Castro E, Garcia AH, Zavala G, Echegoyen L. Fullerenes in biology and medication. J Mater Chem B. 2017;5(32):6523–35.
Kokubo Okay, Shirakawa S, Kobayashi N, Aoshima H, Oshima T. Facile and scalable synthesis of a extremely Hydroxylated Water-Soluble Fullerenol as a single nanoparticle. Nano Res. 2011;4(2):204–15.
Kokubo Okay, Matsubayashi Okay, Tategaki H, Takada H, Oshima T. Facile synthesis of extremely water-soluble fullerenes greater than half-covered by hydroxyl teams. ACS Nano. 2008;2(2):327–33.
Yang S, Xiong F, Chen Okay, Chang Y, Bai X, Yin W, Gu W, Wang Q, Li J, Chen G. Affect of Titanium Dioxide and Fullerenol nanoparticles on Caco-2 intestine epithelial cells. J Nanosci Nanotechnol. 2018;18(4):2387–93.
Shafiq F, Iqbal M, Raza SH, Akram NA, Ashraf M. Fullerenol [60] nano-cages for cover of crops in opposition to oxidative stress: a important assessment. J Plant Development Regul. 2023;42(3):1267–90.
Li Y, Xu T, Huang Q, Zhu L, Yan Y, Peng P, Li F-F. C60 fullerenol to stabilize and activate Ru nanoparticles for extremely environment friendly hydrogen evolution response in alkaline media. ACS Catal. 2023;13(11):7597–605.
Seke M, Zivkovic M, Stankovic A. Versatile purposes of fullerenol nanoparticles. Int J Pharm. 2024;660:124313.
Qin Y, Chen Okay, Gu W, Dong X, Lei R, Chang Y, Bai X, Xia S, Zeng L, Zhang J, et al. Small dimension fullerenol nanoparticles suppress lung metastasis of breast most cancers cell by disrupting actin dynamics. J Nanobiotechnol. 2018;16(1):54.
Živančev J, Bulut S, Kocić-Tanackov S, Jović D, Fišteš A, Antić I, Djordjevic A. The impression of fullerenol nanoparticles on the expansion of toxigenic aspergillus flavus and aflatoxins manufacturing in vitro and in corn flour. J Meals Sci 2024.
Torres VM, Srdjenovic B, Jacevic V, Simic VD, Djordjevic A, Simplício AL. Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats. Pharmacol Rep. 2010;62(4):707–18.
Çavaş T, Çinkılıç N, Vatan Ö, Yılmaz D. Results of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts. Pestic Biochem Physiol. 2014;114:1–7.
Injac R, Prijatelj M, Strukelj B. Fullerenol Nanoparticles: Toxicity and Antioxidant Exercise. In: Oxidative Stress and Nanotechnology: Strategies and Protocols. Edited by Armstrong D, Bharali DJ. Totowa, NJ: Humana Press; 2013: 75–100.
Indeglia PA, Georgieva AT, Krishna VB, Martyniuk CJ, Bonzongo J-CJ. Toxicity of functionalized fullerene and fullerene synthesis chemical compounds. Chemosphere. 2018;207:1–9.
Opinion on Fullerenes. Hydroxylated Fullerenes and hydrated types of Hydroxylated Fullerenes (nano) [https://www.health.ec.europa.eu/publications/fullerenes-hydroxylated-fullerenes-and-hydrated-forms-hydroxylated-fullerenes-nano_en]
Chen YW, Hwang KC, Yen CC, Lai YL. Fullerene derivatives shield in opposition to oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R21–26.
Yang LY, Gao JL, Gao T, Dong P, Ma L, Jiang FL, Liu Y. Toxicity of polyhydroxylated fullerene to mitochondria. J Hazard Mater. 2016;301:119–26.
Aschberger Okay, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SAK, Christensen FM. Overview of fullerene toxicity and publicity – Appraisal of a human well being danger evaluation, based mostly on open literature. Regul Toxicol Pharmacol. 2010;58(3):455–73.
Brant JA, Labille J, Robichaud CO, Wiesner M. Fullerol cluster formation in aqueous options: implications for environmental launch. J Colloid Interface Sci. 2007;314(1):281–8.
Ikeda A. Water-soluble fullerenes utilizing solubilizing brokers, and their purposes. J Incl Phenom Macrocyclic Chem. 2013;77(1):49–65.
Shi Q, Wang CL, Zhang H, Chen C, Zhang X, Chang X-L. Trophic switch and biomagnification of fullerenol nanoparticles in an aquatic meals chain. Environ Science: Nano. 2020;7(4):1240–51.
Lens M. Use of fullerenes in cosmetics. BIOT, 3(2):118–23.
Wang Z, Wang Z. Nanoparticles induced embryo-fetal toxicity. Toxicol Ind Well being. 2020;36(3):181–213.
Adams S, Stapleton PA. Nanoparticles on the maternal-fetal interface. Mol Cell Endocrinol, 578:112067.
Hong F, Zhou Y, Zhao X, Sheng L, Wang L. Maternal publicity to nanosized titanium dioxide suppresses embryonic improvement in mice. Int J Nanomed. 2017;12:6197–204.
Teng C, Jia J, Wang Z, Sharma VK, Yan B. Dimension-dependent maternal-fetal switch and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. Ecotoxicol Environ Saf. 2019;182:109439.
Ji ZQ, Solar H, Wang H, Xie Q, Liu Y, Wang Z. Biodistribution and tumor uptake of C60(OH)xin mice. J Nanopart Res. 2006;8(1):53–63.
Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. Novel dangerous results of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 1996;393(1):139–45.
Burres C, Wong R, Pedreira F, Da Silva Pimenta M, Moussa F. A regulatory compliant short-term oral toxicity research of soluble [60]fullerenes in rats. EXCLI J. 2024;23:772–86.
Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 Water suspensions in rats: few variations in Fullerene toxicity in Vivo in distinction to in Vitro profiles. Nano Lett. 2007;7(8):2399–406.
Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. Evaluation of toxicity biomarkers of Fullerene C60 nanoparticles by Confocal Fluorescent Microscopy. Bull Exp Biol Med. 2015;158(4):443–9.
Kong A, Liu T, Deng S, Xu S, Luo Y, Li J, Du Z, Wang L, Xu X, Fan X. Novel antidepressant-like properties of the fullerenol in an LPS-induced depressive mouse mannequin. Int Immunopharmacol. 2023;116:109792.
Dong R, Liu M, Huang X-X, Liu Z, Jiang D-Y, Xiao H-J, Geng J, Ren Y-H, Dai H-P. Water-Soluble C60 protects in opposition to Bleomycin-Induced Pulmonary Fibrosis in mice. Int J Nanomed. 2020;15(null):2269–76.
Lv J, He Q, Yan Z, Xie Y, Wu Y, Li A, Zhang Y, Li J, Huang Z. Inhibitory impression of prenatal publicity to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental abnormalities in mice. In: Toxics 12; 2024.
Huang Z, Xu B, Huang X, Zhang Y, Yu M, Han X, Tune L, Xia Y, Zhou Z, Wang X, et al. Metabolomics reveals the function of acetyl-l-carnitine metabolism in γ-Fe2O3 NP-induced embryonic improvement toxicity by way of mitochondria injury. Nanotoxicology. 2019;13(2):204–20.
Kuhl H. Pharmacology of estrogens and progestogens: affect of various routes of administration. Climacteric. 2005;8(sup1):3–63.
Sarkar MA, Vadlamuri V, Ghosh S, Glover DD. Expression and cyclic variability of CYP3A4 and CYP3A7 isoforms in human endometrium and cervix throughout the menstrual cycle. Drug Metab Dispos. 2003;31(1):1–6.
Zhou Y, Gu B, Brichant G, Singh JP, Yang H, Chang H, Zhao Y, Cheng C, Liu Z-W, Alderman MH, et al. The steroid hormone estriol (E3) regulates epigenetic programming of fetal mouse mind and reproductive tract. BMC Biol. 2022;20(1):93.
Sastre-Serra J, Nadal-Serrano M, Pons DG, Valle A, Garau I, García-Bonafé M, Oliver J, Roca P. The oxidative stress in breast tumors of postmenopausal girls is ERα/ERβ ratio dependent. Free Radic Biol Med. 2013;61:11–7.
Njälsson R, Norgren S. Physiological and pathological elements of GSH metabolism. Acta Paediatr. 2005;94(2):132–7.
Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST. In vivo Biology and Toxicology of fullerenes and their derivatives. Fundamental Clin Pharmacol Toxicol. 2008;103(3):197–208.
Nakagawa Y, Suzuki T, Ishii H, Nakae D, Ogata A. Cytotoxic results of hydroxylated fullerenes on remoted rat hepatocytes by way of mitochondrial dysfunction. Arch Toxicol. 2011;85(11):1429–40.
Xu JY, Han Okay, Li SX, Cheng JS, Xu GT, Li WX, Li QN. Pulmonary responses to polyhydroxylated fullerenols, C(60)(OH)(x). J Appl Toxicology: JAT. 2009;29(7):578–84.
Roursgaard M, Poulsen SS, Kepley CL, Hammer M, Nielsen GD, Larsen ST. Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung irritation in mice. Fundamental Clin Pharmacol Toxicol. 2008;103(4):386–8.
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life publicity to widespread environmental toxicants and maternal-fetal well being danger: a give attention to metabolomic biomarkers. Sci Whole Environ. 2020;739:139626.
Chang C-J, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu Okay, Kannan Okay, Yakimavets V, Tan Y, Ly V, et al. Per- and polyfluoroalkyl substance (PFAS) publicity, maternal metabolomic perturbation, and fetal progress in African American girls: a meet-in-the-middle strategy. Environ Int. 2022;158:106964.
Bityutskii NP, Yakkonen KL, Puzanskiy R, Lukina KA, Shavarda AL, Semenov KN. Fullerenol adjustments metabolite responses in a different way relying on the iron standing of cucumber vegetation. PLoS ONE. 2021;16(5):e0251396.
Xiong J-L, Ma N. Transcriptomic and metabolomic analyses reveal that Fullerol improves Drought Tolerance in Brassica napus L. In: Int J Mol Sci 23; 2022.
Li J, Lei R, Li X, Xiong F, Zhang Q, Zhou Y, Yang S, Chang Y, Chen Okay, Gu W, et al. The antihyperlipidemic results of fullerenol nanoparticles by way of adjusting the intestine microbiota in vivo. Half Fibre Toxicol. 2018;15(1):5.
Longcope C. Estriol manufacturing and metabolism in regular girls. J Steroid Biochem. 1984;20(4b):959–62.
Kuijper EA, Ket JC, Caanen MR, Lambalk CB. Reproductive hormone concentrations in being pregnant and neonates: a scientific assessment. Reprod Biomed On-line. 2013;27(1):33–63.
Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M. Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast most cancers cells. Mol Cell Endocrinol. 2010;320(1):162–70.
Zhou Y, Gu B, Brichant G, Singh JP, Yang H, Chang H, Zhao Y, Cheng C, Liu ZW, Alderman MH 3, et al. The steroid hormone estriol (E(3)) regulates epigenetic programming of fetal mouse mind and reproductive tract. BMC Biol. 2022;20(1):93.
Apply Bulletin No. 162: prenatal diagnostic testing for genetic issues. Obstet Gynecol 2016, 127(5).
Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Construction of the D2 dopamine receptor certain to the atypical antipsychotic drug risperidone. Nature. 2018;555(7695):269–73.
Feng J, Yin H, Baturuhu, Dai Y, Dai F, Xu J, Chen Z, Liu Y. Analysis progress of E3 ubiquitin ligase regulating organic habits of human placental trophoblast cells. Entrance Endocrinol. 2023;14:1124041.
Perkins MS, Louw-du Toit R, Africander D. A comparative characterization of estrogens utilized in hormone remedy by way of estrogen receptor (ER)-α and -β. J Steroid Biochem Mol Biol. 2017;174:27–39.
Escande A, Pillon A, Servant N, Cravedi JP, Larrea F, Muhn P, Nicolas JC, Cavaillès V, Balaguer P. Analysis of ligand selectivity utilizing reporter cell strains stably expressing estrogen receptor alpha or beta. Biochem Pharmacol. 2006;71(10):1459–69.
Wiegerinck MAHM, Poortman JAN, Truus DH, Thijssen JHH. In VivoUptake and subcellular distribution of tritium- labeled estrogens in Human Endometrium, Myometrium, and Vagina. J Clin Endocrinol Metabolism. 1983;56(1):76–86.
Anderson JN, Peck EJ Jr., Clark JH. Nuclear receptor-estrogen advanced: in vivo and in vitro binding of estradiol and estriol as influenced by serum albumin. J Steroid Biochem. 1974;5(2):103–7.
Lorenzo J, Horowitz M, Choi Y, Takayanagi H, Schett G. Osteoimmunology: interactions of the Immune and skeletal programs. Elsevier Science; 2015.
Ali ES, Mangold C, Peiris AN. Estriol: rising medical advantages. Menopause 2017, 24(9).
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protecting results of Estrogen on Cardiovascular Illness mediated by oxidative stress. Oxidative Med Cell Longev. 2021;2021(1):5523516.
Zhu X, Tang Z, Cong B, Du J, Wang C, Wang L, Ni X, Lu J. Estrogens improve cystathionine-γ-lyase expression and reduce irritation and oxidative stress within the myocardium of ovariectomized rats. Menopause 2013, 20(10).
Priyanka HP, Krishnan HC, Singh RV, Hima L, ThyagaRajan S. Estrogen modulates in vitro T cell responses in a concentration- and receptor-dependent method: results on intracellular molecular targets and antioxidant enzymes. Mol Immunol. 2013;56(4):328–39.
Papaconstantinou J. The function of signaling pathways of irritation and oxidative stress in Growth of Senescence and Getting old Phenotypes in Cardiovascular Illness. In: Cells vol. 8; 2019.
Li L, Hisamoto, Kim Okay, Haynes KH, Bauer MP, Sanjay A, Collinge M, Baron R, Sessa WC, Bender JR. Variant estrogen receptor–c-Src molecular interdependence and c-Src structural necessities for endothelial NO synthase activation. Proc Natl Acad Sci. 2007;104(42):16468–73.
Pooja, Sharma M, Singh Okay, Himashree G, Bhaumik G, Kumar B, Sethy NK. Estrogen receptor (ESR1 and ESR2)-mediated activation of eNOS–NO–cGMP pathway facilitates excessive altitude acclimatization. Nitric Oxide. 2020;102:12–20.
Karkossa I, Bannuscher A, Hellack B, Wohlleben W, Laloy J, Stan MS, Dinischiotu A, Wiemann M, Luch A, Haase A, et al. Nanomaterials induce totally different ranges of oxidative stress, relying on the used mannequin system: comparability of in vitro and in vivo results. Sci Whole Environ. 2021;801:149538.
Yang S, Zhang T, Ge Y, Cheng Y, Yin L, Pu Y, Chen Z, Liang G. Ferritinophagy mediated by oxidative stress-driven mitochondrial injury is concerned within the Polystyrene nanoparticles-Induced ferroptosis of Lung Damage. ACS Nano. 2023;17(24):24988–5004.
Ferreira RC, Fragoso MBT, Tenório MCS, Martins ASP, Borbely AU, Moura FA, Goulart MOF. Oliveira ACMd: biomarkers of placental redox imbalance in pregnancies with preeclampsia and consequent perinatal outcomes. Arch Biochem Biophys. 2020;691:108464.
Zygula A, Kosinski P, Wroczynski P, Makarewicz-Wujec M, Pietrzak B, Wielgos M, Giebultowicz J. Oxidative stress markers differ in two placental dysfunction pathologies: pregnancy-Induced Hypertension and Intrauterine Development Restriction. Oxidative Med Cell Longev. 2020;2020(1):1323891.
Beharier O, Kajiwara Okay, Sadovsky Y. Ferroptosis, trophoblast lipotoxic injury, and antagonistic being pregnant end result. Placenta. 2021;108:32–8.
El-Hussieny M, Mohammed EM, Zenhom NM, Refaie MM, Okasha AM, Tawab MAE. Potential function of TGF-β1, MMP-2, E-CAD, β-Catenin and antioxidants in Pathogenesis of Placenta Accreta. Fetal Pediatr Pathol. 2021;40(3):222–32.
Deng D, Xia J, Cao J, Qu L, Tian J, Qian Z, Gu Y, Gu Z. Forming extremely fluorescent near-infrared emitting PbS quantum dots in water utilizing glutathione as surface-modifying molecule. J Colloid Interface Sci. 2012;367(1):234–40.
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Guardian M. Glutathione: antioxidant properties devoted to nanotechnologies. In: Antioxidants 7; 2018.
Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising way forward for nano-antioxidant remedy in opposition to environmental pollution induced-toxicities. Biomed Pharmacother. 2018;103:1018–27.
Chhetri S, Adak NC, Samanta P, Murmu NC, Hui D, Kuila T, Lee JH. Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites. Compos Half B: Eng. 2018;143:105–12.