-0.3 C
United States of America
Monday, January 27, 2025

Latest advances of photoresponsive nanomaterials for analysis and remedy of acute kidney harm | Journal of Nanobiotechnology


  • Vanmassenhove J, Kielstein J, Jörres A, Biesen WV. Administration of sufferers prone to acute kidney harm. Lancet. 2017;389:2139–51.

    Article 
    PubMed 

    Google Scholar
     

  • Vaara ST, Bhatraju PK, Stanski NL, McMahon BA, Liu Ok, Joannidis M, Bagshaw SM. Subphenotypes in acute kidney harm: a story assessment. Crucial Care. 2022. https://doi.org/10.1186/s13054-022-04121-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abstract of advice statements. Kidney worldwide dietary supplements 2012, 2:8-12.

  • Kellum JA, Lameire N. Prognosis, analysis, and administration of acute kidney harm: a KDIGO abstract (half 1). Crucial Care. 2013;17:204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney harm. Nat Rev Dis Primers. 2021;7:52.

    Article 
    PubMed 

    Google Scholar
     

  • Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, et al. Acute kidney illness and renal restoration: consensus report of the acute illness high quality initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13:241–57.

    Article 
    PubMed 

    Google Scholar
     

  • Levey AS. Defining AKD: the spectrum of AKI, AKD, and CKD. Nephron. 2022;146:302–5.

    Article 
    PubMed 

    Google Scholar
     

  • Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, Stevens PE, Caskey FJ, Farmer CKT, Ferreiro Fuentes A, et al. Harmonizing acute and persistent kidney illness definition and classification: report of a kidney illness: bettering world outcomes (KDIGO) Consensus Convention. Kidney Int. 2021;100:516–26.

    Article 
    PubMed 

    Google Scholar
     

  • Meersch M, Weiss R, Strauß C, Albert F, Booke H, Forni L, Pittet J-F, Kellum JA, Rosner M, Mehta R, et al. Acute kidney illness past day 7 after main surgical procedure: a secondary evaluation of the EPIS-AKI trial. Intensive Care Med. 2024;50:247–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su C-C, Chen J-Y, Chen S-Y, Shiao C-C, Neyra JA, Matsuura R, Noiri E, See E, Chen Y-T, Hsu C-Ok, et al. Outcomes related to acute kidney illness: a scientific assessment and meta-analysis. eClin Med. 2023;55:101760.


    Google Scholar
     

  • Vijayan A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat Rev Nephrol. 2020;17:87–8.

    Article 
    PubMed Central 

    Google Scholar
     

  • Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, et al. Worldwide society of nephrology’s 0by25 initiative for acute kidney harm (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43.

    Article 
    PubMed 

    Google Scholar
     

  • Harrois A, Soyer B, Gauss T, Hamada S, Raux M, Duranteau J. Prevalence and threat components for acute kidney harm amongst trauma sufferers: a multicenter cohort examine. Crucial Care. 2018. https://doi.org/10.1186/s13054-018-2265-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber M, Ozrazgat-Baslanti T, Thottakkara P, Scali S, Bihorac A, Hobson C. Cardiovascular-specific mortality and kidney illness in sufferers present process vascular surgical procedure. JAMA Surg. 2016;151:441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu KD, Yang J, Tan TC, Glidden DV, Zheng S, Pravoverov L, Hsu C-Y, Go AS. Threat components for recurrent acute kidney harm in a big population-based cohort. Am J Kidney Dis. 2019;73:163–73.

    Article 
    PubMed 

    Google Scholar
     

  • Legrand M, Clark AT, Neyra JA, Ostermann M. Acute kidney harm in sufferers with burns. Nat Rev Nephrol. 2023;20:188–200.

    Article 
    PubMed 

    Google Scholar
     

  • Mehta RL, Burdmann EA, Cerda J, Feehally J, Finkelstein F, Garcia-Garcia G, Godin M, Jha V, Lameire NH, Levin NW, et al. Recognition and administration of acute kidney harm within the worldwide society of nephrology 0by25 world snapshot: a multinational cross-sectional examine. Lancet. 2016;387:2017–25.

    Article 
    PubMed 

    Google Scholar
     

  • Minami S, Nakamura S. Therapeutic potential of Beclin1 for transition from AKI to CKD: autophagy-dependent and autophagy-independent features. Kidney Int. 2022;101:13–5.

    Article 
    PubMed 

    Google Scholar
     

  • Abebe A, Kumela Ok, Belay M, Kebede B, Wobie Y. Mortality and predictors of acute kidney harm in adults: a hospital-based potential observational examine. Sci Rep. 2021;11:15672.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis Ok, Forni LG, Gomersall CD, Govil D, et al. Epidemiology of acute kidney harm in critically ailing sufferers: the multinational AKI-EPI examine. Intensive Care Med. 2015;41:1411–23.

    Article 
    PubMed 

    Google Scholar
     

  • McMahon GM, Waikar SS. Biomarkers in nephrology: core curriculum 2013. Am J Kidney Dis. 2013;62:165–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronco C, Bellomo R, Kellum JA. Acute kidney harm. Lancet. 2019;394:1949–64.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Q, Nan Y, Yang Y, Xiao Z, Liu M, Huang J, Xiang Y, Lengthy X, Zhao T, Wang X, et al. Nanodrugs alleviate acute kidney harm: manipulate RONS at kidney. Bioact Mater. 2023;22:141–67.

    PubMed 

    Google Scholar
     

  • Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R. Acute kidney harm: an rising world concern. Lancet. 2013;382:170–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lewington AJ, Cerda J, Mehta RL. Elevating consciousness of acute kidney harm: a world perspective of a silent killer. Kidney Int. 2013;84:457–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney harm: medical causes and pathogenesis. J Clin Med. 2023;12:375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159–69.

    Article 
    PubMed 

    Google Scholar
     

  • Iwakiri Y. The molecules: mechanisms of arterial vasodilatation noticed within the splanchnic and systemic circulation in portal hypertension. J Clin Gastroenterol. 2007;41(Suppl 3):S288-294.

    Article 
    PubMed 

    Google Scholar
     

  • Leithead JA, Hayes PC, Ferguson JW. Evaluation article: advances within the administration of sufferers with cirrhosis and portal hypertension-related renal dysfunction. Aliment Pharmacol Ther. 2014;39:699–711.

    Article 
    PubMed 

    Google Scholar
     

  • Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, et al. Acute renal failure in critically ailing sufferers: a multinational, multicenter examine. JAMA. 2005;294:813–8.

    Article 
    PubMed 

    Google Scholar
     

  • Arroyo V, Gines P, Gerbes AL, Dudley FJ, Gentilini P, Laffi G, Reynolds TB, Ring-Larsen H, Scholmerich J. Definition and diagnostic standards of refractory ascites and hepatorenal syndrome in cirrhosis. Int Ascites Membership Hepatol. 1996;23:164–76.


    Google Scholar
     

  • Boada-Romero E, Martinez J, Heckmann BL, Inexperienced DR. The clearance of useless cells by efferocytosis. Nat Rev Mol Cell Biol. 2020;21:398–414.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and medical analysis. Entrance Genet. 2019;10:478.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosner MH, Jhaveri KD, McMahon BA, Perazella MA. Onconephrology: the intersections between the kidney and most cancers. CA Most cancers J Clin. 2021;71:47–77.

    Article 
    PubMed 

    Google Scholar
     

  • Nang SC, Azad MAK, Velkov T, Zhou QT, Li J. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol Rev. 2021;73:679–728.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney illness: challenges and alternatives? Microcirculation. 2021;28: e12661.

    Article 
    PubMed 

    Google Scholar
     

  • Rani N, Singh S, Dhar P, Kumar R. Surgical significance of arterial segments of human kidneys: an angiography and corrosion solid examine. J Clin Diagn Res. 2014;8:1–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans RG, Ince C, Joles JA, Smith DW, Might CN, O’Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: medical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.

    Article 
    PubMed 

    Google Scholar
     

  • Vallon V, Thomson SC. The tubular speculation of nephron filtration and diabetic kidney illness. Nat Rev Nephrol. 2020;16:317–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholz H, Boivin FJ, Schmidt-Ott KM, Bachmann S, Eckardt KU, Scholl UI, Persson PB. Kidney physiology and susceptibility to acute kidney harm: implications for renoprotection. Nat Rev Nephrol. 2021;17:335–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2015;30:169–77.

    Article 
    PubMed 

    Google Scholar
     

  • Tian Z, Liang M. Renal metabolism and hypertension. Nat Commun. 2021;12:963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal illness. Nat Rev Nephrol. 2010;6:667–78.

    Article 
    PubMed 

    Google Scholar
     

  • Rosin DL, Okusa MD. Risks inside: DAMP responses to wreck and cell loss of life in kidney illness. J Am Soc Nephrol. 2011;22:416–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and loss of life. Nat Immunol. 2022;23:487–500.

    Article 
    PubMed 

    Google Scholar
     

  • Vanpouille-Field C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors – therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019;18:845–67.

    Article 
    PubMed 

    Google Scholar
     

  • Daehn IS, Duffield JS. The glomerular filtration barrier: a structural goal for novel kidney therapies. Nat Rev Drug Discov. 2021;20:770–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabrera LE, Schmotz C, Saleem MA, Lehtonen S, Vapalahti O, Vaheri A, Makela S, Mustonen J, Strandin T. Elevated heparanase ranges in urine throughout acute puumala orthohantavirus an infection are related to illness severity. Viruses. 2022;14:450.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN. TNF-mediated injury to glomerular endothelium is a crucial determinant of acute kidney harm in sepsis. Kidney Int. 2014;85:72–81.

    Article 
    PubMed 

    Google Scholar
     

  • Jia Y, Pang C, Zhao Ok, Jiang J, Zhang T, Peng J, Solar P, Qian Y. Garcinol suppresses IL-1beta-induced chondrocyte irritation and osteoarthritis through inhibition of the NF-kappaB signaling pathway. Irritation. 2019;42:1754–66.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Lin L, Tao X, Tune Y, Cui J, Wan J. The function of podocyte injury within the etiology of ischemia-reperfusion acute kidney harm and post-injury fibrosis. BMC Nephrol. 2019;20:106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu MM, Wang L, Yang D, Li C, Pang ST, Li XH, Li R, Yang B, Lian YP, Ma L, et al. Wedelolactone alleviates doxorubicin-induced irritation and oxidative stress injury of podocytes by IkappaK/IkappaB/NF-kappaB pathway. Biomed Pharmacother. 2019;117: 109088.

    Article 
    PubMed 

    Google Scholar
     

  • Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a possible goal in acute kidney harm. PeerJ. 2019;7: e8046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giam B, Kaye DM, Rajapakse NW. Function of renal oxidative stress within the pathogenesis of the cardiorenal syndrome. Coronary heart Lung Circ. 2016;25:874–80.

    Article 
    PubMed 

    Google Scholar
     

  • Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Work together. 2014;224:164–75.

    Article 
    PubMed 

    Google Scholar
     

  • Kishi S, Nagasu H, Kidokoro Ok, Kashihara N. Oxidative stress and the function of redox signalling in persistent kidney illness. Nat Rev Nephrol. 2024;20:101–19.

    Article 
    PubMed 

    Google Scholar
     

  • Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of particular reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23:499–515.

    Article 
    PubMed 

    Google Scholar
     

  • Zuk A, Bonventre JV. Acute kidney harm. Annu Rev Med. 2016;67:293–307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule restoration, AKI-CKD transition, and kidney illness development. J Am Soc Nephrol. 2015;26:1765–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plotnikov E, Ciarimboli G. Editorial: mitochondria in renal well being and illness. Entrance Physiol. 2021;12: 707175.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nath KA, Grande JP, Croatt AJ, Possible S, Hebbel RP, Enright H. Intracellular targets in heme protein-induced renal harm. Kidney Int. 1998;53:100–11.

    Article 
    PubMed 

    Google Scholar
     

  • Bhargava P, Schnellmann RG. Mitochondrial energetics within the kidney. Nat Rev Nephrol. 2017;13:629–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA. Mitochondrial pathology and glycolytic shift throughout proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol. 2016;27:3356–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimada Ok, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al. Oxidized mitochondrial DNA prompts the NLRP3 inflammasome throughout apoptosis. Immunity. 2012;36:401–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paerewijck O, Lamkanfi M. The human inflammasomes. Mol Elements Med. 2022;88: 101100.

    Article 
    PubMed 

    Google Scholar
     

  • Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an outline of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Loss of life Dis. 2020;11:776.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedoui S, Herold MJ, Strasser A. Rising connectivity of programmed cell loss of life pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95.

    Article 
    PubMed 

    Google Scholar
     

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell loss of life: suggestions of the nomenclature committee on cell loss of life 2018. Cell Loss of life Differ. 2018;25:486–541.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan J, Kalpage HA, Vaishnav A, Liu J, Lee I, Mahapatra G, Turner AA, Zurek MP, Ji Q, Moraes CT, et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci Rep. 2019;9:15815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speidel D. Transcription-independent p53 apoptosis: another path to loss of life. Tendencies Cell Biol. 2010;20:14–24.

    Article 
    PubMed 

    Google Scholar
     

  • Harrington JS, Ryter SW, Plataki M, Value DR, Choi AMK. Mitochondria in well being, illness, and growing older. Physiol Rev. 2023;103:2349–422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Lengthy H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human illnesses. Sign Transduct Goal Ther. 2023;8:304.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular equipment of regulated cell loss of life. Cell Res. 2019;29:347–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichim G, Tait SW. A destiny worse than loss of life: apoptosis as an oncogenic course of. Nat Rev Most cancers. 2016;16:539–48.

    Article 
    PubMed 

    Google Scholar
     

  • Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional methods to stay and die: cell loss of life and survival in growth, homeostasis, and illness. Annu Rev Cell Dev Biol. 2018;34:311–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Dong G, Sheng C. Focusing on necroptosis in anticancer remedy: mechanisms and modulators. Acta Pharm Sin B. 2020;10:1601–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatemikia H, Seyedabadi M, Karimi Z, Tanha Ok, Assadi M, Tanha Ok. Comparability of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal fashions of acute kidney harm. Mol Cell Biochem. 2017;434:163–9.

    Article 
    PubMed 

    Google Scholar
     

  • Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES, Seegmiller JC, DeNoia E, Strickland JS, Muldoon J, Molitoris BA. A novel technique for fast bedside measurement of GFR. J Am Soc Nephrol. 2018;29:1609–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan J, Wang Y, Zhang J, Liu X, Yu L, He Z. Quickly blocking the calcium overload/ros manufacturing suggestions loop to alleviate acute kidney harm through microenvironment-responsive BAPTA-AM/BAC co-delivery nanosystem. Small. 2023;19: e2206936.

    Article 
    PubMed 

    Google Scholar
     

  • Weisbord SD, Palevsky PM, Kaufman JS, Wu H, Androsenko M, Ferguson RE, Parikh CR, Bhatt DL, Gallagher M, Investigators PT. Distinction-associated acute kidney harm and critical adversarial outcomes following angiography. J Am Coll Cardiol. 2020;75:1311–20.

    Article 
    PubMed 

    Google Scholar
     

  • Prowle JR, Forni LG, Bell M, Chew MS, Edwards M, Grams ME, Grocott MPW, Liu KD, McIlroy D, Murray PT, et al. Postoperative acute kidney harm in grownup non-cardiac surgical procedure: joint consensus report of the acute illness high quality initiative and perioperative high quality initiative. Nat Rev Nephrol. 2021;17:605–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadim MK, Forni LG, Mehta RL, Connor MJ Jr, Liu KD, Ostermann M, Rimmele T, Zarbock A, Bell S, Bihorac A, et al. COVID-19-associated acute kidney harm: consensus report of the twenty fifth acute illness high quality initiative (ADQI) workgroup. Nat Rev Nephrol. 2020;16:747–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jentzer JC, Bihorac A, Brusca SB, Del Rio-Pertuz G, Kashani Ok, Kazory A, Kellum JA, Mao M, Moriyama B, Morrow DA, et al. Modern administration of extreme acute kidney harm and refractory cardiorenal syndrome: JACC council views. J Am Coll Cardiol. 2020;76:1084–101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zhang Y, Li Y, Chen J, Lin W. Latest advances in engineered nanomaterials for acute kidney harm theranostics. Nano Res. 2020;14:920–33.

    Article 

    Google Scholar
     

  • Messerer DAC, Halbgebauer R, Nilsson B, Pavenstadt H, Radermacher P, Huber-Lang M. Immunopathophysiology of trauma-related acute kidney harm. Nat Rev Nephrol. 2021;17:91–111.

    Article 
    PubMed 

    Google Scholar
     

  • Dixit M, Doan T, Kirschner R, Dixit N. Important acute kidney harm attributable to non-steroidal anti-inflammatory medicine: inpatient setting. Prescription drugs. 2010;3:1279–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bukowski RM. Amifostine (Ethyol): dosing, administration and affected person administration tips. Eur J Most cancers. 1996;32A(Suppl 4):S46-49.

    Article 

    Google Scholar
     

  • Rushworth GF, Megson IL. Present and potential therapeutic makes use of for N-acetylcysteine: the necessity for conversion to intracellular glutathione for antioxidant advantages. Pharmacol Ther. 2014;141:150–9.

    Article 
    PubMed 

    Google Scholar
     

  • Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: The important thing components for the creation of environment friendly nanotherapeutics. J Management Launch. 2018;270:260–7.

    Article 
    PubMed 

    Google Scholar
     

  • Choi HS, Liu W, Liu F, Nasr Ok, Misra P, Bawendi MG, Frangioni JV. Design concerns for tumour-targeted nanoparticles. Nat Nanotechnol. 2010;5:42–7.

    Article 
    PubMed 

    Google Scholar
     

  • Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat Nanotechnol. 2017;12:1096–102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua S, Wu SY. Editorial: advances and challenges in nanomedicine. Entrance Pharmacol. 2018;9:1397.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic nanocoatings as intervention in opposition to biofilm-associated bacterial infections. Nanomaterials. 2021;11:1046.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal illness: present standing and future functions. Nat Rev Nephrol. 2016;12:738–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano primarily based drug supply methods: latest developments and future prospects. J Nanobiotechnology. 2018;16:71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams RM, Shah J, Tian HS, Chen X, Geissmann F, Jaimes EA, Heller DA. Selective nanoparticle focusing on of the renal tubules. Hypertension. 2018;71:87–94.

    Article 
    PubMed 

    Google Scholar
     

  • Han SJ, Williams RM, D’Agati V, Jaimes EA, Heller DA, Lee HT. Selective nanoparticle-mediated focusing on of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney harm. Kidney Int. 2020;98:76–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang D, Ge Z, Im HJ, England CG, Ni D, Hou J, Zhang L, Kutyreff CJ, Yan Y, Liu Y, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney harm. Nat Biomed Eng. 2018;2:865–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L. Treating acute kidney harm with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20:1447–54.

    Article 
    PubMed 

    Google Scholar
     

  • Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova Ok, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du B, Yu M, Zheng J. Transport and interactions of nanoparticles within the kidneys. Nat Rev Mater. 2018;3:358–74.

    Article 

    Google Scholar
     

  • Miner JH. The glomerular basement membrane. Exp Cell Res. 2012;318:973–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Wang J, Jiang Ok, Chung EJ. Bettering kidney focusing on: The affect of nanoparticle physicochemical properties on kidney interactions. J Management Launch. 2021;334:127–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a brand new frontier of bionanotechnology. Mater As we speak. 2013;16:477–86.

    Article 

    Google Scholar
     

  • Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY, Kariapper MS, El-Jawahri A, Llanes M, Bolton B, et al. Important impact of dimension on the in vivo biodistribution of gold composite nanodevices in mouse tumor fashions. Nanomedicine. 2007;3:281–96.

    Article 
    PubMed 

    Google Scholar
     

  • Dolman ME, Harmsen S, Storm G, Hennink WE, Kok RJ. Drug focusing on to the kidney: advances within the energetic focusing on of therapeutics to proximal tubular cells. Adv Drug Deliv Rev. 2010;62:1344–57.

    Article 
    PubMed 

    Google Scholar
     

  • Gu X-R, Liu Ok, Deng Y-X, Xiang B-X, Zhou L-Y, Yin W-J, Huang J-X, Meng Y-C, Li D-Ok, Que R-M, et al. A renal-targeted gene supply system derived from spermidine for arginase-2 silencing and synergistic attenuation of drug-induced acute kidney harm. Chem Eng J. 2024;486:150125.

    Article 

    Google Scholar
     

  • Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted sialic acid-PEG-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney harm. Theranostics. 2017;7:2204–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding C, Wang B, Zheng J, Zhang M, Li Y, Shen HH, Guo Y, Zheng B, Tian P, Ding X, Xue W. Neutrophil membrane-inspired nanorobots act as antioxidants ameliorate ischemia reperfusion-induced acute kidney harm. ACS Appl Mater Interfaces. 2023;15:40292–303.

    Article 
    PubMed 

    Google Scholar
     

  • Yao S, Wu D, Hu X, Chen Y, Fan W, Mou X, Cai Y, Yang X. Platelet membrane-coated bio-nanoparticles of indocyanine inexperienced/elamipretide for NIR analysis and antioxidant remedy in acute kidney harm. Acta Biomater. 2024;173:482–94.

    Article 
    PubMed 

    Google Scholar
     

  • Shen Y, Yang F, Wu F, Zhang M, Deng B, Wu Z, Li J, Shen Y, Wang L, Ding F, Liu J. STING antagonist-loaded renal tubule epithelial cell-mimicking nanoparticles ameliorate acute kidney harm by orchestrating innate and adaptive immunity. Nano As we speak. 2024;55:102209.

    Article 

    Google Scholar
     

  • Zhao S, Tian R, Wu J, Liu S, Wang Y, Wen M, Shang Y, Liu Q, Li Y, Guo Y, et al. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nat Commun. 2021;12:358.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Wei L, Zhang Y, Wu M. Tetrahedral DNA nanostructures inhibit ferroptosis and apoptosis in Cisplatin-induced renal harm. ACS Appl Bio Mater. 2021;4:5026–32.

    Article 
    PubMed 

    Google Scholar
     

  • Li W, Wang C, Lv H, Wang Z, Zhao M, Liu S, Gou L, Zhou Y, Li J, Zhang J, et al. A DNA nanoraft-based cytokine supply platform for alleviation of acute kidney harm. ACS Nano. 2021;15:18237–49.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Fan R, Zou B, Yan J, Shi Q, Guo G. Roles of MXenes in biomedical functions: latest developments and prospects. J Nanobiotechnology. 2023;21:73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke Ok, Yang MB, Su BH, Yang W. Redox-mediated synthetic non-enzymatic antioxidant MXene Nanoplatforms for acute kidney harm alleviation. Adv Sci. 2021;8: e2101498.

    Article 

    Google Scholar
     

  • Deng L, Xiao M, Wu A, He D, Huang S, Deng T, Xiao J, Chen X, Peng Y, Cao Ok. Se/Albumin nanoparticles for inhibition of ferroptosis in tubular epithelial cells throughout acute kidney harm. ACS Appl Nano Mater. 2022;5:227–36.

    Article 

    Google Scholar
     

  • Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, Xing C, Li Z, Dong B, et al. Novel idea of the good NIR-light-controlled drug launch of black phosphorus nanostructure for most cancers remedy. Proc Natl Acad Sci USA. 2018;115:501–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–7.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou W, Cui H, Ying L, Yu XF. Enhanced cytosolic supply and launch of CRISPR/Cas9 by black phosphorus nanosheets for genome enhancing. Angew Chem Int Ed Engl. 2018;57:10268–72.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for environment friendly singlet oxygen technology. J Am Chem Soc. 2015;137:11376–82.

    Article 
    PubMed 

    Google Scholar
     

  • Ethordevic L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and vitality functions. Nat Nanotechnol. 2022;17:112–30.

    Article 

    Google Scholar
     

  • Wang H, Liu X, Yan X, Fan J, Li D, Ren J, Qu X. A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for bolstered sonodynamic remedy. Chem Sci. 2022;13:6704–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Yu D, Fang J, Zhou Y, Li D, Liu Z, Ren J, Qu X. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney harm remedy. Chem Sci. 2020;11:12721–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Z, Liu X, Li P, Wang H, Zhang Y, Liu M, Ren J. Renal clearable quantum dot-drug conjugates modulate labile iron species and scavenge free radicals for attenuating chemotherapeutic drug-induced acute kidney harm. ACS Appl Mater Interfaces. 2023;15:21854–65.

    Article 
    PubMed 

    Google Scholar
     

  • Kang T, Kim YG, Kim D, Hyeon T. Inorganic nanoparticles with enzyme-mimetic actions for biomedical functions. Coord Chem Rev. 2020;403:213092.

    Article 

    Google Scholar
     

  • Zandieh M, Liu J. Nanozymes: definition, exercise, and mechanisms. Adv Mater. 2024;36: e2211041.

    Article 
    PubMed 

    Google Scholar
     

  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile uncommon earth nanomaterial for organic functions. NPG Asia Supplies. 2014;6:e90–e90.

    Article 

    Google Scholar
     

  • Yang Y, Mao Z, Huang W, Liu L, Li J, Li J, Wu Q. Redox enzyme-mimicking actions of CeO(2) nanostructures: intrinsic affect of uncovered aspects. Sci Rep. 2016;6:35344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heckert EG, Karakoti AS, Seal S, Self WT. The function of cerium redox state within the SOD mimetic exercise of nanoceria. Biomaterials. 2008;29:2705–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Wang B, Li J, Niu B, Cao L, Liang XJ, Zhang J, Jin Y, Yang X. Catalytic tunable black phosphorus/ceria nanozyme: a flexible oxidation cycle accelerator for assuaging cisplatin-induced acute kidney harm. Adv Healthc Mater. 2023;12: e2301691.

    Article 
    PubMed 

    Google Scholar
     

  • Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney harm in mice. Nat Commun. 2018;9:5421.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11:2788.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan J, Wu T, Chen L, Chen X, Zhang C, Wang Y, Li H, Guo J, Jiang W. A bimetallic nanozyme coordinated with quercetin for environment friendly radical scavenging and remedy of acute kidney harm. Nanoscale. 2024;16:2955–65.

    Article 
    PubMed 

    Google Scholar
     

  • Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive oxygen species- and cell-free DNA-scavenging Mn(3)O(4) nanozymes for acute kidney harm remedy. ACS Appl Mater Interfaces. 2022;14:50649–63.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Huang X, Zhang F, Luo X, Yu W, Li C, Qiu Z, Liu Y, Xu Z. Steel-free multifunctional nanozymes mimicking endogenous antioxidant system for acute kidney harm alleviation. Chem Eng J. 2023;477:147048.

    Article 

    Google Scholar
     

  • Zhao X, Solar J, Dong J, Guo C, Cai W, Han J, Shen H, Lv S, Zhang R. An auto-photoacoustic melanin-based drug supply nano-platform for self-monitoring of acute kidney harm remedy through a triple-collaborative technique. Acta Biomater. 2022;147:327–41.

    Article 
    PubMed 

    Google Scholar
     

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.

    Article 
    PubMed 

    Google Scholar
     

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Proof of RNAi in people from systemically administered siRNA through focused nanoparticles. Nature. 2010;464:1067–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castanotto D, Rossi JJ. The guarantees and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457:426–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanasty R, Dorkin JR, Vegas A, Anderson D. Supply supplies for siRNA therapeutics. Nat Mater. 2013;12:967–77.

    Article 
    PubMed 

    Google Scholar
     

  • Alidori S, Akhavein N, Thorek DL, Behling Ok, Romin Y, Queen D, Beattie BJ, Manova-Todorova Ok, Bergkvist M, Scheinberg DA, McDevitt MR. Focused fibrillar nanocarbon RNAi remedy of acute kidney harm. Sci Transl Med. 2016;8:331ra339.

    Article 

    Google Scholar
     

  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Most cancers. 2006;6:857–66.

    Article 
    PubMed 

    Google Scholar
     

  • Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in most cancers. Sci Sign. 2015;8:re3.

    Article 
    PubMed 

    Google Scholar
     

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread adjustments in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang S, Solar H, Kong W, Zhang B. Useful function of microRNA-500a-3P-loaded liposomes within the remedy of cisplatin-induced AKI. IET Nanobiotechnol. 2020;14:465–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Zhao M, Zhou Y, Li L, Wang C, Yuan Y, Li L, Liao G, Bresette W, Chen Y, et al. A self-assembling peptide hydrogel-based drug co-delivery platform to enhance tissue restore after ischemia-reperfusion harm. Acta Biomater. 2020;103:102–14.

    Article 
    PubMed 

    Google Scholar
     

  • Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Solar M, You Y, et al. ROS-responsive chitosan-SS31 prodrug for AKI remedy through fast distribution within the kidney and long-term retention within the renal tubule. Sci Adv. 2020. https://doi.org/10.1126/sciadv.abb7422.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar J, Zhao X, Shen H, Dong J, Rong S, Cai W, Zhang R. CD44-targeted melanin-based nanoplatform for alleviation of ischemia/reperfusion-induced acute kidney harm. J Management Launch. 2024;368:1–14.

    Article 
    PubMed 

    Google Scholar
     

  • Nie Y, Wang L, Liu S, Dai C, Cui T, Lei Y, You X, Wang X, Wu J, Zheng Z. Pure ursolic acid primarily based self-therapeutic polymer as nanocarrier to ship pure resveratrol for pure remedy of acute kidney harm. J Nanobiotechnology. 2023;21:484.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Wang G, Wang T, Li C, Zhang X, Li J, Wang Y, Liu N, Chen J, Su X. PEGylated gambogic acid nanoparticles allow environment friendly renal-targeted remedy of acute kidney harm. Nano Lett. 2023;23:5641–7.

    Article 
    PubMed 

    Google Scholar
     

  • Smith AM, Mancini MC, Nie S. Second window for in vivo imaging. Nat Nanotechnol. 2009;4:710–1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan L, Gu Q-S, Jiang W-L, Tan M, Tan Z-Ok, Mao G-J, Xu F, Li C-Y. Close to-infrared fluorescent probe with massive stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal Chem. 2022;94:5514–20.

    Article 
    PubMed 

    Google Scholar
     

  • Ma X, Huang Y, Abedi SAA, Kim H, Davin TTB, Liu X, Yang W-C, Solar Y, Liu SH, Yin J, et al. Rational design and software of an indolium-derived heptamethine cyanine with record-long second near-infrared emission. CCS Chemistry. 2022;4:1961–76.

    Article 

    Google Scholar
     

  • Liu H, Li C, Qian Y, Hu L, Fang J, Tong W, Nie R, Chen Q, Wang H. Magnetic-induced graphene quantum dots for imaging-guided photothermal remedy within the second near-infrared window. Biomaterials. 2020;232: 119700.

    Article 
    PubMed 

    Google Scholar
     

  • Geng B, Shen W, Fang F, Qin H, Li P, Wang X, Li X, Pan D, Shen L. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion within the NIR-II window with excessive effectivity. Carbon. 2020;162:220–33.

    Article 

    Google Scholar
     

  • Gao P, Hui H, Guo C, Liu Y, Su Y, Huang X, Guo Ok, Shang W, Jiang J, Tian J. Renal clearing carbon dots-based near-infrared fluorescent super-small nanoprobe for renal imaging. Carbon. 2023;201:805–14.

    Article 

    Google Scholar
     

  • Li J, Fu C, Feng B, Liu Q, Gu J, Khan MN, Solar L, Wu H, Wu H. Polyacrylic acid-coated selenium-doped carbon dots inhibit ferroptosis to alleviate chemotherapy-associated acute kidney harm. Adv Sci. 2024;11: e2400527.

    Article 

    Google Scholar
     

  • Geng B, Shen W, Li P, Fang F, Qin H, Li XK, Pan D, Shen L. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic most cancers remedy within the NIR-II window. ACS Appl Mater Interfaces. 2019;11:44949–60.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang W, Shen Z, Wu Y, Zhang W, Zhang T, Yu BY, Zheng X, Tian J. Renal-clearable and biodegradable black phosphorus quantum dots for photoacoustic imaging of kidney dysfunction. Anal Chim Acta. 2022;1204: 339737.

    Article 
    PubMed 

    Google Scholar
     

  • Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, et al. Multicolor spectral karyotyping of human chromosomes. Science (New York, NY). 1996;273:494–7.

    Article 

    Google Scholar
     

  • Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS. Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res. 2014;47:3481–93.

    Article 
    PubMed 

    Google Scholar
     

  • Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A hemicyanine-assembled upconversion nanosystem for nir-excited visualization of carbon monoxide bio-signaling In Vivo. Small. 2022;18: e2202263.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu H, Chen Y, Yan F-J, Chen J, Tao X-F, Ling J, Yang B, He Q-J, Mao Z-W. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor remedy. Acta Biomater. 2017;50:534–45.

    Article 
    PubMed 

    Google Scholar
     

  • Ding X, Liow CH, Zhang M, Huang R, Li C, Shen H, Liu M, Zou Y, Gao N, Zhang Z, et al. Floor plasmon resonance enhanced mild absorption and photothermal remedy within the second near-infrared window. J Am Chem Soc. 2014;136:15684–93.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao Z, He Ok, Liu B, Nie W, Luo X, Liu J. Intrarenal pH-responsive self-assembly of luminescent gold nanoparticles for analysis of early kidney harm. Angewandte Chem Int Edn. 2024;63:e202406016.

    Article 

    Google Scholar
     

  • Wang Y, Yang F, Zhang HX, Zi XY, Pan XH, Chen F, Luo WD, Li JX, Zhu HY, Hu YP. Cuprous oxide nanoparticles inhibit the expansion and metastasis of melanoma by focusing on mitochondria. Cell Loss of life Dis. 2013;4:e783–e783.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hold Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic performance for point-of-caring sensing, bio-imaging and medical remedy. Chem Soc Rev. 2024;53:2932–71.

    Article 
    PubMed 

    Google Scholar
     

  • Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and learn how to overcome it. Nat Nanotechnol. 2018;13:65–71.

    Article 
    PubMed 

    Google Scholar
     

  • Ding M, Zhang Y, Li X, Li Q, Xiu W, He A, Dai Z, Dong H, Shan J, Mou Y. Simultaneous biofilm disruption, bacterial killing, and irritation elimination for wound remedy utilizing silver embellished polydopamine nanoplatform. Small. 2024;10:e2400927.

    Article 

    Google Scholar
     

  • Montaseri H, Kruger CA, Abrahamse H. Latest advances in porphyrin-based inorganic nanoparticles for most cancers remedy. Int J Mol Sci. 2020;21:3358.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pucelik B, Sułek A, Drozd A, Stochel G, Pereira MM, Pinto SMA, Arnaut LG, Dąbrowski JM. Enhanced mobile uptake and photodynamic impact with amphiphilic fluorinated porphyrins: the function of sulfoester teams and the character of reactive oxygen species. Int J Mol Sci. 2020;21:2786.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin CS, Cui L, Wang F, Chen J, Zheng G. Focusing on-triggered porphysome nanostructure disruption for activatable photodynamic remedy. Adv Healthcare Mater. 2014;3:1240–9.

    Article 

    Google Scholar
     

  • Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen Ok, Li S, Narita A. A nanographene-porphyrin hybrid for near-infrared-Ii phototheranostics. Adv Sci. 2024;11:e2309131.

    Article 

    Google Scholar
     

  • Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic remedy. J Enzyme Inhib Med Chem. 2020;35:1080–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y-Q, Yue Y-X, Cao H-M, Geng W-C, Wang L-X, Hu X-Y, Li H-B, Bian Q, Kong X-L, Liu J-F, et al. Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for focused kidney harm imaging and remedy. Journal of Nanobiotechnology. 2021;19:451.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Rao J, Pu Ok. Latest progress on semiconducting polymer nanoparticles for molecular imaging and most cancers phototherapy. Biomaterials. 2018;155:217–35.

    Article 
    PubMed 

    Google Scholar
     

  • A DFT/TDDFT interpretation of the bottom and excited states of porphyrin and porphyrazine complexes. Coord Chem Rev, 230: 5–27.

  • Korzdorfer T, Bredas JL. Natural digital supplies: latest advances within the DFT description of the bottom and excited states utilizing tuned range-separated hybrid functionals. Acc Chem Res. 2014;47:3284–91.

    Article 
    PubMed 

    Google Scholar
     

  • Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Swijnenburg RJ. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgical procedure. Surg Endosc. 2014;28:1076–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Ding Q, Li Y, Zeng X, Liu Y, Lu S, Zhou H, Wang X, Wu J, Meng X, et al. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem Commun. 2020;56:3289–92.

    Article 

    Google Scholar
     

  • Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew Chem Int Ed Engl. 2020;59:3691–8.

    Article 
    PubMed 

    Google Scholar
     

  • Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human medical trial in breast most cancers sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tummers QR, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJ, Vahrmeijer AL. Intraoperative steering in parathyroid surgical procedure utilizing near-infrared fluorescence imaging and low-dose methylene blue. Surgical procedure. 2015;158:1323–30.

    Article 
    PubMed 

    Google Scholar
     

  • Verbeek FP, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Intraoperative close to infrared fluorescence guided identification of the ureters utilizing low dose methylene blue: a primary in human expertise. J Urol. 2013;190:574–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka E, Chen FY, Flaumenhaft R, Graham GJ, Laurence RG, Frangioni JV. Actual-time evaluation of cardiac perfusion, coronary angiography, and acute intravascular thrombi utilizing dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2009;138:133–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbeek FP, Tummers QR, Rietbergen DD, Peters AA, Schaafsma BE, van de Velde CJ, Frangioni JV, van Leeuwen FW, Gaarenstroom KN, Vahrmeijer AL. Sentinel lymph node biopsy in vulvar most cancers utilizing mixed radioactive and fluorescence steering. Int J Gynecol Most cancers. 2015;25:1086–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussain T, Nguyen QT. Molecular imaging for most cancers analysis and surgical procedure. Adv Drug Deliv Rev. 2014;66:90–100.

    Article 
    PubMed 

    Google Scholar
     

  • He X, Gao J, Gambhir SS, Cheng Z. Close to-infrared fluorescent nanoprobes for most cancers molecular imaging: standing and challenges. Tendencies Mol Med. 2010;16:574–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer E, Harlaar NJ, Taruttis A, Nagengast WB, Rosenthal EL, Ntziachristos V, van Dam GM. Optical improvements in surgical procedure. Br J Surg. 2015;102:e56-72.

    Article 
    PubMed 

    Google Scholar
     

  • Wang F, Wan H, Ma Z, Zhong Y, Solar Q, Tian Y, Qu L, Du H, Zhang M, Li L, et al. Mild-sheet microscopy within the near-infrared II window. Nat Strategies. 2019;16:545–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang X, Bardhan NM, Qi J, Gu L, Eze NA, Lin CW, Kataria S, Hammond PT, Belcher AM. Deep-tissue optical imaging of close to cellular-sized options. Sci Rep. 2019;9:3873.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Yu Y, Wu Y, Gao S, Hu L, Jian C, Qi B, Yu A. Dynamically monitoring lymphatic and vascular methods in physiological and pathological situations of a swine mannequin through a conveyable NIR-II imaging system with ICG. Int J Med Sci. 2022;19:1864–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Solar X, Shi X, Li C, et al. First-in-human liver-tumour surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat Biomed Eng. 2020;4:259–71.

    Article 
    PubMed 

    Google Scholar
     

  • Cai Z, Zhu L, Wang M, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsher Ok, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4:773–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging utilizing near-infrared II fluorescence. Nat Med. 2012;18:1841–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. In vivo fluorescence imaging with Ag2S quantum dots within the second near-infrared area. Angew Chem Int Ed Engl. 2012;51:9818–21.

    Article 
    PubMed 

    Google Scholar
     

  • Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017. https://doi.org/10.1038/s41551-017-0056.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS, Lingg JGP, Tsrunchev PT, Nix MN, Ruehle B, Sanders C, et al. Focused multicolor in vivo imaging over 1000 nm enabled by nonamethine cyanines. Nat Strategies. 2022;19:353–8.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Fan Y, Li D, Solar C, Lei Z, Lu L, Wang T, Zhang F. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically accepted near-infrared dye indocyanine inexperienced. Proc Natl Acad Sci USA. 2018;115:4465–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliinyk OS, Ma C, Pletnev S, Baloban M, Taboada C, Sheng H, Yao J, Verkhusha VV. Deep-tissue SWIR imaging utilizing rationally designed small red-shifted near-infrared fluorescent protein. Nat Strategies. 2023;20:70–4.

    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Feng Z, Fan X, Solar J, Geng W, Wu T, Sheng J, Qian J, Xu Z. Lengthy-term monitoring of intravital organic processes utilizing fluorescent protein-assisted NIR-II imaging. Nat Commun. 2022;13:6643.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, Zhao X, Li J, Du H, Zhang M, et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 2019;37:1322–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Li X, Zhou L, Zhang F. Epitaxial seeded progress of rare-earth nanocrystals with environment friendly 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl. 2014;53:12086–90.

    Article 
    PubMed 

    Google Scholar
     

  • Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring by second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:14702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baghdasaryan A, Wang F, Ren F, Ma Z, Li J, Zhou X, Grigoryan L, Xu C, Dai H. Phosphorylcholine-conjugated gold-molecular clusters enhance sign for Lymph Node NIR-II fluorescence imaging in preclinical most cancers fashions. Nat Commun. 2022;13:5613.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma H, Zhang X, Liu L, Huang Y, Solar S, Chen Ok, Xin Q, Liu P, Yan Y, Wang Y, et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute irritation inhibition. Sci Adv. 2023;9:eadh7828.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji A, Lou H, Qu C, Lu W, Hao Y, Li J, Wu Y, Chang T, Chen H, Cheng Z. Acceptor engineering for NIR-II dyes with excessive photochemical and biomedical efficiency. Nat Commun. 2022;13:3815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antaris AL, Chen H, Cheng Ok, Solar Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu S, Yang Q, Antaris AL, Yue J, Ma Z, Wang H, Huang W, Wan H, Wang J, Diao S, et al. Molecular imaging of organic methods with a clickable dye within the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci USA. 2017;114:962–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, Ge S, Bai L, Ke C, Liu Y, et al. A genetic engineering technique for enhancing near-infrared-II fluorophores. Nat Commun. 2022;13:2853.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Zhu C, Solar F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Technique towards potentiated NIR-II fluorescence bioimaging of molecular fluorophores. Adv Mater. 2024;36: e2304848.

    Article 
    PubMed 

    Google Scholar
     

  • Chen W, Cheng CA, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, Zink JI, Sletten EM. Shortwave infrared imaging with J-aggregates stabilized in hole mesoporous silica nanoparticles. J Am Chem Soc. 2019;141:12475–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Y, Dai H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic methods. Nano Res. 2020;13:1281–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Jiang X, Xiang H, Wang N, Zhang Y, Yao X, Wang P, Pan H, Yu L, Cheng Y, et al. An inherently kidney-targeting near-infrared fluorophore primarily based probe for early detection of acute kidney harm. Biosens Bioelectron. 2021;172: 112756.

    Article 
    PubMed 

    Google Scholar
     

  • Yang W, Liu R, Yin X, Jin Y, Wang L, Dong M, Wu Ok, Yan Z, Fan G, Tang Z, et al. Peroxynitrite activated near-infrared fluorescent probe for evaluating ferroptosis-mediated acute kidney harm. Sensors Actuators B Chem. 2023;393:134180.

    Article 

    Google Scholar
     

  • Ding Y, Zhong R, Jiang R, Yang X, He L, Yuan L, Cheng D. Redox-reversible near-infrared fluorescent probe for imaging of acute kidney oxidative harm and treatment. ACS Sens. 2023;8:914–22.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Jiang L, Yuan W, Liu Z, Liu D, Wei P, Zhang X, Yi T. Twin-Modality detection of early-stage drug-induced acute kidney harm by an activatable probe. ACS Sens. 2020;5:2457–66.

    Article 
    PubMed 

    Google Scholar
     

  • Ding F, Zhang S, Liu S, Feng J, Li J, Li Q, Ge Z, Zuo X, Fan C, Xia Q. Molecular visualization of early-stage acute kidney harm with a DNA framework nanodevice. Adv Sci. 2022;9: e2105947.

    Article 

    Google Scholar
     

  • Weng J, Wang Y, Zhang Y, Ye D. An activatable near-infrared fluorescence probe for in vivo imaging of acute kidney harm by focusing on phosphatidylserine and caspase-3. J Am Chem Soc. 2021;143:18294–304.

    Article 
    PubMed 

    Google Scholar
     

  • Tian Z, Yan F, Tian X, Feng L, Cui J, Deng S, Zhang B, Xie T, Huang S, Ma X. A NIR fluorescent probe for Vanin-1 and its functions in imaging, kidney harm analysis, and the event of inhibitor. Acta Pharm Sin B. 2022;12:316–25.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang S, Hong J, Gong S, Li Q, Feng G. Kidney-targeted near-infrared fluorescence probe reveals that SO(2) is a biomarker for cisplatin-induced acute kidney harm. Anal Chem. 2023;95:12948–55.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Yang N, Ma Q, Li S, Tong S, Luo J, Tune X, Yang H. Tailoring oxidation responsiveness of gold nanoclusters through ligand engineering for imaging acute kidney harm. Anal Chem. 2023;95:16153–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao Z, Chen H, He Ok, Lin J, Cai W, Solar Y, Liu J. Glutathione-activated emission of ultrasmall gold nanoparticles within the second near-infrared window for imaging of early kidney harm. Anal Chem. 2023;95:5061–8.

    Article 
    PubMed 

    Google Scholar
     

  • Yi S, Hu Q, Chi Y, Qu H, Xiao Y. Shiny and renal-clearable au nanoclusters with NIR-II excitation and emission for high-resolution fluorescence imaging of kidney dysfunction. ACS Supplies Letters. 2023;5:2164–73.

    Article 

    Google Scholar
     

  • Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew Chem Int Ed Engl. 2021;60:15809–15.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng C, Tan Y, Solar L, Lengthy Y, Zeng F, Wu S. Renal-clearable probe with water solubility and photostability for biomarker-activatable detection of acute kidney accidents through NIR-II fluorescence and optoacoustic imaging. ACS Appl Mater Interfaces. 2023;15:17664–74.

    Article 
    PubMed 

    Google Scholar
     

  • Tan J, Yin Ok, Ouyang Z, Wang R, Pan H, Wang Z, Zhao C, Guo W, Gu X. Actual-time monitoring renal impairment attributable to drug-induced AKI and diabetes-caused CKD utilizing an NAG-activatable NIR-II nanoprobe. Anal Chem. 2021;93:16158–65.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu D, Zhang H, Li J, Qian X, Guo M, Jiang G, Gu Y. Liposome-mediated biomimetic supply of PLK3 inhibitor with NIR II-triggered launch prevents renal ischemia-reperfusion harm. Adv Ther. 2022;5:2200087.

    Article 

    Google Scholar
     

  • He Ok, Ding YF, Zhao Z, Liu B, Nie W, Luo X, Yu HZ, Liu J, Wang R. Cucurbit[7]uril-mediated organ-specific supply of ultrasmall NIR-II luminescent gold nanocarriers for remedy of acute kidney harm. Adv Func Mater. 2023;34:2309949.

    Article 

    Google Scholar
     

  • Huang Y, Chen Ok, Liu L, Ma H, Zhang X, Tan Ok, Li Y, Liu Y, Liu C, Wang H, Zhang XD. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney harm. Small. 2023;19: e2300145.

    Article 
    PubMed 

    Google Scholar
     

  • Ge X, Su L, Yang L, Fu Q, Li Q, Zhang X, Liao N, Yang H, Tune J. NIR-II fluorescent biodegradable nanoprobes for exact acute kidney/liver harm imaging and remedy. Anal Chem. 2021;93:13893–903.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Y, Zhang Q, Chen R, Cao H, Tang J, Wu Y, Lu X, Chu B, Tune B, Wang H, He Y. NIR-II photoacoustic-active DNA origami nanoantenna for early analysis and good remedy of acute kidney harm. J Am Chem Soc. 2022;144:23522–33.

    Article 
    PubMed 

    Google Scholar
     

  • Gao H, Solar L, Li J, Zhou Q, Xu H, Ma XN, Li R, Yu BY, Tian J. Illumination of hydroxyl radical in kidney harm and high-throughput screening of pure protectants utilizing a fluorescent/photoacoustic probe. Adv Sci. 2023;10: e2303926.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles