-0.3 C
United States of America
Monday, January 27, 2025

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast development issue nanoparticles to advertise tendon regeneration | Journal of Nanobiotechnology


  • Sheean AJ, Arner JW, Bradley JP. Proximal hamstring tendon accidents: prognosis and administration. Arthroscopy. 2021;37(2):435–7.

    Article 
    PubMed 

    Google Scholar
     

  • Skinner S, Isaacs J. Extensor tendon accidents within the athlete. Clin Sports activities Med. 2020;39(2):259–77.

    Article 
    PubMed 

    Google Scholar
     

  • Ross RK, Kinlaw AC, Herzog MM, Jonsson Funk M, Gerber JS. Fluoroquinolone antibiotics and tendon damage in adolescents. Pediatrics. 2021. https://doi.org/10.1542/peds.2020-033316.

    Article 
    PubMed 

    Google Scholar
     

  • Kane SF, Olewinski LH, Tamminga KS. Administration of power tendon accidents. Am Fam Doctor. 2019;100(3):147–57.

    PubMed 

    Google Scholar
     

  • Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: cells, development components, scaffolds and manufacturing strategies. J Management Launch. 2021;333:448–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and signaling methods for tendon/ligament interfacial tissue engineering. ACS Biomater Sci Eng. 2021;7(2):383–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Zhu Y, Zhu W, Zhang G, Yang YP, Zhao C. The position of MicroRNAs in tendon damage, restore, and associated tissue engineering. Biomaterials. 2021;277: 121083.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The position of tendon derived stem/progenitor cells and extracellular matrix parts within the bone tendon junction restore. Bone. 2021;153: 116172.

    Article 
    PubMed 

    Google Scholar
     

  • Migliorini F, Tingart M, Maffulli N. Progress with stem cell therapies for tendon tissue regeneration. Skilled Opin Biol Ther. 2020;20(11):1373–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yu H, Cheng J, Shi W, Ren B, Zhao F, Shi Y, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater. 2020;106:328–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CH, Li DL, Chuang AD, Sprint BS, Chen JP. Pressure stimulation of tenocytes in aligned hyaluronic acid/platelet-rich plasma-polycaprolactone core-sheath nanofiber membrane scaffold for tendon tissue engineering. Int J Mol Sci. 2021;22(20):11215.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Present progress in direction of an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater. 2022;145:25–42.

    Article 
    PubMed 

    Google Scholar
     

  • Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to advertise/suppress most cancers: two sides of the identical coin. Stem Cell Res Ther. 2021;12(1):126.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu QW, Huang QM, Wu HY, Zuo GS, Gu HC, Deng KY, et al. Traits and therapeutic potential of human amnion-derived stem cells. Int J Mol Sci. 2021;22(2):970.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao S, Xiao C, Miao Y, Wang J, Chen R, Fan Z, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound therapeutic. Stem Cell Res Ther. 2021;12(1):255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Pei Z, Wang C, Li M, Zhang H, Qu J. Electrohydrodynamic 3D printing scaffolds for restore of achilles tendon defect in rats. Tissue Eng Half A. 2021;27(19–20):1343–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu C, Qiu J, Thomopoulos S, Xia Y. Augmenting tendon-to-bone restore with functionally graded scaffolds. Adv Healthc Mater. 2021;10(9): e2002269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang JN, Pelletier MR, Chylack LT Jr. Entrance floor fluorometric examine of lens insoluble proteins. Curr Eye Res. 1988;7(1):61–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Liu J, Qi Y, Cai J, Zhao J, Duan B, et al. Tendon-bioinspired wavy nanofibrous scaffolds present tunable anisotropy and promote tenogenesis for tendon tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;126: 112181.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alimohammadi M, Aghli Y, Fakhraei O, Moradi A, Passandideh-Fard M, Ebrahimzadeh MH, et al. Electrospun nanofibrous membranes for stopping tendon adhesion. ACS Biomater Sci Eng. 2020;6(8):4356–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarikaya B, Gumusderelioglu M. Aligned silk fibroin/poly-3-hydroxybutyrate nanofibrous scaffolds seeded with adipose-derived stem cells for tendon tissue engineering. Int J Biol Macromol. 2021;193(Pt A):276–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sensini A, Gualandi C, Zucchelli A, Boyle LA, Kao AP, Reilly GC, et al. Tendon fascicle-inspired nanofibrous scaffold of polylactic acid/collagen with enhanced 3D-structure and biomechanical properties. Sci Rep. 2018;8(1):17167.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uehlin AF, Vines JB, Feldman DS, Nyairo E, Dean DR, Thomas V. Uni-directionally oriented fibro-porous PLLA/fibrin bio-hybrid scaffold: mechano-morphological and cell research. Pharmaceutics. 2022;14(2):277.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leonardi L, Strocchi R, Castellani PP, Guizzardi S, Ottani V. Ultrastructural findings on collagen fibers of tendon sheaths from the rat tail. Boll Soc Ital Biol Sper. 1982;58(22):1478–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim HS, Solar X, Lee JH, Kim HW, Fu X, Leong KW. Superior drug supply programs and synthetic pores and skin grafts for pores and skin wound therapeutic. Adv Drug Deliv Rev. 2019;146:209–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J, et al. Sequential gastrodin launch PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater. 2023;19:24–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Stapelfeldt Ok, Stamboroski S, Mednikova P, Bruggemann D. Fabrication of 3D-nanofibrous fibrinogen scaffolds utilizing salt-induced self meeting. Biofabrication. 2019;11(2): 025010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong L, Li L, Music Y, Fang Y, Liu J, Chen P, et al. MSC-derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body response and tendon adhesion. Acta Biomater. 2021;133:280–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, et al. Co-electrospun silk fibroin and gelatin methacryloyl sheet seeded with mesenchymal stem cells for tendon regeneration. Small. 2022;18(21): e2107714.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Managed twin supply of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the environment friendly restore of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu Z, Jin Y, Zhu X, Wang S, Yang J, et al. Differentiation of human amniotic mesenchymal stem cells into human anterior cruciate ligament fibroblast cells by in vitro coculture. Biomed Res Int. 2017;2017:7360354.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller SA, Durselen L, Heisterbach P, Evans C, Majewski M. Impact of a easy collagen sort i sponge for achilles tendon restore in a rat mannequin. Am J Sports activities Med. 2016;44(8):1998–2004.

    Article 
    PubMed 

    Google Scholar
     

  • Stoll C, John T, Conrad C, Lohan A, Hondke S, Ertel W, et al. Therapeutic parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials. 2011;32(21):4806–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with part tunability. Mater Sci Eng C Mater Biol Appl. 2021;119: 111590.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V. Impact of scaffold structure and BMP-2/BMP-7 supply on in vitro bone regeneration. J Mater Sci Mater Med. 2010;21(11):2999–3008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyednejad H, Ji W, Yang F, van Nostrum CF, Vermonden T, van den Beucken JJ, et al. Coaxially electrospun scaffolds based mostly on hydroxyl-functionalized poly(epsilon-caprolactone) and loaded with VEGF for tissue engineering functions. Biomacromol. 2012;13(11):3650–60.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, et al. Polyethylenimine-coated albumin nanoparticles for BMP-2 supply. Biotechnol Prog. 2008;24(4):945–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolluru PV, Lipner J, Liu W, Xia Y, Thomopoulos S, Genin GM, et al. Sturdy and difficult mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomater. 2013;9(12):9442–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Peng H, Li X, Streubel PN, Liu Y, Duan B. Impact of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal soften electrospun poly (L-lactic acid) fibrous meshes. Biofabrication. 2017;9(4): 044106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sensini A, Gualandi C, Cristofolini L, Tozzi G, Dicarlo M, Teti G, et al. Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication. 2017;9(1): 015025.

    Article 
    PubMed 

    Google Scholar
     

  • Naomi R, Ridzuan PM, Bahari H. Present insights into collagen sort I. Polymers (Basel). 2021;13(16):2642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6(5):262–8.

    Article 
    PubMed 

    Google Scholar
     

  • Halper J, Kjaer M. Primary parts of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadler BM, Maier KP. Hepatocellular carcinoma: interdisciplinary remedy idea. Praxis. 1998;87(44):1475–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu Ok, Shao Y, Xia Y, Qian Y, Jiang N, Liu X, et al. Tenascin-C regulates migration of SOX10 tendon stem cells by way of integrin-alpha9 for selling patellar tendon reworking. BioFactors. 2021;47(5):768–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, et al. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRalpha(+) BMMSCs as novel nanotherapeutics for treating osteolysis throughout tendon-bone therapeutic and enhancing therapeutic power. Biomaterials. 2021;279: 121242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gumucio JP, Schonk MM, Kharaz YA, Comerford E, Mendias CL. Scleraxis is required for the expansion of grownup tendons in response to mechanical loading. JCI Perception. 2020. https://doi.org/10.1172/jci.perception.138295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ackerman JE, Greatest KT, Muscat SN, Pritchett EM, Nichols AEC, Wu CL, et al. Defining the spatial-molecular map of fibrotic tendon therapeutic and the drivers of Scleraxis-lineage cell destiny and performance. Cell Rep. 2022;41(8): 111706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado Caceres M, Angerpointner Ok, Galler M, Lin D, Michel PA, Brochhausen C, et al. Tenomodulin knockout mice exhibit worse late therapeutic outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon. Cell Demise Dis. 2021;12(11):1049.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dex S, Alberton P, Willkomm L, Sollradl T, Bago S, Milz S, et al. Tenomodulin is required for tendon endurance operating and collagen i fibril adaptation to mechanical load. EBioMedicine. 2017;20:240–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang W, Li L, Zhang D, Huang S, Jing Z, Wu Y, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015;25:240–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gluais M, Clouet J, Fusellier M, Decante C, Moraru C, Dutilleul M, et al. In vitro and in vivo analysis of an electrospun-aligned microfibrous implant for Annulus fibrosus restore. Biomaterials. 2019;205:81–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Midgley AC, Bai Y, Zhu M, Chang H, Zhu W, et al. Subcutaneously engineered autologous extracellular matrix scaffolds with aligned microchannels for enhanced tendon regeneration: aligned microchannel scaffolds for tendon restore. Biomaterials. 2019;224: 119488.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goncalves AI, Rodrigues MT, Carvalho PP, Banobre-Lopez M, Paz E, Freitas P, et al. Exploring the potential of starch/polycaprolactone aligned magnetic responsive scaffolds for tendon regeneration. Adv Healthc Mater. 2016;5(2):213–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles