-1 C
United States of America
Thursday, January 23, 2025

Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration by means of modulating inhibitory microenvironment | Journal of Nanobiotechnology


  • Williams PR, Benowitz LI, Goldberg JL, He Z. Axon Regeneration within the mammalian Optic nerve. Annu Rev Vis Sci. 2020;6:195–213.

    Article 
    PubMed 

    Google Scholar
     

  • Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the attention to the mind. Science. 2017;356(6342):1031–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Hao F, Hao P, Zhang J, Wang L, You S-W, Wang N, Yang Z, So Okay-F, Li X. Regeneration and practical restoration of the utterly transected optic nerve in grownup rats by CNTF-chitosan. Sign Transduct Goal Remedy 2023, 8(1).

  • Zhang S, Zhu H, Pan Y, Liu X, Jin H, Nan Okay, Wu W. Exploration of the methods to boost the regeneration of the optic nerve. Exp Eye Res 2022, 219.

  • Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980;284(5753):264–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar JH, Li G, Wu TT, Lin ZJ, Zou JL, Huang LJ, Xu HY, Wang JH, Ma YH, Zeng YS. Decellularization optimizes the inhibitory microenvironment of the optic nerve to help neurite development. Biomaterials. 2020;258:120289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai YR, Lai BQ, Han WT, Solar JH, Li G, Ding Y, Zeng X, Ma YH, Zeng YS. Decellularized optic nerve practical scaffold transplant facilitates directional axon regeneration and remyelination within the injured white matter of the rat spinal wire. Neural Regeneration Res. 2021;16(11):2276–83.

    Article 
    CAS 

    Google Scholar
     

  • Wang J-j, Wang T-z, Guan B, Liu X-x, Gong Z, Li Y, Li L-l. Ke L-n, Nan Okay-h: implantable patches assembled with mesenchymal stem cells and gelatin/silk fibroin composite microspheres for the remedy of traumatic optic neuropathy. Appl Mater Immediately 2022, 26.

  • Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: latest tendencies and rising methods in tissue engineering. Bioactive Mater. 2022;10:15–31.

    Article 
    CAS 

    Google Scholar
     

  • Zarrintaj P, Seidi F, Youssefi Azarfam M, Khodadadi Yazdi M, Erfani A, Barani M, Chauhan NPS, Rabiee N, Kuang T, Kucinska-Lipka J et al. Biopolymer-based composites for tissue engineering purposes: a foundation for future alternatives. Compos Half B: Eng 2023, 258.

  • Wu T, Liu L, Gao Z, Cui C, Fan C, Liu Y, Di M, Yang Q, Xu Z, Liu W. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate primarily based hydrogels for bone restore. Biomaterials Sci. 2023;11(8):2877–85.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Yao X, Solar Z, Jin Y, Yan Z, Jiang H, Ouyang Y, Yuan WE, Wang C, Fan C. An extracellular matrix mimicking alginate hydrogel scaffold manipulates an inflammatory microenvironment and improves peripheral nerve regeneration by managed melatonin launch. J Mater Chem B. 2023;11(48):11552–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng G, Yu W, Xu Z, Yang C, Wang Y, Yue Z, Xiao Q, Zhang W, Wu X, Zang F, et al. Neuroimmune modulating and vitality supporting nanozyme-mimic scaffold synergistically promotes axon regeneration after spinal wire damage. J Nanobiotechnol. 2024;22(1):399.

    Article 
    CAS 

    Google Scholar
     

  • Chen S, Li J, Zheng L, Huang J, Wang M. Biomimicking trilayer scaffolds with managed estradiol launch for uterine tissue regeneration. Exploration 2024.

  • Ma J, Li J, Wang X, Li M, Teng W, Tao Z, Xie J, Ma Y, Shi Q, Li B, et al. GDNF-Loaded Polydopamine nanoparticles-based anisotropic scaffolds promote spinal wire restore by modulating Inhibitory Microenvironment. Adv Healthc Mater. 2023;12(8):e2202377.

    Article 
    PubMed 

    Google Scholar
     

  • Yang L, Conley BM, Cerqueira SR, Pongkulapa T, Wang S, Lee JK, Lee KB. Efficient modulation of CNS inhibitory microenvironment utilizing Bioinspired Hybrid-Nanoscaffold-based therapeutic interventions. Adv Mater. 2020;32(43):e2002578.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silverman SM, Wong WT. Microglia within the retina: roles in Improvement, Maturity, and Illness. Annu Rev Vis Sci. 2018;4:45–77.

    Article 
    PubMed 

    Google Scholar
     

  • Yun-Jia L, Xi C, Jie-Qiong Z, Jing-Yi Z, Sen L, Jian Y. Semaphorin3A will increase M1-like microglia and retinal ganglion cell apoptosis after optic nerve damage. Cell Biosci. 2021;11(1):97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitha I, Kambhampati S, Sharma A, Sharma R, McCrea L, Mozzer A, Kannan RM. Focused microglial attenuation by means of Dendrimer–Drug Conjugates improves Glaucoma neuroprotection. Biomacromolecules. 2023;24(3):1355–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: simply bystander or goal for remedy? Prog Retin Eye Res. 2015;45:30–57.

    Article 
    PubMed 

    Google Scholar
     

  • Rao M, Huang Y-Okay, Liu C-C, Meadows C, Cheng H-C, Zhou M, Chen Y-C, Xia X, Goldberg JL, Williams AM et al. Aldose reductase inhibition decelerates optic nerve degeneration by assuaging retinal microglia activation. Sci Rep 2023, 13(1).

  • Wang F, Tune Y, Liu P, Ma F, Peng Z, Pang Y, Hu H, Zeng L, Luo H, Zhang X. Rapamycin suppresses neuroinflammation and protects retinal ganglion cell loss after optic nerve crush. Int Immunopharmacol 2023, 119.

  • Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the remedy of ocular illnesses. J Nanobiotechnol. 2022;20(1):496.

    Article 

    Google Scholar
     

  • Mao J, Chen L, Cai Z, Qian S, Liu Z, Zhao B, Zhang Y, Solar X, Cui W. Superior Biomaterials for regulating polarization of macrophages in Wound Therapeutic. Adv Funct Mater 2021, 32(12).

  • Ge Y, Rong F, Lu Y, Wang Z, Liu J, Xu F, Chen J, Li W, Wang Y. Glucose oxidase pushed hydrogen sulfide-releasing Nanocascade for Diabetic an infection remedy. Nano Lett. 2023;23(14):6610–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wei X, Wang L, Qian Z, Liu H, Fan Y. Quercetin-based composite hydrogel promotes muscle tissue regeneration by means of macrophage polarization and oxidative stress attenuation. Compos Half B: Eng 2022, 247.

  • Fan H, Chen Z, Tang HB, Shan LQ, Chen ZY, Wang XH, Huang DG, Liu SC, Chen X, Yang H et al. Exosomes derived from olfactory ensheathing cells offered neuroprotection for spinal wire damage by switching the phenotype of macrophages/microglia. Bioeng Translational Med 2021, 7(2).

  • Yang P, Chen L, Shi Y, Zhou F, Tian H, Li J, Gao L. Progesterone alters the activation and typing of the microglia within the optic nerve crush mannequin. Exp Eye Res 2021, 212.

  • Li H-Y, Huang M, Luo Q-Y, Hong X, Ramakrishna S, So Okay-F. Lycium barbarum (Wolfberry) will increase retinal ganglion cell survival and impacts each Microglia/Macrophage polarization and autophagy after rat partial Optic nerve transection. Cell Transpl. 2019;28(5):607–18.

    Article 

    Google Scholar
     

  • Zhang Z, Peng S, Xu T, Liu J, Zhao L, Xu H, Zhang W, Zhu Y, Yang Z. Retinal microenvironment-protected Rhein-GFFYE nanofibers attenuate retinal ischemia-reperfusion Damage by way of inhibiting oxidative stress and regulating Microglial/Macrophage M1/M2 polarization. Adv Sci 2023:e2302909.

  • Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to a number of noxious stimuli in retinal ganglion cells. Autophagy. 2014;10(10):1692–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rong R, Zhou X, Liang G, Li H, You M, Liang Z, Zeng Z, Xiao H, Ji D, Xia X. Focusing on cell membranes, depleting ROS by Dithiane and Thioketal-containing polymers with pendant cholesterols delivering Necrostatin-1 for Glaucoma remedy. ACS Nano. 2022;16(12):21225–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du Y, Cai M, Mu J, Li X, Tune Y, Yuan X, Hua X, Guo S. Sort I collagen-adhesive and ROS‐Scavenging nanoreactors enhanced retinal ganglion cell survival in an experimental Optic nerve crush Mannequin. Macromol Speedy Commun 2023.

  • Nguyen Ngo Le MA, Wen YT, Ho YC, Kapupara Okay, Tsai RK. Therapeutic results of Puerarin in opposition to Anterior Ischemic Optic Neuropathy by means of Antiapoptotic and anti inflammatory actions. Make investments Ophthalmol Vis Sci. 2019;60(10):3481–91.

    Article 
    PubMed 

    Google Scholar
     

  • Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having a superb free-radical-scavenging property. Biomacromolecules. 2011;12(3):625–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising purposes for Floor Modification and Superior Nanomedicine. ACS Nano. 2019;13(8):8537–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asha AB, Chen Y, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling floor engineering. Chem Soc Rev. 2021;50(20):11668–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Shi Y, Shan Y, Guo J, Tune X, Wu Y, Wu M, Lu Y, Chen W, Xu X, et al. Latest developments in mesoporous polydopamine-derived nanoplatforms for most cancers theranostics. J Nanobiotechnol. 2021;19(1):387.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Chen Z, Chen H, Chen Okay, Tao W, Ouyang XK, Mei L, Zeng X. Polyphenol-based hydrogels: pyramid evolution from crosslinked constructions to biomedical purposes and the reverse design. Bioact Mater. 2022;17:49–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan W, Han H, Lu Z, Huang Y, Zhang Y, Chen Y, Zhang X, Ji J, Yao Okay. Epsilon-poly-L-lysine-modified polydopamine nanoparticles for focused photothermal remedy of drug-resistant bacterial keratitis. Bioeng Transl Med. 2023;8(1):e10380.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng W, Li Z, Huang Q, Ding C, Yang L, Wang W, Shi Z, Yang Y, Chen H, Mei L et al. Multifunctional Mesoporous polydopamine-based systematic supply of STING agonist for enhanced synergistic Photothermal‐Immunotherapy. Adv Funct Mater 2023.

  • Kacvinská Okay, Pavliňáková V, Poláček P, Michlovská L, Blahnová VH, Filová E, Knoz M, Lipový B, Holoubek J, Faldyna M, et al. Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine community and applied right into a full-thickness wound of a white-pig mannequin impacts irritation and therapeutic course of. J Nanobiotechnol. 2023;21(1):80.

    Article 

    Google Scholar
     

  • Bao X, Zhao J, Solar J, Hu M, Yang X. Polydopamine nanoparticles as environment friendly scavengers for reactive oxygen species in Periodontal Illness. ACS Nano. 2018;12(9):8882–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L, Huang J, Xu H, Xu Y, Chen Z, et al. Polydopamine nanoparticles for the remedy of acute inflammation-induced damage. Nanoscale. 2018;10(15):6981–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, Li L, Xie T, Chen S, Zou Y, Jin X, Li S, Wang M, Han N, Fan G, et al. Ferrero-like nanoparticles knotted injectable hydrogels to initially scavenge ROS and lastingly promote vascularization in infarcted hearts. Sci China Technological Sci. 2020;63(11):2435–48.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Ren X, Wang Y, Chen D, Jiang L, Li X, Li T, Huo M, Li Q. Focusing on ferroptosis by polydopamine nanoparticles protects Coronary heart in opposition to Ischemia/Reperfusion Damage. ACS Appl Mater Interfaces. 2021;13(45):53671–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Shen Y, Tang Z, Yang Y, Fu Z, Ni D, Cai X. Engineered nanodrug concentrating on oxidative stress for remedy of acute kidney damage. Explor (Beijing). 2023;3(6):20220148.

    CAS 

    Google Scholar
     

  • Liu Y, Ai Okay, Ji X, Askhatova D, Du R, Lu L, Shi J. Complete insights into the multi-antioxidative mechanisms of melanin nanoparticles and their software to guard mind from Damage in ischemic stroke. J Am Chem Soc. 2017;139(2):856–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu P, Shen L, Liu H-F, Zou X-H, Zhao J, Huang Y, Zhu Y-F, Li Z-Y, Xu C, Luo L-H et al. The wedding of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for army drugs. Navy Med Res 2023, 10(1).

  • Li Y, Yang L, Hou Y, Zhang Z, Chen M, Wang M, Liu J, Wang J, Zhao Z, Xie C, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory potential accelerates periodontal bone regeneration in diabetes. Bioactive Mater. 2022;18:213–27.

    Article 
    CAS 

    Google Scholar
     

  • Jiang P, Choi A, Swindle-Reilly KE. Managed launch of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale. 2020;12(33):17298–311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allyn MM, Rincon-Benavides MA, Chandler HL, Higuita-Castro N, Palmer AF, Swindle-Reilly KE. Sustained launch of heme–albumin as a possible novel therapeutic method for age-related macular degeneration. Biomaterials Sci. 2022;10(24):7004–14.

    Article 
    CAS 

    Google Scholar
     

  • Kwon YS, Zheng M, Zhang AY, Han Z. Melanin-like nanoparticles as a substitute for pure melanin in Retinal Pigment Epithelium cells and their therapeutic results in opposition to Age-Associated Macular Degeneration. ACS Nano. 2022;16(11):19412–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon Y-S, Voinov MA, Zheng M, Smirnov AI, Han Z. Darkish matter: creating a brand new nanoantioxidant-based therapeutic system for the remedy of age-related macular degeneration. Nano Immediately 2023, 50.

  • Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, et al. Reactive oxygen species-scavenging nanomaterials for the prevention and remedy of age-related illnesses. J Nanobiotechnol. 2024;22(1):252.

    Article 

    Google Scholar
     

  • Liu YC, Lin YK, Lin YT, Lin CW, Lan GY, Su YC, Hu FR, Chang KH, Chen V, Yeh YC, et al. Injectable, Antioxidative, and tissue-adhesive nanocomposite hydrogel as a possible remedy for inside retina accidents. Adv Sci. 2024;11(11):e2308635.

    Article 

    Google Scholar
     

  • Joukhdar H, Seifert A, Jungst T, Groll J, Lord MS, Rnjak-Kovacina J. Ice templating tender matter: elementary ideas and fabrication approaches to Tailor Pore construction and morphology and their Biomedical Purposes. Adv Mater. 2021;33(34):e2100091.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Ai Okay, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an environment friendly near-infrared photothermal therapeutic agent for in vivo most cancers remedy. Adv Mater. 2013;25(9):1353–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu D, Zou L, Li B, Hu M, Ye W, Ji J. Photothermal Killing of Methicillin-Resistant Staphylococcus aureus by Micro organism-targeted polydopamine nanoparticles with Nano-Localized Hyperpyrexia. ACS Biomaterials Sci Eng. 2019;5(10):5169–79.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Deng F, Qiu H, Li Y, Gong Z, Wang L, Wang J, Wu W, Nan Okay. An adherent drug depot for retinal ganglion cell safety and regeneration in rat traumatic optic neuropathy fashions. RSC Adv. 2021;11(37):22761–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Liu B, Zhu H, Jin H, Gong Z, Qiu H, Xu M, Chen M, Nan Okay, Wu W. A novel rat mannequin with Lengthy Vary Optic Nerve Damage to check retinal ganglion cells endogenous regeneration. Neuroscience. 2021;465:71–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B, Nan Okay. Effectively suppress of ferroptosis utilizing deferoxamine nanoparticles as a brand new methodology for retinal ganglion cell safety after traumatic optic neuropathy. Biomaterials Adv 2022, 138.

  • Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI. Macrophage-derived elements stimulate optic nerve regeneration. J Neurosci. 2003;23(6):2284–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Pure polymer-derived Bioscaffolds for Peripheral nerve regeneration. Adv Funct Mater 2022, 32(41).

  • Wittmer CR, Claudepierre T, Reber M, Wiedemann P, Garlick JA, Kaplan D, Egles C. Multifunctionalized Electrospun Silk fibers promote Axon Regeneration within the Central Nervous System. Adv Funct Mater. 2011;21(22):4232–42.

    Article 
    CAS 

    Google Scholar
     

  • Ahmed R, ul ain Hira N, Wang M, Iqbal S, Yi J, Hemar Y. Genipin, a pure blue colorant precursor: supply, extraction, properties, and purposes. Meals Chem 2024, 434.

  • Liu M, Huang Y, Tao C, Yang W, Chen J, Zhu L, Pan T, Narain R, Nan Okay, Chen Y. Self-Therapeutic Alginate Hydrogel shaped by dynamic Benzoxaborolate Chemistry protects retinal pigment epithelium cells in opposition to oxidative injury. Gels 2022, 9(1).

  • Ridzewski C, Li M, Dong B, Magdanz V. Gelatin microcartridges for Onboard activation and antioxidant safety of sperm. ACS Appl Bio Mater. 2020;3(3):1616–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Luo M, Huang B, Gao W, Jiang Y, Li Q, Nan Okay, Lin S. Localized co-delivery of CNTF and FK506 utilizing a thermosensitive hydrogel for retina ganglion cells safety after traumatic optic nerve damage. Drug Deliv. 2020;27(1):556–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan ZW, Ye TB, Yang L, Jiang HQ, Chen C, Chen SL, Qian Y, Fan CY. Nanobiology Dependent Therapeutic Convergence between Biocompatibility and Bioeffectiveness of Graphene Oxide Quantum dot Scaffold for Immuno-Inductive angiogenesis and nerve regeneration. Adv Funct Mater 2023, 33(9).

  • Dong X, Liu S, Yang Y, Gao S, Li W, Cao J, Wan Y, Huang Z, Fan G, Chen Q, et al. Aligned microfiber-induced macrophage polarization to information schwann-cell-enabled peripheral nerve regeneration. Biomaterials. 2021;272:120767.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Wu P, Yan L, Liu Okay, Wei W, Cheng Q, Liang X, Chen Y, Dai H. Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials. 2022;280:121288.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative stress: an acceptable therapeutic goal for Optic nerve illnesses? Antioxidants 2023, 12(7).

  • Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug supply programs for the remedy of neurodegenerative illnesses. Biomaterials. 2019;217:119292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and views of use for remedy of neurodegenerative illnesses. J Nanobiotechnol. 2018;16(1):87.

    Article 
    CAS 

    Google Scholar
     

  • Kurimoto T, Yin Y, Omura Okay, Gilbert H-y, Kim D, Cen L-P, Moko L, Kügler S, Benowitz LI. Lengthy-Distance Axon Regeneration within the mature Optic nerve: contributions of Oncomodulin, cAMP, andptenGene deletion. J Neurosci. 2010;30(46):15654–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Au NPB, Ma CHE. Neuroinflammation, Microglia and implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Entrance Immunol 2022, 13.

  • Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse mannequin of optic nerve damage. Neural Regeneration Res. 2025;20(2):587–97.

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles