. Mobile means of polystyrene nanoparticles entry into wheat roots. Environ Sci Technol. 2022;56:6436–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Silva YSK, Rajagopalan UM, Kadono H, Li D. The synergy of microplastics with the heavy steel zinc has resulted in lowering the poisonous results of zinc on lentil (Lens culinaris) seed germination and seedling development. Heliyon. 2023;9:e21464.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dong Y, Bao Q, Gao M, Qiu W, Tune Z. A novel mechanism research of microplastic and as co-contamination on indica rice (Oryza sativaL.). J Hazard Mater. 2022;421:126694.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Z, Osman R, Liu Y, Wei Z, Wang L, Xu M. Analyzing the impacts of cadmium alone and in co-existence with polypropylene microplastics on wheat development. Entrance Plant Sci. 2023;14:1240472.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Al-Huqail AA, Alghanem SMS, Alhaithloul HAS, Saleem MH, Abeed AHA. Mixed publicity of PVC-microplastic and mercury chloride (HgCl2) in sorghum (Pennisetum glaucum L.) when its seeds are primed titanium dioxide nanoparticles (TiO2–NPs). Environ Sci Pollut Res Int. 2024;31:7837–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia H, Wu D, Yu Y, Han S, Solar L, Li M. Impression of microplastics on bioaccumulation of heavy metals in rape (Brassica Napus L). Chemosphere. 2022;288:132576.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Gong Ok, Shao X, Liang W, Zhang W, Peng C. Impact of polyethylene, polyamide, and polylactic acid microplastics on cr accumulation and toxicity to cucumber (Cucumis sativus L.) in hydroponics. J Hazard Mater. 2023;450:131022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Zhao L, Jin Q, Luo Q, He H. Mixed contamination of microplastic and antibiotic alters the composition of microbial group and metabolism in wheat and maize rhizosphere soil. J Hazard Mater. 2024;473:134618.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martín C, Pirredda M, Fajardo C, Costa G, Sánchez-Fortún S, Nande M, Mengs G, Martín M. Transcriptomic and physiological results of polyethylene microplastics on Zea Mays seedlings and their function as a vector for natural pollution. Chemosphere. 2023;322:138167.

    Article 
    PubMed 

    Google Scholar
     

  • Gao M, Liu Y, Tune Z. Results of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. Var. Ramosa Hort). Chemosphere. 2019;237:124482.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Lu S, Bian H, Xu M, Zhu W, Wang H, He C, Sheng L. Results of particular person and mixed polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere. 2022;304:135341.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Zheng X, Fu W, Liu A, Wang W, Wang G, Ji J, Guan C. Microplastics diminished bioavailability and altered toxicity of phenanthrene to maize (Zea Mays L.) via modulating rhizosphere microbial group and maize development. Chemosphere. 2023;345:140444.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Wang J, Zhu J, Wang J, Wang H, Zhan X. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere. 2021;282:130967.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian L, Ma LY, Chen X, Ge J, Ma Y, Ji R, Yu X. Insights into the buildup, distribution and toxicity of pyrene related to microplastics in rice (Oryza sativa L.) seedlings. Chemosphere. 2022;311:136988.

    Article 
    PubMed 

    Google Scholar
     

  • Gong D, Bai X, Weng Y, Kang M, Huang Y, Li F, Chen Y. Phytotoxicity of binary nanoparticles and humic acid on Lactuca sativa L. Environ Sci Processes Impacts. 2022;24:586–97.

    Article 
    CAS 

    Google Scholar
     

  • Iqbal B, Zhao X, Khan KY, Javed Q, Nazar M, Khan I, Zhao X, Li G, Du D. Microplastics Meet invasive crops: unraveling the ecological hazards to agroecosystems. Sci Complete Environ. 2024;906:167756.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan Z, Shah T, Asad M, Amjad Ok, Alsahli AA, Ahmad P. Alleviation of microplastic toxicity in soybean by arbuscular mycorrhizal fungi: regulating glyoxalase system and root nodule natural acid. J Environ Handle. 2024;349:119377.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Zhang X, Wang H, Xing S, Yin R, Fu W, Rillig MC, Chen B, Zhu Y. Arbuscular mycorrhizal fungi can inhibit the allocation of microplastics from crop roots to aboveground edible elements. J Agric Meals Chem. 2023;71:18323–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Zhang Y, Tan WB, Zhang Z. Microplastics as an rising environmental pollutant in agricultural soils: results on ecosystems and human well being. Entrance Environ Sci. 2022;10:855292.

    Article 

    Google Scholar
     

  • Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li Ok, et al. Micro/nanoplastics: crucial overview of their impacts on crops, interactions with different contaminants (antibiotics, heavy metals, and polycyclic fragrant hydrocarbons), and administration methods. Sci Complete Environ. 2024;912:169420.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez-Reverón R, Álvarez-Méndez SJ, Kropp RM, Perdomo-González A, Hernández-Borges J. Díaz-Peña FJ: microplastics in agricultural methods: analytical methodologies and results on soil high quality and crop yield. Agriculture 2022, 12:1162.

  • Roy T, Dey TK, Jamal M. Microplastic/nanoplastic toxicity in crops: an imminent concern. Environ Monit Assess. 2022;195:27.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jin T, Tang J, Lyu H, Wang L, Gillmore AB, Schaeffer SM. Actions of microplastics (MPs) in agricultural soil: A overview of MPs air pollution from the attitude of agricultural ecosystems. J Agric Meals Chem. 2022;70:4182–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gui J, Solar Y, Wang J, Chen X, Zhang S, Wu D. Microplastics in composting of rural home waste: abundance, traits, and launch from the floor of macroplastics. Environ Pollut. 2021;274:116553.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonyadinejad G, Salehi M, Herath A. Investigating the sustainability of agricultural plastic merchandise, mixed affect of polymer traits and environmental situations on microplastics growing old. Sci Complete Environ. 2022;839:156385.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu RP, Li ZZ, Liu F, Dong Y, Jiao JG, Solar PP, Rm EW. Microplastic air pollution in yellow river: present standing and analysis progress of biotoxicological results. China Geol. 2021;4:1–8.

    Article 

    Google Scholar
     

  • Li J, Ouyang Z, Liu P, Zhao X, Wu R, Zhang C, Lin C, Li Y, Guo X. Distribution and traits of microplastics within the basin of Chishui river in Renhuai, China. Sci Complete Environ. 2021;773:145591.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Wang Y, Xiang L, Redmile-Gordon M, Gu C, Yang X, Jiang X, Barceló D. Views on ecological dangers of microplastics and phthalate acid esters in crop manufacturing methods. Soil Ecol Lett. 2021;4:97–108.

    Article 

    Google Scholar
     

  • Kumari A, Rajput VD, Mandzhieva SS, Rajput S, Minkina T, Kaur R, Sushkova S, Kumari P, Ranjan A, Kalinitchenko VP, Glinushkin AP. Microplastic air pollution: an rising menace to terrestrial crops and insights into its remediation methods. Crops (Basel). 2022;11:340.

    CAS 
    PubMed 

    Google Scholar
     

  • Lan T, Wang T, Cao F, Yu C, Chu Q, Wang F. A comparative research on the adsorption conduct of pesticides by pristine and aged microplastics from agricultural polyethylene soil movies. Ecotoxicol Environ Saf. 2021;209:111781.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil SM, Rane NR, Bankole PO, Krishnaiah P, Ahn Y, Park YK, Yadav KK, Amin MA, Jeon BH. An evaluation of micro- and nanoplastics within the biosphere: A overview of detection, monitoring, and remediation expertise. Chem Eng J. 2022;430:132913.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Jia Q, Zhao X, Li L, Nie Y, Liu H, Ye J. The prevalence of microplastics in water our bodies in city agglomerations: impacts of drainage system overflow in moist climate, catchment land-uses, and environmental administration practices. Water Res. 2020;183:116073.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian X, Yang M, Guo Z, Chang C, Li J, Guo Z, Wang R, Li Q, Zou X. Plastic mulch movie induced soil microplastic enrichment and its impression on wind-blown sand and dirt. Sci Complete Environ. 2022;813:152490.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Leng Y, Liu X, Wang J. Microplastic air pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng S, Lu H, Liu Y. The prevalence of microplastics in farmland and grassland soils within the Qinghai-Tibet plateau: totally different land use and mulching time in facility agriculture. Environ Pollut. 2021;279:116939.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tagg AS, Brandes E, Fischer F, Fischer D, Brandt J, Labrenz M. Agricultural software of microplastic-rich sewage sludge results in additional uncontrolled contamination. Sci Complete Environ. 2022;806:150611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv W, Zhou W, Lu S, Huang W, Yuan Q, Tian M, Lv W, He D. Microplastic air pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Sci Complete Environ. 2019;652:1209–18.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An missed entry pathway of microplastics into agricultural soils from software of Sludge-Primarily based fertilizers. Environ Sci Technol. 2020;54:4248–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong X, Xie S, Feng Ok, Wang Q. Prevalence of microplastics in a pond-river-lake connection water system: how does the aquaculture course of have an effect on microplastics in pure water our bodies. J Clear Prod 2022, 352:131632.

  • Wu X, Lu J, Du M, Xu X, Beiyuan J, Sarkar B, Bolan N, Xu W, Xu S, Chen X, et al. Particulate plastics-plant interplay in soil and its implications: A overview. Sci Complete Environ. 2021;792:148337.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Latest advances on ecological results of microplastics on soil surroundings. Sci Complete Environ. 2021;798:149338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan Q, Cui J, Jin B. Environmental microplastics: classification, sources, fates, and results on crops. Chemosphere. 2023;313:137559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi L, Hou Y, Chen Z, Bu Y, Zhang X, Shen Z, Chen Y. Impression of polyethylene on soil physicochemical properties and traits of candy potato development and polyethylene absorption. Chemosphere. 2022;302:134734.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhou Q, Yin N, Tu C, Luo Y. Uptake and accumulation of microplastics in an edible plant. Chin Sci Bull. 2019;64:928–34.

    Article 

    Google Scholar
     

  • Hua Z, Zhang T, Luo J, Bai H, Ma S, Qiang H, Guo X. Internalization, physiological responses and molecular mechanisms of lettuce to polystyrene microplastics of various sizes: validation of simulated soilless tradition. J Hazard Mater. 2024;462:132710.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Zhao M, Meng F, Xiao Y, Dai W, Luan Y. Impact of polystyrene microplastics on rice seed germination and antioxidant enzyme exercise. Toxics. 2021;9:179.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang D, Ding L, Wang S, Ding R, Qiu X, Li J, Hua Z, Liu S, Wu R, Liang X, Guo X. Metabolomics reveals how spinach crops reprogram metabolites to Deal with intense stress responses induced by photoaged polystyrene nanoplastics (PSNPs). J Hazard Mater. 2024;466:133605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar H, Lei C, Xu J, Li R. Foliar uptake and leaf-to-root translocation of nanoplastics with totally different coating cost in maize crops. J Hazard Mater. 2021;416:125854.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Liu W, Zeb A, Lian J, Solar Y, Solar H. Polystyrene microplastic interplay with Oryza sativa: toxicity and metabolic mechanism. Environ Sci: Nano. 2021;8:3699–710.

    CAS 

    Google Scholar
     

  • Giorgetti L, Spano C, Muccifora S, Bottega S, Barbieri F, Bellani L, Ruffini Castiglione M. Exploring the interplay between polystyrene nanoplastics and allium Cepa throughout germination: internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Biochem. 2020;149:170–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Y, Gao M, Qiu W, Tune Z. Uptake of microplastics by carrots in presence of As (III): mixed poisonous results. J Hazard Mater. 2021;411:125055.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu F, Fu M, Tang C, Mo C, Li S, Luo S, Qin P, Zhao Y, Li Y. Potential impression of polyethylene microplastics on the expansion of water spinach (Ipomoea aquatica F.): endophyte and rhizosphere results. Chemosphere. 2023;330:138737.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pflugmacher S, Sulek A, Mader H, Heo J, Noh JH, Penttinen OP, Kim Y, Kim S, Esterhuizen M. The affect of latest and synthetic aged microplastic and leachates on the germination of Lepidium sativum L. Crops (Basel). 2020;9:339.

    CAS 
    PubMed 

    Google Scholar
     

  • Pflugmacher S, Tallinen S, Kim YJ, Kim S, Esterhuizen M. Ageing impacts microplastic toxicity over time: results of aged polycarbonate on germination, development, and oxidative stress of Lepidiumsativum. Sci Complete Environ. 2021;790:148166.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z, Xu X, Guo L, Jin R, Lu Y. Uptake and transport of micro/nanoplastics in terrestrial crops: detection, mechanisms, and influencing components. Sci Complete Environ. 2024;907:168155.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor SE, Pearce CI, Sanguinet KA, Hu D, Chrisler WB, Kim YM, Wang Z, Flury M. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, however no proof for uptake into roots. Environ Sci: Nano. 2020;7:1942–53.

    CAS 

    Google Scholar
     

  • Wang J, Lu S, Guo L, Wang P, He C, Liu D, Bian H, Sheng L. Results of polystyrene nanoplastics with totally different useful teams on rice (Oryza sativa L.) seedlings: mixed transcriptome, enzymology, and physiology. Sci Complete Environ. 2022;834:155092.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Wang X, Ren C, Palansooriya KN, Wang Z, Chang SX. Microplastic air pollution: phytotoxicity, environmental dangers, and phytoremediation methods. Crit Rev Environ Sci Technol. 2023;54:486–507.

    Article 

    Google Scholar
     

  • Huang D, Chen H, Shen M, Tao J, Chen S, Yin L, Zhou W, Wang X, Xiao R, Li R. Latest advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. J Hazard Mater. 2022;438:129515.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and crops: phytotoxicity, uptake and accumulation. Sci Complete Environ. 2010;408:3053–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spano C, Muccifora S, Ruffini Castiglione M, Bellani L, Bottega S, Giorgetti L. Polystyrene nanoplastics have an effect on seed germination, cell biology and physiology of rice seedlings in-short time period remedies: proof of their internalization and translocation. Plant Physiol Biochem. 2022;172:158–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Guo R, Zhang S, Solar Y, Wang F. Uptake and translocation of nano/microplastics by rice seedlings: proof from a hydroponic experiment. J Hazard Mater. 2022;421:126700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou CQ, Lu CH, Mai L, Bao LJ, Liu LY, Zeng EY. Response of rice (Oryza sativa L.) roots to nanoplastic remedy at seedling stage. J Hazard Mater. 2021;401:123412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, Su L, Liu W. Impression of polystyrene nanoplastics (PSNPs) on seed germination and seedling development of wheat (Triticum aestivum L.). J Hazard Mater. 2020;385:121620.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Tu C, Li L, Wang X, Yang J, Feng Y, Zhu X, Fan Q, Luo Y. Visible monitoring of label-free microplastics in wheat seedlings and their results on crop development and physiology. J Hazard Mater. 2023;456:131675.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Chang X, Zhang J, Wang Y, Zhong R, Wang L, Wei J, Wang Y. Uptake and distribution of microplastics of various particle sizes in maize (Zea mays) seedling roots. Chemosphere. 2023;313:137491.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Zhao J, Zhang Z, Ren Z, Li X, Zhang R, Ma X. Uptake and impact of carboxyl-modified polystyrene microplastics on cotton crops. J Hazard Mater. 2024;466:133581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Cao L, Zhu X, Li H, Duan G, Wang Y. Accumulation and switch of polystyrene microplastics in solanum nigrum seedlings. PeerJ. 2023;11:e15967.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yoon H, Kim JT, Chang YS, Kim EJ. Fragmentation of nanoplastics pushed by plant–microbe rhizosphere interplay throughout abiotic stress mixture. Environ Sci: Nano. 2021;8:2802–10.

    CAS 

    Google Scholar
     

  • Tamayo-Belda M, Vargas-Guerrero JJ, Martín-Betancor Ok, Pulido-Reyes G, González-Pleiter M, Leganés F, Rosal R, Fernández-Piñas F. Understanding nanoplastic toxicity and their interplay with engineered cationic nanopolymers in microalgae by physiological and proteomic approaches. Environ Sci: Nano. 2021;8:2277–96.

    CAS 

    Google Scholar
     

  • Carpita N, Sabularse D, Montezinos D, Delmer DP. Dedication of the pore measurement of cell partitions of dwelling plant cells. Science. 1979;205:1144–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. Microplastics accumulate on pores in seed capsule and delay germination and root development of the terrestrial vascular plant Lepidium sativum. Chemosphere. 2019;226:774–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Z, Liu L, Zhang C. Regulation of shoot apical meristem and axillary meristem improvement in crops. Int J Mol Sci. 2020;21:2917.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang Y, Gao T, Kang S, Sillanpää M. Significance of atmospheric transport for microplastics deposited in distant areas. Environ Pollut 2019, 254.

  • Liu Ok, Wang X, Tune Z, Wei N, Li D. Terrestrial crops as a possible non permanent sink of atmospheric microplastics throughout transport. Sci Complete Environ. 2020;742:140523.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Liu G, Sheng B, Zhao Y, Xu D, Wu Z, Zhou J, Zhang M, Chen G, Wang J, et al. Seize and elimination of nanoplastics utilizing ZIF-derived faulty nanoframework: Construction-performance correlation, theoretical calculation and software. Nano Immediately. 2024;58:102418.

    Article 
    CAS 

    Google Scholar
     

  • Li C, Gao Y, He S, Chi HY, Li ZC, Zhou XX, Yan B. Quantification of nanoplastic uptake in cucumber crops by pyrolysis fuel chromatography/mass spectrometry. Environ Sci Technol Lett. 2021;8:633–8.

    Article 
    CAS 

    Google Scholar
     

  • Wu X, Hou H, Liu Y, Yin S, Bian S, Liang S, Wan C, Yuan S, Xiao Ok, Liu B, et al. Microplastics have an effect on rice (Oryza sativa L.) high quality by interfering metabolite accumulation and vitality expenditure pathways: A area research. J Hazard Mater. 2022;422:126834.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi Z, Zhang Z, Chen G, Rengel Z, Solar H. Microplastics have rice cultivar-dependent impacts on grain yield and high quality, and nitrogenous fuel losses from Paddy, however not on soil properties. J Hazard Mater. 2023;446:130672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Z, Li S, Wu J, Guo S, Zhang Y, Huang M, Valsami-Jones E, Lynch I, Liu X, Wang J, Zou J. Results of nanopolystyrene addition on nitrogen fertilizer destiny, gaseous lack of N from the soil, and soil microbial group composition. J Hazard Mater. 2022;438:129509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao Y, Nazygul J, Li M, Wang X, Jiang L. Results of microplastics on the expansion, physiology, and biochemical traits of wheat (Triticum aestivum). Environ Sci. 2019;40:4661–7.


    Google Scholar
     

  • Greenfield LM, Graf M, Rengaraj S, Bargiela R, Williams G, Golyshin PN, Chadwick DR, Jones DL. Subject response of N2O emissions, microbial communities, soil biochemical processes and winter barley development to the addition of typical and biodegradable microplastics. Agric Ecosyst Environ. 2022;336:108023.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Wang L, Tang J, Solar H, Giesy JP. Mixed results of degradable movie fragments and micro/nanoplastics on development of wheat seedling and rhizosphere microbes. Environ Pollut. 2022;294:118516.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V. Macro- and micro- plastics in soil-plant system: results of plastic mulch movie residues on wheat (Triticum aestivum) development. Sci Complete Environ. 2018;645:1048–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urbina MA, Correa F, Aburto F, Ferrio JP. Adsorption of polyethylene microbeads and physiological results on hydroponic maize. Sci Complete Environ. 2020;741:140216.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Wang T, Guo J, Dong Y, Wang Z, Gong L, Li X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory community in barley. J Hazard Mater. 2021;415:125614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Tune F, Tune X, Zhu Ok, Lin Q, Zhang J, Ning G. Single and composite harm mechanisms of soil polyethylene/polyvinyl chloride microplastics to the photosynthetic efficiency of soybean (Glycine max [L.] merr.). Entrance Plant Sci. 2023;13:1100291.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang Y, Tian X, Huang P, Yu X, Xiang Q, Zhang L, Gao X, Chen Q, Gu Y. Biochemical and transcriptomic responses of buckwheat to polyethylene microplastics. Sci Complete Environ. 2023;899:165587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Liang J, Luo Y, Tang N, Li X, Zhu Z, Guo J. Comparative results of polystyrene nanoplastics with totally different floor cost on seedling institution of Chinese language cabbage (Brassica Rapa L.). Chemosphere. 2022;292:133403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang M, Huang DY, Tian YB, Zhu QH, Zhang Q, Zhu HH, Xu C. Influences of various supply microplastics with totally different particle sizes and software charges on soil properties and development of Chinese language cabbage (Brassica chinensis L.). Ecotoxicol Environ Saf. 2021;222:112480.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Wu W, Chen C, Zhang Y, Zhang Ok. Results of biodegradable PBAT microplastics on soil bodily and chemical properties and physiological indicators of brassica chinensis. Ecol Environ Sci. 2023;32:1964–77.

    CAS 

    Google Scholar
     

  • Lian Y, Shi R, Liu J, Zeb A, Wang Q, Wang J, Yu M, Li J, Zheng Z, Ali N, et al. Results of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: phytotoxicity, enzyme exercise, and microbial group. J Hazard Mater. 2024;465:133417.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Li R, Li Q, Zhou J, Wang G. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics air pollution. Chemosphere. 2020;255:127041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang H, Qin M, Liu B, Li R, Li Z. Mixture of transcriptomics, metabolomics and physiological traits reveals the results of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.). Plant Physiol Biochem. 2023;205:108201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weerasinghe WMTM, Madawala HMSP. Potential impacts of two varieties of microplastics on solanum lycopersicum L. and arbuscular mycorrhizal fungi. Ceylon J Sci. 2022;51:137.

    Article 

    Google Scholar
     

  • Shi R, Liu W, Lian Y, Zeb A, Wang Q. Sort-dependent results of microplastics on tomato (Lycopersicon esculentum L.): deal with root exudates and metabolic reprogramming. Sci Complete Environ. 2023;859:160025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi R, Liu W, Lian Y, Wang Q, Zeb A, Tang J. Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.). J Environ Handle. 2022;317:115441.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giri S, Mukherjee A. Eco-corona reduces the phytotoxic results of polystyrene nanoplastics in allium Cepa: emphasizing the function of ROS. Environ Exp Bot. 2022;198:104850.

    Article 
    CAS 

    Google Scholar
     

  • Meng F, Yang X, Riksen M, Xu M, Geissen V. Response of frequent bean (Phaseolus vulgaris L.) development to soil contaminated with microplastics. Sci Complete Environ. 2021;755:142516.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobucar G. Ecotoxicity and genotoxicity of polystyrene microplastics on greater plant vicia Faba. Environ Pollut. 2019;250:831–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colzi I, Renna L, Bianchi E, Castellani MB, Coppi A, Pignattelli S, Loppi S, Gonnelli C. Impression of microplastics on development, photosynthesis and important components in Cucurbita Pepo L. J Hazard Mater. 2022;423:127238.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liese B, Inventory NL, Düwel J, Pilger C, Huser T, Müller C. Uptake of microplastics and impacts on plant traits of Savoy cabbage. Ecotoxicol Environ Saf. 2024;272:116086.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridharan S, Saha M, Singh L. Proof of soil microplastics inhibiting the germination of business coriander seeds below area situations. Water Air Soil Pollut. 2023;234:675.

    Article 
    CAS 

    Google Scholar
     

  • Guo L, Wang J, Zu J, Wang P, Yang Y. Results of microplastics on seed germination and seedling physiological traits of Spinacia Oleracea below alkali stress. Chin J Appl Ecol. 2023;34:2536–44.


    Google Scholar
     

  • Wu H, He B, Chen B, Liu A. Toxicity of Polyvinyl chloride microplastics on Brassica Rapa. Environ Pollut. 2023;336:122435.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang G, Li J, Lengthy J, Liao H, Ran T, Zhao Y. Results of polyethylene microplastics publicity on development and yield of Capsicum Annuum L. J Agro-Environ Sci. 2023;42:1695–702.


    Google Scholar
     

  • Wang Q, Feng X, Liu Y, Li W, Cui W, Solar Y, Zhang S, Wang F, Xing B. Response of peanut plant and soil N-fixing bacterial communities to standard and biodegradable microplastics. J Hazard Mater. 2023;459:132142.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu C, Zeng H, Wang Q, Chen W, Chen W, Yu W, Lou H, Wu J. Multi-omics evaluation reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. J Hazard Mater. 2022;436:129181.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo M, Zhao F, Tian L, Ni Ok, Lu Y, Borah P. Results of polystyrene microplastics on the seed germination of herbaceous decorative crops. Sci Complete Environ. 2022;809:151100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Ullah S, Chen N, Tong X, Yang N, Liu J, Guo X, Tang Z. Phytotoxicity evaluation of dandelion uncovered to microplastics utilizing membership perform worth and built-in organic response index. Environ Pollut. 2023;333:121933.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Chu L, Tune X, Zhao X. Results of two Micron-sized polystyrene particles on Isatis indigotica seedlings development and soil group construction. Asian J Ecotoxicol. 2022;17:244–55.


    Google Scholar
     

  • Li Z, Zeng X, Solar F, Feng T, Xu Y, Li Z, Wu J, Wang-Pruski G, Zhang Z. Physiological evaluation and transcriptome profiling reveals the impression of microplastic on Melon (Cucumis Melo L.) seed germination and seedling development. J Plant Physiol. 2023;287:154039.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shorobi FM, Vyavahare GD, Seok YJ, Park JH. Impact of polypropylene microplastics on seed germination and nutrient uptake of tomato and Cherry tomato crops. Chemosphere. 2023;329:138679.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Yang S, Wan SB, Li XG. The importance of calcium in photosynthesis. Int J Mol Sci. 2019;20:1353.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Qiu NW, Jiang DC, Wang XS, Wang BS, Zhou F. Advances within the members and biosynthesis of chlorophyll household. Photosynthetica. 2019;57:974–84.

    Article 
    CAS 

    Google Scholar
     

  • Heyneke E, Fernie AR. Metabolic regulation of photosynthesis. Biochem Soc Trans. 2018;46:321–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rüdiger W. Biosynthesis of chlorophyll B and the chlorophyll cycle. Photosynth Res. 2002;74:187–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wang P, Grimm B. Group of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth Res. 2015;126:189–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale fashions of photosynthesis: functions and challenges for crop enchancment. Photosynth Res. 2024;161:21–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu G, Han Z, Wang Q, Wang T, Solar Z, Yu Y, Han X, Yu H. Toxicity results of nanoplastics on soybean (Glycine max L.): mechanisms and transcriptomic evaluation. Chemosphere. 2023;313:137571.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Feng Y, Han L, Li D, Feng Y, Jeyakumar P, Solar H, Shi W, Wang H. Responses of rice (Oryza sativa L.) plant development, grain yield and high quality, and soil properties to the microplastic prevalence in paddy soil. J Soils Sediments. 2022;22:2174–83.

    Article 
    CAS 

    Google Scholar
     

  • Pehlivan N, Gedik Ok. Particle size-dependent biomolecular footprints of interactive microplastics in maize. Environ Pollut. 2021;277:116772.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian J, Liu W, Solar Y, Males S, Wu J, Zeb A, Yang T, Ma LQ, Zhou Q. Nanotoxicological results and transcriptome mechanisms of wheat (Triticum aestivum L.) below stress of polystyrene nanoplastics. J Hazard Mater. 2022;423:127241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen L, Zhang P, Lin Y, Huang X, Zhang S, Li Z, Fang Z, Wen Y, Liu H. Polystyrene microplastic attenuated the poisonous results of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: from the attitude of oxidative response, phototoxicity and molecular metabolism. J Hazard Mater. 2023;459:132176.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo A, Pan C, Su X, Zhou X, Bao Y. Mixed results of Oxytetracycline and microplastic on wheat seedling development and related rhizosphere bacterial communities and soil metabolite profiles. Environ Pollut. 2022;302:119046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar H, Li Z, Wen J, Zhou Q, Gong Y, Zhao X, Mao H. Co-exposure of maize to polyethylene microplastics and ZnO nanoparticles: impression on development, destiny, and interplay. Sci Complete Environ. 2023;876:162705.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal B, Javed Q, Khan I, Tariq M, Ahmad N, Elansary HO, Jalal A, Li G, Du D. Affect of soil microplastic contamination and cadmium toxicity on the expansion, physiology, and root development traits of triticum aestivum L. S Afr J Bot. 2023;160:369–75.

    Article 
    CAS 

    Google Scholar
     

  • Gu X, Xu X, Xian Z, Zhang Y, Wang C, Gu C. Joint toxicity of aged Polyvinyl chloride microplastics and cadmium to the wheat plant. Environ Chem. 2021;41:2633–9.


    Google Scholar
     

  • Mamathaxim N, Tune W, Wang Y, Habibul N. Results of microplastics on arsenic uptake and distribution in rice seedlings. Sci Complete Environ. 2023;862:160837.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zong H, Liu J, Guo X, Li M, Huang X, Wang F, Tune N. Results of polyethylene microplastics on cadmium absorption and physiological traits of peanut seedling. J Agro-Environ Sci. 2022;41:1400–7.


    Google Scholar
     

  • Dong R, Liu R, Xu Y, Liu W, Wang L, Liang X, Huang Q, Solar Y. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia Campestris L.). Chemosphere. 2022;291:133066.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zong X, Zhang J, Zhu J, Zhang L, Jiang L, Yin Y, Guo H. Results of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Environ Sci Technol Lett. 2021;217:112217.

    CAS 

    Google Scholar
     

  • Solar H, Shi Y, Zhao P, Lengthy G, Li C, Wang J, Qiu D, Lu C, Ding Y, Liu L, He S. Results of polyethylene and biodegradable microplastics on photosynthesis, antioxidant protection methods, and arsenic accumulation in maize (Zea Mays L.) seedlings grown in arsenic-contaminated soils. Sci Complete Environ. 2023;868:161557.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Zhang X, Zhang S, Zhang S, Solar Y. Interactions of microplastics and cadmium on plant development and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere. 2020;254:126791.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeb A, Liu W, Meng L, Lian J, Wang Q, Lian Y, Chen C, Wu J. Results of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A research involving physio-biochemical properties and metabolomic profiles. J Hazard Mater. 2022;424:127405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Cao Y, Zhang D, Dai Y, Lu J. Impact of microplastics, cadmium, and their mixture on wheat seed germination. J Agro-Environ Sci. 2023;42:263–73.


    Google Scholar
     

  • Khan MA, Kumar S, Wang Q, Wang M, Fahad S, Nizamani MM, Chang Ok, Khan S, Huang Q, Zhu G. Affect of Polyvinyl chloride microplastic on chromium uptake and toxicity in candy potato. Ecotoxicol Environ Saf. 2023;251:114526.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic perception into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: phytohormone and glutathione metabolism modulation. J Hazard Mater. 2024;469:134086.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du L, Wu D, Yang X, Xu L, Tian X, Li Y, Huang L, Liu Y. Joint toxicity of cadmium (II) and microplastic leachates on wheat seed germination and seedling development. Environ Geochem Well being. 2024;46:166.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Saadony MT, Almoshadak AS, Shafi ME, Albaqami NM, Saad AM, El-Tahan AM, Desoky E-SM, Elnahal ASM, Almakas A, Abd El-Mageed TA, et al. Very important roles of sustainable nano-fertilizers in enhancing plant high quality and quantity-an up to date overview. Saudi J Biol Sci. 2021;28:7349–59.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ulhassan Z, Khan I, Hussain M, Khan AR, Hamid Y, Hussain S, Allakhverdiev SI, Zhou W. Efficacy of metallic nanoparticles in attenuating the buildup and toxicity of chromium in crops: present information and future views. Environ Pollut. 2022;315:120390.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, el Gharrak A, Akil A, Essemlali Y, Zahouily M. Latest advances in nano-fertilizers: synthesis, crop yield impression, and financial evaluation. Nanoscale. 2024;16:4484–513.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Tang Y, Lou J, Wang Y, Yin S, Li L, Iqbal B, Lozano YM, Zhao T, Du D. The marketing results of soil microplastics on alien plant invasion rely on microplastic form and focus. Sci Complete Environ. 2024;926:172089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Tang Y, Khan KY, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella PJ, Kim GJ, Du D. The toxicological impact on Pak Choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline within the soil. Sci Complete Environ. 2023;268:115707.

    CAS 

    Google Scholar
     

  • Rao Y, Peng T, Xue S. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol. 2023;281:153916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK. Microbial inoculants: potential software for sustainability of agricultural manufacturing methods. Arch Microbiol. 2020;202:677–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Khor SM. Rising absorption-based strategies for eradicating microplastics and nanoplastics from precise water our bodies. TrAC Tendencies Anal Chem. 2024;170:117465.

    Article 
    CAS 

    Google Scholar
     

  • Wang HP, Huang XH, Chen JN, Dong M, Nie CZ, Qin L. Micro- and nano-plastics in meals methods: distribution, mixed toxicity with environmental contaminants, and elimination methods. Chem Eng J. 2023;476:146430.

    Article 
    CAS 

    Google Scholar
     

  • Yuan X, Wang X, Sarkar B, Okay YS. The COVID-19 pandemic necessitates a shift to a plastic round financial system. Nat Rev Earth Environ. 2021;2:659–60.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Singh P, Pandey VK, Singh R, Singh Ok, Sprint KK, Malik S. Unveiling the potential of starch-blended biodegradable polymers for substantializing the eco-friendly improvements. J Agric Meals Res. 2024;15:101065.

    CAS 

    Google Scholar
     

  • Karmakar B, Sarkar S, Chakraborty R, Saha SP, Thirugnanam A, Roy PK, Roy S. Starch-based biodegradable movies amended with nano-starch and Tannic acid-coated nano-starch exhibit enhanced mechanical and useful attributes with antimicrobial exercise. Carbohydr Polym. 2024;341:122321.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng HN, Biswas A, Kuzniar G, Kim S, Liu Z, He Z. Blends of carboxymethyl cellulose and cottonseed protein as biodegradable movies. Polymers. 2024;16:1554.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Assad I, Bhat SU, Gani A, Shah A. Protein based mostly packaging of plant origin: fabrication, properties, latest advances and future views. Int J Biol Macromol. 2020;164:707–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang B, Chen C, Liang Z, He S, Kuang Y, Tune J, Mi R, Chen G, Jiao M, Hu L. Lignin as a Wooden-Impressed binder enabled sturdy, water secure, and biodegradable paper for plastic alternative. Adv Funct Mater. 2019;30:1906307.

    Article 

    Google Scholar
     

  • Jiang C, Wang Q, Wang H, Tao Y, Lu J, Pan G, Du J, Wang H. Structurally strong, hydrophobicity and multifunctional black cellulose/lignin-based mulch movie for inexperienced agriculture. Ind Crops Prod. 2024;219:118911.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Wang S, Liang H, Zhou J, Zong M, Cao Y, Lou W. A overview of developments in chitosan-essential oil composite movies: higher and sustainable meals preservation with biodegradable packaging. Int J Biol Macromol. 2024;274:133242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Feky AR, Ismaiel M, Yılmaz M, Madkour FM, El Nemr A, Ibrahim HAH. Biodegradable plastic formulated from Chitosan of aristeus antennatus shells with castor oil as a plasticizer agent and starch as a filling substrate. Sci Rep. 2024;14:11161.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gong L, Passari AK, Yin C, Kumar Thakur V, Newbold J, Clark W, Jiang Y, Kumar S, Gupta VK. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics manufacturing. Crit Rev Biotechnol. 2023;44:236–54.

    Article 
    PubMed 

    Google Scholar
     

  • Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Latest advances within the sustainable design and functions of biodegradable polymers. Bioresour Technol. 2021;325:124739.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Ok, Yin D, Liu C, Solar R. Investigating the function of poly-γ-glutamic acid in pennisetum giganteum phytoextraction of mercury-contaminated soil. Sci Complete Environ. 2024;944:173707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Jia M, Christie P, Ali S, Wu L. Use of a hyperaccumulator and biochar to remediate an acid soil extremely contaminated with hint metals and/or oxytetracycline. Chemosphere. 2018;204:390–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arikan B, Alp FN, Ozfidan-Konakci C, Yildiztugay E, Turan M, Cavusoglu H. The impacts of nanoplastic toxicity on the buildup, hormonal regulation and tolerance mechanisms in a possible hyperaccumulator – Lemna minor L. J Hazard Mater. 2022;440:129692.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in crops: results on plant development and their remediations. Entrance Plant Sci. 2023;14:1226484.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gao M, Wang Z, Jia Z, Zhang H, Wang T. Brassinosteroids alleviate nanoplastic toxicity in edible crops by activating antioxidant protection methods and suppressing nanoplastic uptake. Environ Int. 2023;174:107901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Zhang B, Liu W, Zou H. Strigolactones alleviate the toxicity of polystyrene nanoplastics (PS-NPs) in maize (Zea Mays L.). Sci Complete Environ. 2024;918:170626.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu N, Tune Y, Zheng C, Li S, Yang Z, Jiang M. Indole-3-acetic acid and zinc synergistically mitigate positively charged nanoplastic-induced harm in rice. J Hazard Mater. 2023;455:131637.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Guo J, Wang T, Gong L, Liu F, Brestic M, Liu S, Tune F, Li X. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat. J Pineal Res. 2021;71:e12761.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Aqeel M, Khalid N, Irshad MK, Farhat F, Nazir A, Ma J, Akhtar MS, Eldesoky GE, Aljuwayid AM, Noman A. Glutathione remedy suppresses the antagonistic results of microplastics in rice. Chemosphere. 2023;322:138079.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, Gao C, Xu L, Niu H, Liu Q, Huang Y, Lv G, Yang H, Li M. Melatonin and Indole-3-Acetic acid synergistically regulate plant development and stress resistance. Cells. 2022;11:3250.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic pathways and capabilities of Indole-3-Acetic acid in microorganisms. Microorganisms. 2023;11:2077.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protecting roles, measurement, and biosynthesis. Mol Points Med. 2009;30:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh YS, Wong SK, Ismail NH, Zengin G, Duangjai A, Saokaew S, Phisalprapa P, Tan KW, Goh BH, Tang SY. Mitigation of environmental Stress-Impacts in crops: function of sole and combinatory exogenous software of glutathione. Entrance Plant Sci. 2021;12:791205.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ito T, Ohkama-Ohtsu N. Degradation of glutathione and glutathione conjugates in crops. J Exp Bot. 2023;74:3313–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Bai T, Wei H, Gardea-Torresdey JL, Keller A, White JC. Nanobiotechnology-based methods for enhanced crop stress resilience. Nat Meals. 2022;3:829–36.

    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Feng Ok, Wang G, Zhang S, Zhao J, Yuan X, Ren J. Titanium dioxide nanoparticles alleviates polystyrene nanoplastics induced development Inhibition by modulating carbon and nitrogen metabolism through melatonin signaling in maize. J Nanobiotechnol. 2024;22:262.

    Article 
    CAS 

    Google Scholar
     

  • Khalid AR, Shah T, Asad M, Ali A, Samee E, Adnan F, Bhatti MF, Marhan S, Kammann CI, Haider G. Biochar alleviated the poisonous results of PVC microplastic in a soil-plant system by upregulating soil enzyme actions and microbial abundance. Environ Pollut. 2023;332:121810.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arikan B, Alp FN, Ozfidan-Konakci C, Balci M, Elbasan F, Yildiztugay E, Cavusoglu H. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity through regulating fuel change, photosynthesis, and antioxidant system in triticum aestivum. Chemosphere. 2022;307:136048.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alshegaihi RM, Alatawi A, Alomran MM, Khalil FMA, Saleem A. Proteomic modulation by arsenic and microplastic toxicity within the presence of iron oxide nanoparticles in wheat (Triticum aestivum L.) seedlings. S Afr J Bot. 2024;166:591–602.

    Article 
    CAS 

    Google Scholar
     

  • Palansooriya KN, Sang MK, Igalavithana AD, Zhang M, Hou D, Oleszczuk P, Sung J, Okay YS. Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environ Res. 2022;209:112807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao B, Li Y, Zheng N, Liu C, Ren H, Yao H. Interactive results of microplastics, Biochar, and earthworms on CO2 and N2O emissions and microbial useful genes in vegetable-growing soil. Environ Res. 2022;213:113728.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yu Y, Chen X, Yu S, Cui M, Wang S, Tune F. Results of Biochar on the phytotoxicity of Polyvinyl chloride microplastics. Plant Physiol Biochem. 2023;195:228–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran T, Li J, Liao H, Zhao Y, Yang G, Lengthy J. Results of Biochar modification on bacterial communities and their perform predictions in a microplastic-contaminated capsicum annuum L. soil. Environ Technol Innov. 2023;31:103174.

    Article 
    CAS 

    Google Scholar
     

  • Elbasiouny H, Mostafa AA, Zedan A, Elbltagy HM, Dawoud SFM, Elbanna BA, El-Shazly SA, El-Sadawy AA, Sharaf-Eldin AM, Darweesh M, et al. Potential impact of Biochar on soil properties, microbial exercise and vicia Faba properties affected by microplastics contamination. Agronomy. 2023;13:149.

    Article 
    CAS 

    Google Scholar
     

  • Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Entrance Microbiol. 2020;11:442.

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Auta HS, Emenike CU, Fauziah SH. Screening of Bacillus strains remoted from Mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut. 2017;231:1552–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanunchai B, Kalkhof S, Guliyev V, Wahdan SFM, Krstic D, Schädler M, Geissler A, Glaser B, Buscot F, Blagodatskaya E, et al. Nitrogen fixing micro organism facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils below ambient and future Weather conditions. Environ Sci Processes Impacts. 2022;24:233–41.

    Article 
    CAS 

    Google Scholar
     

  • Jeon JM, Park SJ, Choi TR, Park JH, Yang YH, Yoon JJ. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 remoted from soil grove. Polym Degrad Stab. 2021;191:109662.

    Article 
    CAS 

    Google Scholar
     

  • Janczak Ok, Dąbrowska GB, Raszkowska-Kaczor A, Kaczor D, Hrynkiewicz Ok, Richert A. Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and crops. Int Biodeterior Biodegrad. 2020;155:105087.

    Article 
    CAS 

    Google Scholar
     

  • Fang Ok, Kou YP, Tang N, Liu J, Zhang XY, He HL, Xia RX, Zhao WQ, Li DD, Liu Q. Differential responses of soil micro organism, fungi and protists to root exudates and temperature. Microbiol Res. 2024;286:127829.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang SH, Shan LB, Chu KH. Root exudates enhanced 6:2 FTOH defluorination, altered metabolite profiles and shifted soil Microbiome dynamics. J Hazard Mater. 2024;466:133651.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu P, Wang BT, Qi MJ, Lin R, Chen HM, Xie C, Zhang ZW, Qiu JC, Du HB, Ge Y. Medicinal plant root exudate metabolites form the rhizosphere microbiota. Int J Mol Sci. 2024;25:7786.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Döll S, Koller H, van Dam NM. A easy, cost-effective and optimized protocol for amassing root exudates from soil grown crops. Rhizosphere. 2024;30:100899.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles