Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough therapies for accelerated wound therapeutic. Sci Adv. 2023;9:eade7007.
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular Pathophysiology of Continual wounds: present state and future instructions. Chilly Spring Harb Perspect Biol. 2023;15:a041243.
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound restore and regeneration. Nature. 2008;453:314–21.
Peña OA, Martin P. Mobile and molecular mechanisms of pores and skin wound therapeutic. Nat Rev Mol Cell Biol. 2024;25:599–616.
Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, et al. Minimal info for research of extracellular vesicles (MISEV2023): from primary to superior approaches. J Extracell Vesicles. 2024;13:e12404.
Flemming JP, Wermuth PJ, Mahoney MG. Extracellular vesicles within the pores and skin microenvironment: rising roles as biomarkers and therapeutic instruments in Dermatologic Well being and Illness. J Make investments Dermatol. 2024;144:225–33.
Yang J, Zhang X, Wang G, Ma S, Yu Y, Liao C, Wang Z, Liang C, Li M, Tian W, Liao L. ApoSEVs-Mediated modulation of versatile goal cells promotes Diabetic Wound Therapeutic: unveiling a Promising Technique. Int J Nanomed. 2023;18:6955–77.
Shen C, Tao C, Zhang A, Li X, Guo Y, Wei H, Yin Q, Li Q, Jin P. Exosomal microRNA-93-3p secreted by bone marrow mesenchymal stem cells downregulates apoptotic peptidase activating issue 1 to advertise wound therapeutic. Bioengineered. 2022;13:27–37.
Music X, Chen Y, Chen X, Zhao X, Zou Y, Li L, Zhou X, Li M, Zhang D, Ye G, et al. Exosomes from tannic acid-stimulated macrophages speed up wound therapeutic by means of mir-221-3p mediated fibroblasts migration by concentrating on CDKN1b. Int J Biol Macromol. 2023;244:125088.
Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, Zhang C, Li Q, Wang Y. Exosomes Derived from Human endothelial progenitor cells speed up cutaneous Wound Therapeutic by selling Angiogenesis by means of Erk1/2 signaling. Int J Biol Sci. 2016;12:1472–87.
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. Composition and capabilities of bacterial membrane vesicles. Nat Rev Microbiol. 2023;21:415–30.
Zheng T, Hao H, Liu Q, Li J, Yao Y, Liu Y, Zhang T, Zhang Z, Yi H. Impact of Extracelluar vesicles derived from Akkermansia muciniphila on intestinal barrier in colitis mice. Vitamins. 2023;15:4722.
Han F, Wang Okay, Shen Okay, Wang J, Han S, Hu D, Wu G. Extracellular vesicles from Lactobacillus druckerii inhibit hypertrophic scar fibrosis. J Nanobiotechnol. 2023;21:113.
Han N, Jia L, Su Y, Du J, Guo L, Luo Z, Liu Y. Lactobacillus reuteri extracts promoted wound therapeutic through PI3K/AKT/β-catenin/TGFβ1 pathway. Stem Cell Res Ther. 2019;10:243.
Zhang M, Jiang Z, Li D, Jiang D, Wu Y, Ren H, Peng H, Lai Y. Oral antibiotic therapy induces pores and skin microbiota dysbiosis and influences wound therapeutic. Microb Ecol. 2015;69:415–21.
Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE. Microbial symbionts speed up wound therapeutic through the neuropeptide hormone oxytocin. PLoS ONE. 2013;8:e78898.
Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, Gong Z, Zeng Q, Wei Y, Yang W, et al. A novel postbiotic from Lactobacillus rhamnosus GG with a useful impact on intestinal barrier operate. Entrance Microbiol. 2019;10:477.
Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, Mei C, Shi Y, Zhou N, Qin Okay, Li W. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg stability and intestine microbiota construction. Intestine Microbes. 2023;15:2190304.
Wang J, Wang L, Wang Q, Liu C, Zheng L. Lacticaseibacillus rhamnosus GG enhances fin regeneration underneath oxytetracycline publicity through activating wnt signaling and modulating intestine microbiota. Fish Shellfish Immunol. 2023;142:109155.
Mohammedsaeed W, Cruickshank S, McBain AJ, O’Neill CA. Lactobacillus rhamnosus GG lysate will increase re-epithelialization of keratinocyte scratch assays by selling Migration. Sci Rep. 2015;5:16147.
Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic methods for bone and gentle tissue tumors remedy. Theranostics. 2022;12:6576–94.
Yampolsky M, Bachelet I, Fuchs Y. Reproducible technique for excisional skin-wound-healing research in mice. Nat Protoc. 2024;19:184–206.
Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and tradition of human umbilical vein endothelial cells. Nat Protoc. 2007;2:481–5.
Chu Z, Huang Q, Ma Okay, Liu X, Zhang W, Cui S, Wei Q, Gao H, Hu W, Wang Z, et al. Novel neutrophil extracellular trap-related mechanisms in diabetic wounds encourage a promising therapy technique with hypoxia-challenged small extracellular vesicles. Bioact Mater. 2023;27:257–70.
Liu H, Wu Y, Wang F, Wang S, Ji N, Wang M, Zhou G, Han R, Liu X, Weng W, et al. Bone-targeted engineered bacterial extracellular vesicles delivering miRNA to deal with osteoporosis. Compos Half B: Eng. 2023;267:111047.
Liu H, Music P, Zhang H, Zhou F, Ji N, Wang M, Zhou G, Han R, Liu X, Weng W, et al. Artificial biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles. 2024;13:e12429.
Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367:eaau6977.
Liu H, Geng Z, Su J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for focused remedy. Extracell Vesicles Circulating Nucleic Acids. 2022;3:63–86.
Midekessa G, Godakumara Okay, Ord J, Viil J, Lättekivi F, Dissanayake Okay, Kopanchuk S, Rinken A, Andronowska A, Bhattacharjee S, et al. Zeta Potential of Extracellular Vesicles: towards understanding the attributes that decide Colloidal Stability. ACS Omega. 2020;5:16701–10.
Chen Q, Huang G, Wu W, Wang J, Hu J, Mao J, Chu PK, Bai H, Tang G. A hybrid eukaryotic-prokaryotic nanoplatform with Photothermal modality for enhanced Antitumor Vaccination. Adv Mater. 2020;32:e1908185.
Solar J, Zhou J, Zhou J, Xu W, Du Y, Jia Z, Shen Y, Lin X, Wang X, Bao Y, et al. FGF4 promotes pores and skin wound restore by means of p38 MAPK and GSK3β-Mediated stabilization of slug. J Make investments Dermatol. 2023;143:1073–e848.
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Therapeutic: a Mobile Perspective. Physiol Rev. 2019;99:665–706.
DiPietro LA. Angiogenesis and wound restore: when sufficient is sufficient. J Leukoc Biol. 2016;100:979–84.
Music S, Zhang G, Chen X, Zheng J, Liu X, Wang Y, Chen Z, Wang Y, Music Y, Zhou Q. HIF-1α will increase the osteogenic capability of ADSCs by coupling angiogenesis and osteogenesis through the HIF-1α/VEGF/AKT/mTOR signaling pathway. J Nanobiotechnol. 2023;21:257.
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62.
Wang J, Cui B, Chen Z, Ding X. The regulation of pores and skin homeostasis, restore and the pathogenesis of pores and skin illnesses by spatiotemporal activation of epidermal mTOR signaling. Entrance Cell Dev Biol. 2022;10:950973.
Konieczny P, Xing Y, Sidhu I, Subudhi I, Mansfield KP, Hsieh B, Biancur DE, Larsen SB, Cammer M, Li D, et al. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science. 2022;377:eabg9302.
Cecerska-Heryć E, Goszka M, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Dołęgowska B. Purposes of the regenerative capability of platelets in fashionable drugs. Cytokine Development Issue Rev. 2022;64:84–94.
Yang HD, Kim HS, Kim SY, Na MJ, Yang G, Eun JW, Wang HJ, Cheong JY, Park WS, Nam SW. HDAC6 suppresses Let-7i-5p to Elicit TSP1/CD47-Mediated anti-tumorigenesis and phagocytosis of Hepatocellular Carcinoma. Hepatology. 2019;70:1262–79.
You B, Zhang P, Gu M, Yin H, Fan Y, Yao H, Pan S, Xie H, Cheng T, Liu H, et al. Let-7i-5p promotes a malignant phenotype in nasopharyngeal carcinoma through inhibiting tumor-suppressive autophagy. Most cancers Lett. 2022;531:14–26.
Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, Zhao X, Lu C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung most cancers cell development and mobility in addition to macrophage M2 polarization through mir-21-5p supply. J Exp Clin Most cancers Res. 2019;38:62.
He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, Yin Y, Luo H, Yi M, Xian L, et al. Most cancers-secreted exosomal mir-21-5p induces angiogenesis and vascular permeability by concentrating on KRIT1. Cell Demise Dis. 2021;12:576.
Wu D, Kang L, Tian J, Wu Y, Liu J, Li Z, Wu X, Huang Y, Gao B, Wang H, et al. Exosomes Derived from Bone mesenchymal stem cells with the Stimulation of Fe(3)O(4) nanoparticles and static magnetic area improve Wound Therapeutic by means of upregulated miR-21-5p. Int J Nanomed. 2020;15:7979–93.
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Music FY, Wang FF, Zhu XH, Liao WJ, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal most cancers. Mol Most cancers. 2019;18:91.
Chen S, Chen X, Luo Q, Liu X, Wang X, Cui Z, He A, He S, Jiang Z, Wu N, et al. Retinoblastoma cell-derived exosomes promote angiogenesis of human vesicle endothelial cells by means of microRNA-92a-3p. Cell Demise Dis. 2021;12:695.
Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, et al. Train promotes angiogenesis by enhancing endothelial cell fatty acid utilization through liver-derived extracellular vesicle miR-122-5p. J Sport Well being Sci. 2022;11:495–508.
Liao W, Ning Y, Xu HJ, Zou WZ, Hu J, Liu XZ, Yang Y, Li ZH. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond). 2019;133:1955–75.
Cao MQ, You AB, Zhu XD, Zhang W, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, et al. Mir-182-5p promotes hepatocellular carcinoma development by repressing FOXO3a. J Hematol Oncol. 2018;11:12.
Shu L, Li X, Liu Z, Li Okay, Shi A, Tang Y, Zhao L, Huang L, Zhang Z, Zhang D, et al. Bile exosomal miR-182/183-5p will increase cholangiocarcinoma stemness and development by concentrating on HPGD and growing PGE2 era. Hepatology. 2024;79:307–22.
Gao Y, Yan Y, Tripathi S, Pentinmikko N, Amaral A, Päivinen P, Domènech-Moreno E, Andersson S, Wong IPL, Clevers H et al. LKB1 represses ATOH1 through PDK4 and Vitality Metabolism and regulates intestinal stem cell destiny. Gastroenterology 2020; 158:1389 – 401.e10.
Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, Rathmell JC. The glucose transporter Glut1 is selectively important for CD4 T cell activation and effector operate. Cell Metab. 2014;20:61–72.
Filipello F, You SF, Mirfakhar FS, Mahali S, Bollman B, Acquarone M, Korvatska O, Marsh JA, Sivaraman A, Martinez R, et al. Defects in lysosomal operate and lipid metabolism in human microglia harboring a TREM2 lack of operate mutation. Acta Neuropathol. 2023;145:749–72.
Zhang Y, Chen XN, Zhang H, Wen JK, Gao HT, Shi B, Wang DD, Han ZW, Gu JF, Zhao CM, et al. CDK13 promotes lipid deposition and prostate most cancers development by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Demise Differ. 2023;30:2462–76.
Yan L, Cao R, Liu Y, Wang L, Pan B, Lv X, Jiao H, Zhuang Q, Solar X, Xiao R. MiR-21-5p hyperlinks epithelial-mesenchymal transition phenotype with stem-like Cell signatures through AKT Signaling in Keloid Keratinocytes. Sci Rep. 2016;6:28281.
Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, Wang L. Roles of MicroRNA-21 in pores and skin Wound Therapeutic: a Complete Overview. Entrance Pharmacol. 2022;13:828627.
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impression of intestine microbiome on pores and skin well being: gut-skin axis noticed by means of the lenses of therapeutics and pores and skin illnesses. Intestine Microbes. 2022;14:2096995.
Yu Y, Dunaway S, Champer J, Kim J, Alikhan A. Altering our microbiome: probiotics in dermatology. Br J Dermatol. 2020;182:39–46.
Deng WY, Chen WJ, Zhong HJ, Wu LH, He XX. Washed microbiota transplantation: a case report of medical success with pores and skin and intestine microbiota enchancment in an adolescent boy with atopic dermatitis. Entrance Immunol. 2023;14:1275427.
Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication within the intestine. J Extracell Vesicles. 2021;10:e12161.
Kuhn T, Aljohmani A, Frank N, Zielke L, Mehanny M, Laschke MW, Koch M, Hoppstädter J, Kiemer AK, Yildiz D, Fuhrmann G. A cell-free, biomimetic hydrogel based mostly on probiotic membrane vesicles ameliorates wound therapeutic. J Management Launch. 2023;365:969–80.
Yang Z, Gao Z, Yang Z, Zhang Y, Chen H, Yang X, Fang X, Zhu Y, Zhang J, Ouyang F, et al. Lactobacillus plantarum-derived extracellular vesicles shield towards ischemic mind harm through the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res. 2022;182:106332.
Kuhn T, Aljohmani A, Frank N, Zielke L, Mehanny M, Laschke MW, Koch M, Hoppstädter J, Kiemer AK, Yildiz D, Fuhrmann G. A cell-free, biomimetic hydrogel based mostly on probiotic membrane vesicles ameliorates wound therapeutic. J Management Launch. 2024;365:969–80.
Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, Geng Y, Gao W, Zhang Z, Fu D. A bone-targeted engineered exosome platform delivering siRNA to deal with osteoporosis. Bioact Mater. 2022;10:207–21.
Melnik BC. MiR-21: an environmental driver of malignant melanoma. J Transl Med. 2015;13:202.
Wang T, Feng Y, Solar H, Zhang L, Hao L, Shi C, Wang J, Li R, Ran X, Su Y, Zou Z. miR-21 regulates pores and skin wound therapeutic by concentrating on a number of features of the therapeutic course of. Am J Pathol. 2012;181:1911–20.
Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound therapeutic: promotive function of miR-21 in fibroblast migration. Int Wound J. 2012;9:355–61.