Shi M, Zhang T, Fang Y, Pan C, Fu H, Gao S, Wang J. Nano-selenium enhances sugarcane resistance to Xanthomonas albilineans an infection and enchancment of juice high quality. Ecotoxicol Environ Saf. 2023;254:114759. https://doi.org/10.1016/j.ecoenv.2023.114759.
Li B, Liu X, Yu T, Lin Okay, Ma X, Li C, Yang Z, Tang Q, Zheng G, Qin J. Environmental selenium and human longevity: an ecogeochemical perspective. Chemosphere. 2024;347:140691. https://doi.org/10.1016/j.lwt.2015.03.046.
Corridor JA, Van Saun RJ, Nichols T, Mosher W, Pirelli G. Comparability of selenium standing in sheep after short-term publicity to high-selenium-fertilized forage or mineral complement. Small Ruminant Res. 2009;82(1):40–5. https://doi.org/10.1016/j.smallrumres.2009.01.010.
Zhang B, Zhou Okay, Zhang J, Chen Q, Liu G, Shang N, Qin W, Li P, Lin F. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Meals Chem. 2009;115(2):727–34. https://doi.org/10.1016/j.foodchem.2008.12.006.
Solar P, Ge G, Solar L, Du S, Liu Y, Yan X, Zhang J, Zhang Y, Wang Z, Jia Y. Results of selenium enrichment on fermentation traits, selenium content material and microbial neighborhood of alfalfa silage. BMC Plant Biol. 2024;24(1):555. https://doi.org/10.1186/s12870-024-05268-1.
Gao X, Matsui H. Peptide-based nanotubes and their functions in bionanotechnology. Adv Mater. 2005;17(17):2037–50. https://doi.org/10.1002/adma.200401849.
Ferrari L, Cattaneo DM, Abbate R, Manoni M, Ottoboni M, Luciano A, von Holst C, Pinotti L. Advances in selenium supplementation: from selenium-enriched yeast to potential selenium-enriched bugs, and selenium nanoparticles. Anim Nutr. 2023;14:193–203. https://doi.org/10.1016/j.aninu.2023.05.002.
García Márquez V, Morelos Moreno Á, Benavides Mendoza A, Medrano MJ. Ionic selenium and nanoselenium as biofortifiers and stimulators of plant metabolism. Agron. 2020;10(9):1399. https://doi.org/10.3390/agronomy10091399.
Buriak JM, Liz-Marzán LM, Parak WJ, Chen X. Nano and crops. ACS Nano. 2022;16(2):1681–4. https://doi.org/10.1021/acsnano.2c01131.
Zhu Z, Chen Y, Shi G, Zhang X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant protection system. Meals Chem. 2017;219:179–84. https://doi.org/10.1016/j.foodchem.2016.09.138.
Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Luz MM. Selenobacteria chosen from the rhizosphere as a possible device for Se biofortification of wheat crops. Biol Fertil Soils. 2013;49(2):175–85. https://doi.org/10.1007/s00374-012-0705-2.
Xia Q, Yang Z, Shui Y, Liu X, Chen J, Khan S, Wang J, Gao Z. Strategies of selenium utility differentially modulate plant progress, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral components in purple-grained wheat. Entrance Plant Sci. 2020. https://doi.org/10.3389/fpls.2020.01114.
Li L, Yu J, Li L, Rao S, Wu S, Wang S, Cheng S, Cheng H. Therapy of ginkgo biloba with exogenous sodium selenite impacts its physiological progress, modifications its phytohormones, and synthesizes its terpene lactones. Molecules. 2022;27(21):7548. https://doi.org/10.3390/MOLECULES27217548.
Li D, An Q, Wu Y, Li J-Q, Pan C. Foliar utility of selenium nanoparticles on celery stimulates a number of nutrient part ranges by regulating the α-linolenic acid pathway. ACS Maintain Chem Eng. 2020;8(28):10502–10. https://doi.org/10.1021/acssuschemeng.0c02819.
Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M. Accumulation of crimson elemental selenium nanoparticles and their organic results in Nicotinia tabacum. Plant Progress Regul. 2012;68:525–31. https://doi.org/10.1007/s10725-012-9735-x.
Cheng B, Wang C, Chen F, Yue L, Cao X, Liu X, Yao Y, Wang Z, Xing B. Multiomics understanding of improved high quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar utility of selenium nanomaterials. Sci Complete Environ. 2022;824:153712. https://doi.org/10.1016/J.SCITOTENV.2022.153712.
El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M. Selenium and nano-selenium in agroecosystems. Environ Chem Lett. 2014;12:495–510. https://doi.org/10.1007/s10311-014-0476-0.
Li D, Zhou C, Wu Y, An Q, Zhang J, Fang Y, Li J-Q, Pan C. Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule ranges underneath Cd stress. J Hazard Mater. 2022. https://doi.org/10.1016/j.jhazmat.2022.128763.
Samynathan R, Venkidasamy B, Ramya Okay, Muthuramalingam P, Shin H, Kumari PS, Thangavel S, Sivanesan I. A latest replace on the impression of nano-selenium on plant progress, metabolism, and stress tolerance. Vegetation. 2023;12(4):853. https://doi.org/10.3390/PLANTS12040853.
Rady MM, Desoky E-SM, Ahmed SM, Majrashi A, Ali EF, Arnaout SM, Selem E. Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defences, and salt tolerance in Phaseolus vulgaris. Vegetation. 2021;10(6):1189. https://doi.org/10.3390/PLANTS10061189.
Li D, Zhou C, Ma J, Wu Y, Kang L, An Q, Zhang J, Deng Okay, Li J-Q, Pan C. Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone sign transduction in pepper crops. J Nanobiotechnol. 2021;19:316. https://doi.org/10.1186/S12951-021-01061-6.
Sa DW, Lu Q, Wang Z, Ge G, Solar L, Jia Y. The potential and results of saline-alkali alfalfa microbiota underneath salt stress on the fermentation high quality and microbial. BMC Microbiol. 2021;21(1):149. https://doi.org/10.1186/S12866-021-02213-2.
Solar P, Wang Z, Yuan N, Lu Q, Solar L, Li Y, Zhang J, Zhang Y, Ge G, Jia Y. Analysis of nano-selenium biofortification traits of alfalfa (Medicago sativa L.). Inexperienced Course of Synth. 2023;12(1):20228121. https://doi.org/10.1515/GPS-2022-8121.
Li Z, Wang Y, Liu J, Chen D, Feng G, Chen M, Feng Y, Zhang R, Yan X. The potential position of alfalfa polysaccharides and their sulphated derivatives within the alleviation of weight problems. Meals Funct. 2023. https://doi.org/10.1039/D3FO01390A.
Stochmal A, Piacente S, Pizza C, De Riccardis F, Leitz R, Oleszek W. Alfalfa (Medicago sativa L.) flavonoids. 1. Apigenin and luteolin glycosides from aerial components. J Agric Meals Chem. 2001;49(2):753–8. https://doi.org/10.1021/jf000876p.
Owusu-Sekyere A, Kontturi J, Hajiboland R, Rahmat S, Aliasgharzad N, Hartikainen H, Seppänen MM. Affect of selenium (Se) on carbohydrate metabolism, nodulation and progress in alfalfa (Medicago sativa L.). Plant Soil. 2013;373:541–52. https://doi.org/10.1007/s11104-013-1815-9.
Wang Q, Hu J, Hu H, Li Y, Xiang M, Wang D. Built-in eco-physiological, biochemical, and molecular organic analyses of selenium fortification mechanism in alfalfa. Planta. 2022;256(6):114. https://doi.org/10.1007/s00425-022-04027-6.
Zhang S, Zhu H, Cen H, Qian W, Wang Y, Ren M, Cheng Y. Results of varied types of selenium biofortification on photosynthesis, secondary metabolites, high quality, and lignin deposition in alfalfa (Medicago sativa L.). Discipline Crops Res. 2023;292:108801. https://doi.org/10.1016/J.FCR.2022.108801.
Wang C, Chen Z, Unteregelsbacher S, Lu H, Gschwendtner S, Gasche R, Kolar A, Schloter M, Kiese R, Butterbach-Bahl Okay. Local weather change amplifies gross nitrogen turnover in montane grasslands of Central Europe in each summer season and winter seasons. Glob Change Biol. 2016;22(9):2963–78. https://doi.org/10.1111/gcb.13353.
Lei H, Lian Y, Kyaw PEE, Bai M, Leghari SJ, Pan H, Xiao Z, Chen D. Utilizing 15N isotope to judge the impact of brown coal utility on the nitrogen destiny within the soil-plant system. Agron. 2023;13(1):263. https://doi.org/10.3390/agronomy13010263.
Tusher VG, Tibshirani R, Chu G. Significance evaluation of microarrays utilized to the ionizing radiation response. PNAS. 2001;98(9):5116–21. https://doi.org/10.1073/pnas.091062498.
Capstaff NM, Miller AJ. Bettering the yield and dietary high quality of forage crops. Entrance Plant Sci. 2018;9:535. https://doi.org/10.3389/fpls.2018.00535.
Zhu X-G, Lengthy SP, Ort DR. Bettering photosynthetic effectivity for larger yield. Annu Rev Plant Biol. 2010;61(1):235–61. https://doi.org/10.1146/annurev-arplant-042809-112206.
Jiang C, Zu C, Shen J, Shao F, Li T. Results of selenium on the expansion and photosynthetic traits of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc Bot Pol. 2015. https://doi.org/10.5586/asbp.2015.006.
Golob A, Kavčič J, Stibilj V, Gaberščik A, Vogel-Mikuš Okay, Germ M. The impact of selenium and UV radiation on leaf traits and biomass manufacturing in Triticum aestivum L. Ecotoxicol Environ Saf. 2017;136:142–9. https://doi.org/10.1016/j.ecoenv.2016.11.007.
Qiu Z, Wang L, Zhou Q. Results of bisphenol A on progress, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere. 2013;90(3):1274–80. https://doi.org/10.1016/j.chemosphere.2012.09.085.
Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q, Yi Q. Selenium uptake, dynamic modifications in selenium content material and its affect on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ Exp Bot. 2014;107:39–45. https://doi.org/10.1016/j.envexpbot.2014.05.005.
Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A. Photosynthetic antenna engineering to enhance crop yields. Planta. 2017;245:1009–20. https://doi.org/10.1007/s00425-017-2659-y.
El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y. Selenium and nano-selenium in plant vitamin. Environ Chem Lett. 2016;14:123–47. https://doi.org/10.1007/s10311-015-0535-1.
Ning C, Ding N, Wu G, Meng H, Wang Y, Wang Q. Proteomics analysis on the consequences of making use of selenium to apple leaves on photosynthesis. Plant Physiol Biochem. 2013;70:1–6. https://doi.org/10.1016/j.plaphy.2013.05.008.
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic destiny in crops. Photosynth Res. 2005;86:373–89. https://doi.org/10.1007/s11120-005-5222-9.
Valle G, McDowell L, Prichard D, Chenoweth P, Wright D, Martin F, Kunkle W, Wilkinson N. Selenium focus of fescue and bahiagrasses after making use of a selenium fertilizer. Commun Soil Sci Plant Anal. 2002;33(9–10):1461–72. https://doi.org/10.1081/CSS-120004294.
Gupta M, Gupta S. An summary of selenium uptake, metabolism, and toxicity in crops. Entrance Plant Sci. 2017. https://doi.org/10.3389/fpls.2016.02074.
Leghari SJ, Wahocho NA, Laghari GM, HafeezLaghari A, MustafaBhabhan G, HussainTalpur Okay, Bhutto TA, Wahocho SA, Lashari AA. Function of nitrogen for plant progress and improvement: a overview. Adv Environ Biol. 2016;10(9):209–19.
Coruzzi G, Bush DR. Nitrogen and carbon nutrient and metabolite signaling in crops. Plant Physiol. 2001;125(1):61–4. https://doi.org/10.1104/pp.125.1.61.
Solar Y, Wang M, Mur LAJ, Shen Q, Guo S. Unravelling the roles of nitrogen vitamin in plant illness defences. Int J Mol Sci. 2020;21(2):572. https://doi.org/10.3390/ijms21020572.
Pate J. Uptake, assimilation and transport of nitrogen compounds by crops. Soil Biol Biochem. 1973;5(1):109–19. https://doi.org/10.1016/0038-0717(73)90097-7.
Dyckmans J, Scrimgeour CM, Schmidt O. A easy and speedy technique for labelling earthworms with 15N and 13C. Soil Biol Biochem. 2005;37(5):989–93. https://doi.org/10.1016/j.soilbio.2004.10.017.
Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D. Methodologies for estimating nitrogen switch between legumes and companion species in agro-ecosystems: a overview of 15N-enriched strategies. Soil Biol Biochem. 2014;73:10–21. https://doi.org/10.1016/j.soilbio.2014.02.005.
Garnett T, Conn V, Kaiser BN. Root primarily based approaches to enhancing nitrogen use effectivity in crops. Plant, Cell Environ. 2009;32(9):1272–83. https://doi.org/10.1111/j.1365-3040.2009.02011.x.
Campbell WH. Nitrate reductase construction, perform and regulation: bridging the hole between biochemistry and physiology. Annu Rev Plant Biol. 1999;50(1):277–303. https://doi.org/10.1146/annurev.arplant.50.1.277.
Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PM. Construction of cytochrome c nitrite reductase. Nature. 1999;400(6743):476–80. https://doi.org/10.1038/22802.
Rossato L, Lainé P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. throughout the progress cycle: nitrogen fluxes throughout the plant and modifications in soluble protein patterns. J Exp Botany. 2001;52(361):1655–63. https://doi.org/10.1093/jexbot/52.361.1655.
Feller U, Fischer A. Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci. 2011;13(3):241–73. https://doi.org/10.1080/07352689409701916.
Li D, Zhou C, Zou N, Wu Y, Zhang J, An Q, Li J-Q, Pan C. Nanoselenium foliar utility enhances biosynthesis of tea leaves in metabolic cycles and related responsive pathways. Environ Pollut. 2021;273:116503. https://doi.org/10.1016/J.ENVPOL.2021.116503.
Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X. Exploring the consequences of selenium therapy on the dietary high quality of tomato fruit. Meals Chem. 2018;252:9–15. https://doi.org/10.1016/j.foodchem.2018.01.064.
Wu X, Liu Y, Yin S, Xiao Okay, Xiong Q, Bian S, Liang S, Hou H, Hu J, Yang J. Metabolomics revealing the response of rice (Oryza sativa L.) uncovered to polystyrene microplastics. Environ Pollut. 2020;266:115159. https://doi.org/10.1016/j.envpol.2020.115159.
Lee HS, Hwang WH, Jeong JH, Ahn SH, Baek JS, Jeong HY, Park HK, Ku BI, Yun JT, Lee GH. Evaluation of the distribution of assimilation merchandise and the traits of transcriptomes in rice by submergence throughout the ripening stage. BMC Genomics. 2019;20:1–16. https://doi.org/10.1186/s12864-018-5320-7.
Maleki S, Mærk M, Valla S, Ertesvåg H. Mutational analyses of glucose dehydrogenase and glucose-6-phosphate dehydrogenase genes in Pseudomonas fluorescens reveal their results on progress and alginate manufacturing. Appl Environ Microbiol. 2015;81(10):3349–56. https://doi.org/10.1128/AEM.03653-14.
Zhang Z, TeSlaa T, Xu X, Zeng X, Yang L, Xing G, Tesz GJ, Clasquin MF, Rabinowitz JD. Serine catabolism generates liver NADPH and helps hepatic lipogenesis. Nat Metab. 2021;3(12):1608–20. https://doi.org/10.1038/S42255-021-00487-4.
Xu J-Z, Yang H-Okay, Zhang W-G. NADPH metabolism: a survey of its theoretical traits and manipulation methods in amino acid biosynthesis. Crit Rev Biotechnol. 2018;38(7):1061–76. https://doi.org/10.1080/07388551.2018.1437387.
Tang N, Huang W, Li X, Gao X, Liu X, Wang L, Xing W. Drilling into the physiology, transcriptomics, and metabolomics to reinforce perception on Vallisneria denseserrulata responses to nanoplastics and metalloid co-stress. J Cleaner Prod. 2024;448:141653. https://doi.org/10.1016/J.JCLEPRO.2024.141653.
Liu C, Zhou G, Qin H, Guan Y, Wang T, Ni W, Xie H, Xing Y, Tian G, Lyu M. Metabolomics mixed with physiology and transcriptomics reveal key metabolic pathway responses in apple crops publicity to totally different selenium concentrations. J Hazard Mater. 2024;464:132953. https://doi.org/10.1016/J.JHAZMAT.2023.132953.
Ferrer J, Austin M, Stewart C Jr, Noel J. Construction and performance of enzymes concerned within the biosynthesis of phenylpropanoids. Plant Physiol Biochem. 2008;46(3):356–70. https://doi.org/10.1016/j.plaphy.2007.12.009.
Abdel-Lateif Okay, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D. Silencing of the chalcone synthase gene in C asuarina glauca highlights the necessary position of flavonoids throughout nodulation. New Phytol. 2013;199(4):1012–21. https://doi.org/10.1111/nph.12326.
Gąsecka M, Mleczek M, Siwulski M, Niedzielski P, Kozak L. The impact of selenium on phenolics and flavonoids in chosen edible white rot fungi. LWT-Meals Sci Technol. 2015;63(1):726–31. https://doi.org/10.1016/j.lwt.2015.03.046.
Rao S, Gou Y, Yu T, Cong X, Gui J, Zhu Z, Zhang W, Liao Y, Ye J, Cheng S. Results of selenate on Se, flavonoid, and glucosinolate in broccoli florets by mixed transcriptome and metabolome analyses. Meals Res Int. 2021;146:110463. https://doi.org/10.1016/J.FOODRES.2021.110463.
König S, Feussner Okay, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I. Soluble phenylpropanoids are concerned within the protection response of A rabidopsis towards V erticillium longisporum. New Phytol. 2014;202(3):823–37. https://doi.org/10.1111/nph.12709.
Mo Y, Nagel C, Taylor LP. Biochemical complementation of chalcone synthase mutants defines a job for flavonols in purposeful pollen. PNAS. 1992;89(15):7213–7. https://doi.org/10.1073/pnas.89.15.7213.
Rencoret J, Rosado MJ, Kim H, Timokhin VI, Gutiérrez A, Bausch F, Rosenau T, Potthast A, Ralph J, Del Río JC. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiol. 2022;188(1):208–19. https://doi.org/10.1093/PLPHYS/KIAB469.
Mahon EL, de Vries L, Jang S-Okay, Middar S, Kim H, Unda F, Ralph J, Mansfield SD. Exogenous chalcone synthase expression in creating poplar xylem incorporates naringenin into lignins. Plant Physiol. 2022;188(2):984–96. https://doi.org/10.1093/plphys/kiab499.