3.7 C
United States of America
Saturday, November 23, 2024

Immunomodulating melatonin-decorated silica nanoparticles suppress bacterial wilt (Ralstonia solanacearum) in tomato (Solanum lycopersicum L.) by fine-tuning of oxidative signaling and rhizosphere bacterial group | Journal of Nanobiotechnology


  • Ye M, Feng H, Hu J, Yu Q, Liu S. Managing tomato bacterial wilt by suppressing Ralstonia solanacearum inhabitants in soil and enhancing host resistance by fungus-derived furoic acid compound. Entrance Plant Sci. 2022;13:1064797.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wamani AO, Muthomi JW, Mutitu E, Waceke WJ. Efficacy of microbial antagonists within the administration of bacterial wilt of field-grown tomato. J Nat Pestic Res. 2023;6:100051.

    Article 

    Google Scholar
     

  • Khan RAA, Alam SS, Najeeb S, Ali A, Ahmad A, Shakoor A, et al. Mitigating Cd and bacterial wilt stress in tomato vegetation by trico-synthesized silicon nanoparticles and Trichoderma metabolites. Environ Pollut. 2023;333:122041.

    Article 
    PubMed 

    Google Scholar
     

  • Gowtham HG, Murali M, Shilpa N, Amruthesh KN, Gafur A, Antonius S, et al. Harnessing abiotic elicitors to bolster plant’s resistance towards bacterial pathogens. Plant Stress. 2024;11:100371.

    Article 

    Google Scholar
     

  • Yadav M, Dwibedi V, Sharma S, George N. Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and purposes in environmental sustainability. J Environ Chem Eng. 2022;10:108550.

    Article 

    Google Scholar
     

  • Yuliar, Asi Nion Y, Toyota Ok. Current developments in management strategies for bacterial wilt illnesses attributable to Ralstonia solanacearum. Microbes Environ. 2015;30:1–11.

  • Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, et al. Nanobiotechnology to advance stress resilience in vegetation: present alternatives and challenges. Mater Right now Bio. 2023;22:100759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iravani S. Silica-based nanosystems towards antibiotic-resistant micro organism and pathogenic viruses. Crit Rev Microbiol. 2023;49:598–610.

  • Ahmad B, Khan MMA, Jaleel H, Shabbir A, Sadiq Y, Uddin M. Silicon Nanoparticles mediated enhance in glandular trichomes and regulation of photosynthetic and high quality attributes in mentha piperita L. J Plant Development Regul. 2020;39:346–57.

  • Bilal M, Xu C, Cao L, Zhao P, Cao C, Li F et al. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for efficient management of Plutella xylostella L. with decreased cleansing enzymes actions. Pest Manag Sci. 2020;76:3749–58.

  • Shang W, Xiong Q, Xie Z, Cheng J, Yu B, Zhang H et al. Useful, eco-friendly, and starch-based nanocarriers with sustained launch of carvacrol for persistent management of tomato grey mould. Crop Well being. 2023;1:13.

  • Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Use of copper, silver and zinc nanoparticles towards foliar and soil-borne plant pathogens. Sci Complete Environ. 2019;670:292–99.

    Article 
    PubMed 

    Google Scholar
     

  • Sharma S, Gupta S, Jain R, Kothari SL, Kachhwaha S. SiO2 nanoparticles as elicitor for elevated rebaudioside-A in Stevia rebaudiana micropropagated in stable and liquid cultures: a comparative research. Plant Cell Tissue Organ Cult. 2023;155:541–52.

  • Huang Q, Ayyaz A, Farooq MA, Zhang Ok, Chen W, Hannan F et al. Silicon dioxide nanoparticles improve plant development, photosynthetic efficiency, and antioxidants defence equipment by suppressing chromium uptake in Brassica napus L. Environ Pollut. 2024;342:123013.

  • Zhou J, Liu X, Solar C, Li G, Yang P, Jia Q et al. Silica nanoparticles improve the illness resistance of ginger to rhizome rot throughout postharvest storage. Nanomaterials. 2022;12:1418.

  • Madany MMY, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape an infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ Sci Nano. 2020;7:1415–30.

  • El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B et al. Silica Nanoparticles Improve Illness Resistance in Arabidopsis Vegetation. Nat Nanotechnol. 2021;16:344.

  • Tian L, Shen J, Solar G, Wang B, Ji R, Zhao L. Foliar software of SiO2 nanoparticles alters Soil Metabolite profiles and microbial group composition within the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ Sci Technol. 2020;54:13137–46.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao S, Li M, Ren X, Wang C, Solar X, Solar M, et al. Enhancement of broad-spectrum illness resistance in wheat by key genes concerned in systemic acquired resistance. Entrance Plant Sci. 2024;15:1355178.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeier J. Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol. 2021;62:102050.

    Article 
    PubMed 

    Google Scholar
     

  • Gao H, Guo M, Music J, Ma Y, Xu Z. Alerts in systemic acquired resistance of vegetation towards microbial pathogens. Mol Biol Rep. 2021;48:3747–59.

  • Wu F, Qiao X, Zhao Y, Zhang Z, Gao Y, Shi L et al. Focused mutagenesis in Arabidopsis thaliana utilizing CRISPR-Cas12b/C2c1. J Integr Plant Biol. 2020;62:1653–8.

  • Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM et al. Proof for the plant recruitment of helpful microbes to suppress soil-borne pathogens. New Phytol. 2021;229:2873–85.

  • Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W et al. Melatonin induces illness resistance to botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agric Meals Chem. 2019;67:6116–24.

  • Li L, Du C, Wang L, Lai M, Fan H. Exogenous melatonin improves the resistance to cucumber bacterial angular leaf spot attributable to Pseudomonas syringae pv. Lachrymans. Physiol Plant. 2022;174:e13724.

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S et al. Perception into melatonin-mediated response and signaling within the regulation of plant protection below biotic stress. Plant Mol Biol. 2022;109:385–99.

  • He X, Yin B, Zhang J, Zhou S, Li Z, Zhang X, et al. Exogenous melatonin alleviates apple replant illness by regulating rhizosphere soil microbial group construction and nitrogen metabolism. Sci Complete Environ. 2023;884:163830.

    Article 
    PubMed 

    Google Scholar
     

  • Noman M, Ahmed T, Shahid M, Nazir MM, Azizullah, Li D, et al. Salicylic acid-doped iron nano-biostimulants potentiate protection responses and suppress Fusarium wilt in watermelon. J Adv Res. 2024;59:19–33.

    Article 
    PubMed 

    Google Scholar
     

  • Rahimzadeh CY, Barzinjy AA, Mohammed AS, Hamad SM. Inexperienced synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparability with chemically synthesized SiO2 nanoparticles. PLoS One. 2022;17:1–15.

  • Toledano-Osorio M, Aguilera FS, Muñoz-Soto E, Osorio E, Toledano M, Escames G, et al. Melatonin-doped polymeric nanoparticles induce excessive crystalline apatite formation in root dentin. Dent Mater. 2021;37:1698–713.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed T, Shahid M, Noman M, Bilal Khan Niazi M, Zubair M, Almatroudi A, et al. Bioprospecting a local silver-resistant Bacillus safensis pressure for inexperienced synthesis and subsequent antibacterial and anticancer actions of silver nanoparticles. J Adv Res. 2020;24:475–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafeez R, Guo J, Ahmed T, Jiang H, Raza M, Shahid M et al. Bio-formulated chitosan nanoparticles improve illness resistance towards rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.). Carbohydr Polym. 2024;334:122023.

  • Xu C, Zhong L, Huang Z, Li C, Lian J, Zheng X et al. Actual-time monitoring of Ralstonia solanacearum an infection progress in tomato and Arabidopsis utilizing bioluminescence imaging expertise. Plant Strategies. 2022;18:1–11.

  • Ahmed T, Noman M, Jiang H, Shahid M, Ma C, Wu Z, et al. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight illness by modulating plant protection response and dietary standing of rice (Oryza sativa L). Nano Right now. 2022;45:101547.

    Article 

    Google Scholar
     

  • Noman M, Ahmed T, Ijaz U, Muhammad Shahid MM, Azizullah N, White JC, et al. Bio-functionalized manganese nanoparticles suppress fusarium wilt in watermelon (Citrullus lanatus L.) by an infection disruption, host protection response potentiation, and soil microbial group modulation. Small. 2023;19:e2205687.

  • Morcillo RJL, Zhao A, Tamayo-Navarrete MI, García-Garrido JM, Macho AP. Tomato root transformation adopted by inoculation with ralstonia solanacearum for straight ahead genetic evaluation of bacterial wilt illness. J Vis Exp. 2020;11:157.

  • Schönfeld J, Heuer H, Van Elsas JD, Smalla Ok. Particular and delicate detection of ralstonia solanacearum in soil on the idea of PCR amplification of flic fragments. Appl Environ Microbiol. 2003;69:7248.

  • Ahmed T, Shou L, Guo J, Noman M, Qi Y, Yao Y, et al. Modulation of rhizosphere microbial group and metabolites by bio-functionalized nanoscale silicon oxide alleviates cadmium-induced phytotoxicity in bayberry vegetation. Sci Complete Environ. 2024;933:173068.

  • Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase techniques by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Vegetation. 2010;16:259–72.

  • Likelihood B, Maehly AC. [136] assay of catalases and peroxidases. Strategies Enzymol. 1955;2:764–75.

    Article 

    Google Scholar
     

  • Giannopolitis CN, Ries SK, Superoxide dismutases. I. prevalence in greater vegetation. Plant Physiol. 1977;59:309–14.

  • Miyake C, Asada Ok. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its main oxidation product monodehydroascorbate radicals in Thylakoids. Plant Cell Physiol. 1992;33:541–53.

  • Heath RL, Packer L. Photoperoxidation in remoted chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.

    Article 
    PubMed 

    Google Scholar
     

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC et al. Hormonal adjustments throughout salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot. 2008;59:3039–50.

  • Livak KJ, Schmittgen TD. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two – ∆∆CT methodology. Strategies. 2001;25:402–8.

    Article 
    PubMed 

    Google Scholar
     

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger Ok, Bushman FD, Costello EK et al. QIIME permits evaluation of high-throughput group sequencing knowledge. Nat Strategies. 2010;7:335–6.

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: Excessive-resolution pattern inference from Illumina amplicon knowledge. Nat Strategies. 2016;13:581–3.

  • Segata M, Lo Cigno R. Emergency braking: A research of community and software efficiency. Proc Annu Int Conf Mob Comput Networking, MOBICOM. 2011;1–10.

  • Li W, Tan L, Zhang N, Chen H, Fan X, Peng M, et al. Phytolith-occluded carbon in residues and financial advantages below rice/single-season Zizania latifolia rotation. Sci Complete Environ. 2022;836:155504.

    Article 
    PubMed 

    Google Scholar
     

  • Satheesh V, Mohamed JMM, El-Sherbiny M, Othman G, Al-Serwi RH, Thilagar S. Correction to: Daylight-assisted inexperienced synthesis of silver nanoparticles utilizing Zizania latifolia extract: towards antimicrobial purposes. Biomass Convers Biorefinery. 2022;1:1–1.

  • Agi A, Junin R, Jaafar MZ, Mohsin R, Arsad A, Gbadamosi A, et al. Synthesis and software of rice husk silica nanoparticles for chemical enhanced oil restoration. J Mater Res Technol. 2020;9:13054–66.

    Article 

    Google Scholar
     

  • Heydarnajad Giglou R, Torabi Giglou M, Esmaeilpour B, Padash A, Ghahremanzadeh S, Sobhanizade A, et al. Exogenous melatonin differentially impacts biomass, complete carbohydrates, and important oil manufacturing in peppermint upon simultaneous publicity to chitosan-coated Fe3O4NPs. South Afr J Bot. 2023;163:135–44.

    Article 

    Google Scholar
     

  • Anwar T, Qureshi H, Fatimah H, Siddiqi EH, Anwaar S, Moussa IM, et al. Elucidating impact of ZnO-Nanoparticles and melatonin on physiological changes and development of Solanum melongena below salinity stress. Sci Hortic. 2023;322:112455.

    Article 

    Google Scholar
     

  • Riaz HR, Hashmi SS, Khan T, Hano C, Giglioli-Guivarc’h N, Abbasi BH. Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive potential in callus cultures of Catharanthus roseus var. Alba. Artif Cells, Nanomedicine, Biotechnol. 2018;46:936–50.

  • Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a brand new journey for agriculture. Developments Plant Sci. 2024;29:232–48.

  • Priya SS, Suseem R. Plant-based carbon dots are a sustainable various to traditional nanomaterials for biomedical and sensing purposes. Nano Categorical. 2024;5:012002.

  • Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterialsthe function of interfacial interactions for superior supplies. Chem Rev. 2023;123:2200–41.

  • Nagalingam M, Kalpana VN, Panneerselvam VDR. Biosynthesis, characterization, and analysis of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol Rep. 2018;19:e00268.

    Article 

    Google Scholar
     

  • Zhao H, Wang L, Belwal T, Jiang Y, Li D, Xu Y, et al. Chitosan-based melatonin bilayer coating for sustaining high quality of fresh-cut merchandise. Carbohydr Polym. 2020;235:115973.

    Article 
    PubMed 

    Google Scholar
     

  • Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A et al. Chemical foundation of interactions between engineered nanoparticles and organic techniques. Chem Rev. 2014;114:7740–81.

  • Kabaa EA, Abdulateef SA, Ahmed NM, Hassan Z, Sabah FA. A novel porous silicon multi-ions selective electrode primarily based prolonged gate area impact transistor for sodium, potassium, calcium, and magnesium sensor. Appl Phys A Mater Sci Course of. 2019;125:1–10.

  • Körmer R, Butz B, Spiecker E, Peukert W. Crystal form engineering of silicon nanoparticles in a thermal aerosol reactor. Cryst Development Des. 2012;12:1330–6.

  • Wu F-G, Zhang X, Kai S, Zhang M, Wang H-Y, Myers JN et al. One-Step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Adv Mater Interfaces. 2015;2:1500360.

  • Patra JK, Baek KH. Inexperienced nanobiotechnology: Elements affecting synthesis and characterization methods. J Nanomater. 2014:417305.

  • Azad A, Zafar H, Faisal R, Sulaiman M. Elements influencing the inexperienced synthesis of metallic nanoparticles utilizing plant extracts: A complete evaluation. Pharm Entrance. 2023;5:117–31.

  • Balpınar Ö, Nadaroğlu H, Hacımüftüoğlu A. Inexperienced synthesis, characterization of melatonin-like drug bioconjugated CoS quantum dots and its antiproliferative impact on completely different most cancers cells. Mol Biol Rep. 2023;50:9143–51.

  • Siakavella IK, Lamari F, Papoulis D, Orkoula M, Gkolfi P, Lykouras M et al. Impact of plant extracts on the traits of silver nanoparticles for topical software. Pharmaceutics. 2020;12:1–17.

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME et al. Inexperienced nanotechnologies: Synthesis of metallic nanoparticles utilizing vegetation. Acta Naturae. 2014;6:35.

  • Ijaz U, Ahmed T, Rizwan M, Noman M, Shah AA, Azeem F, et al. Rice straw primarily based silicon nanoparticles enhance morphological and nutrient profile of rice vegetation below salinity stress by triggering physiological and genetic restore mechanisms. Plant Physiol Biochem. 2023;201:107788.

    Article 
    PubMed 

    Google Scholar
     

  • Gregor C. Era of vivid autobioluminescent micro organism by chromosomal integration of the improved lux operon ilux2. Sci Rep. 2022;12:1–13.

  • Bazhenov SV, Novoyatlova US, Scheglova ES, Prazdnova EV, Mazanko MS, Kessenikh AG, et al. Bacterial lux-biosensors: setting up, purposes, and prospects. Biosens Bioelectron X. 2023;13:100323.


    Google Scholar
     

  • Brodl E, Csamay A, Horn C, Niederhauser J, Weber H, Macheroux P. The affect of LuxF on mild depth in bacterial bioluminescence. J Photochem Photobiol B Biol. 2020;207:111881.

    Article 

    Google Scholar
     

  • Kaku T, Sugiura Ok, Entani T, Osabe Ok, Nagai T. Enhanced brightness of bacterial luciferase by bioluminescence resonance power switch. Sci Rep. 2021;11:1–10.

  • Du J, Liu B, Zhao T, Xu X, Lin H, Ji Y, et al. Silica nanoparticles defend rice towards biotic and abiotic stresses. J Nanobiotechnol. 2022;20:1–18.

    Article 

    Google Scholar
     

  • Gozzo F. Systemic acquired resistance in crop safety: From nature to a chemical strategy. J Agric Meals Chem. 2003;51:4487–503.

  • Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A et al. Exogenous melatonin induces drought stress tolerance by selling plant development and antioxidant defence system of soybean vegetation. AoB Vegetation. 2021;13:plab026.

  • Attia EA, Elhawat N. Mixed foliar and soil software of silica nanoparticles enhances the expansion, flowering interval and flower traits of marigold (Tagetes erecta L). Sci Hortic. 2021;282:110015.

    Article 

    Google Scholar
     

  • Asif M, Ahmad R, Pervez A, Al Farraj DA, Elshikh MS, Shahzad M, et al. Mixture of melatonin and plant development selling rhizobacteria improved the expansion of Spinacia oleracea L. below the arsenic and cadmium stresses. Physiol Mol Plant Pathol. 2023;127:102097.

    Article 

    Google Scholar
     

  • Taskin MB, Akca H, Babar SK, Kadioglu YK, Deniz Ok, Kan S et al. Evaluating the comparative results of acid modified rice husk and nano-silicon derived from rice husk on phosphorus use effectivity in wheat and lettuce vegetation with differing silicon contents. J Plant Nutr. 2023;46:2329–41.

  • Albalawi MA, Abdelaziz AM, Attia MS, Saied E, Elganzory HH, Hashem AH. Mycosynthesis of silica nanoparticles utilizing aspergillus niger: Management of alternaria solani inflicting early blight illness, induction of innate immunity and decreasing of oxidative stress in eggplant. Antioxidants. 2022;11:2323.

  • Đurić M, Jevremović S, Trifunović-Momčilov M, Milošević S, Subotić A, Jerinić-Prodanović D. Physiological and oxidative stress response of carrot (Daucus carota L.) to leaping plant-louse bactericera trigonica hodkinson (Hemiptera: Psylloidea) infestation. BMC Plant Biol. 2024;24:1–21.

  • Giri VP, Pandey S, Srivastava S, Shukla P, Kumar N, Kumari M, et al. Chitosan fabricated biogenic silver nanoparticles (Ch@BSNP) protectively modulate the protection mechanism of tomato throughout bacterial leaf spot (BLS) illness. Plant Physiol Biochem. 2023;197:107637.

    Article 
    PubMed 

    Google Scholar
     

  • Deng Q, Huang S, Liu H, Lu Q, Du P, Li H, et al. Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypogaea L). Sci Complete Environ. 2024;915:170112.

    Article 
    PubMed 

    Google Scholar
     

  • Zia-ur-Rehman M, Anayatullah S, Irfan E, Hussain SM, Rizwan M, Sohail MI, et al. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in vegetation below salt stress: a evaluation. Chemosphere. 2023;314:137649.

    Article 
    PubMed 

    Google Scholar
     

  • Iqbal N, Czékus Z, Poór P, Ördög A. Ethylene-dependent regulation of oxidative stress within the leaves of fusaric acid-treated tomato vegetation. Plant Physiol Biochem. 2023;196:841–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed T, Luo J, Noman M, Ijaz M, Wang X, Masood HA et al. Microbe-mediated nanoparticle intervention for the administration of plant illnesses. Crop Well being. 2023;1:3.

  • Hussain M, Shakoor N, Adeel M, Ahmad MA, Zhou H, Zhang Z, et al. Nano-enabled plant microbiome engineering for illness resistance. Nano Right now. 2023;48:101752.

    Article 

    Google Scholar
     

  • Cui Y, Wang Ok, Zhang C. Carbon nanomaterials for plant priming by mechanostimulation: Emphasizing the function of form. ACS Nano. 2024;18:10829-39

  • Noman M, Ahmed T, Wang J, Ijaz M, Shahid M, Islam MS et al. Nano-enabled crop resilience towards pathogens: potential, mechanisms and methods. Crop Well being. 2023;1:15.

  • Rehman F, Paker NP, Khan M, Zainab N, Ali N, Munis MFH, et al. Evaluation of software of ZnO nanoparticles on physiological profile, root structure and antioxidant potential of Solanum lycopersicum. Biocatal Agric Biotechnol. 2023;53:102874.

    Article 

    Google Scholar
     

  • Djayanti Ok, Maharjan P, Cho KH, Jeong S, Kim MS, Shin MC et al. Mesoporous silica nanoparticles as a possible nanoplatform: Therapeutic purposes and concerns. Int J Mol Sci. 2023;24:6349.

  • Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, et al. Silicon nanoparticles: Complete evaluation on biogenic synthesis and purposes in agriculture. Environ Res. 2023;232:116292.

    Article 
    PubMed 

    Google Scholar
     

  • Cao X, Chen X, Liu Y, Wang C, Yue L, Elmer WH et al. Lanthanum silicate nanomaterials improve sheath blight resistance in rice: Mechanisms of motion and soil well being analysis. ACS Nano. 2023;17:15821–35.

  • Hassan AA, Gabr WE, Kalboush ZA. Biogenic silica: a promoter of cell wall strengthening and induced resistance towards sheath blight illness in rice through salicylic acid signaling and phenolic metabolism. Physiol Mol Plant Pathol. 2023;128:102152.

    Article 

    Google Scholar
     

  • Boamah S, Ojangba T, Zhang S, Zhu N, Osei R, John Tiika R et al. Analysis of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated vegetation below salinity and Fusarium stresses. A Evaluate. Eur J Plant Pathol. 2023;166:259–74.

  • Zhang H, Huang Q, Yi L, Music X, Li L, Deng G et al. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat. Plant J. 2021;107:698–712.

  • Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S et al. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to illness resistance towards Botrytis cinerea by modulating the stability between SA- and JA/ET-mediated signaling pathways. BMC Plant Biol. 2015;15:1–20.

  • Albacete A. Get collectively: the interplay between melatonin and salicylic acid as a method to enhance plant stress tolerance. Agronomy. 2020;10:4–6.

    Article 

    Google Scholar
     

  • Li R, Li Y, Zhang Y, Sheng J, Zhu H, Shen L. Transcriptome evaluation reveals that SlNPR1 mediates tomato fruit resistance towards Botrytis cinerea by modulating phenylpropanoid metabolism and balancing ROS homeostasis. Postharvest Biol Technol. 2021;172:111382.

    Article 

    Google Scholar
     

  • Li R, Wang L, Li Y, Zhao R, Zhang Y, Sheng J et al. Knockout of SlNPR1 enhances tomato vegetation resistance towards Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways. Physiol Plant. 2020;170:569–79.

  • Qian Y, Tan DX, Reiter RJ, Shi H. Comparative metabolomic evaluation highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity towards bacterial pathogen in Arabidopsis. Sci Rep. 2015;5:1–11.

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. Resistance to botrytis cinerea induced in arabidopsis by elicitors is impartial of salicylic acid, ethylene, or jasmonate signaling however requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 2007;144:367–79.

  • Solar T, Huang J, Xu Y, Verma V, Jing B, Solar Y et al. Redundant CAMTA transcription components negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g. Mol Plant. 2020;13:144–56.

  • Choudhary A, Senthil-Kumar M. Drought attenuates plant defence towards bacterial pathogens by suppressing the expression of CBP60g/SARD1 throughout mixed stress. Plant Cell Enviro. 2022;45:1127–45.

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and helpful microorganisms. Plant Soil. 2008;321:341–61.

  • Kashyap S, Sharma I, Dowarah B, Barman R, Gill SS, Agarwala N. Plant and soil-associated microbiome dynamics decide the destiny of bacterial wilt pathogen Ralstonia solanacearum. Planta. 2023;258:57.

  • Li B, Yang P, Feng Y, Du C, Qi G, Zhao X. Rhizospheric microbiota of suppressive soil defend vegetation towards Fusarium solani an infection. Pest Manag Sci. 2024;80:4186-98

  • Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z. Ralstonia solanacearum – a soil borne hidden enemy of vegetation: Analysis growth in administration methods, their motion mechanism and challenges. Entrance Plant Sci. 2023;14:1141902.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao Y, Ma C, White JC, Adeel M, Jiang R, Zhao Z et al. Carbon-based nanomaterials alter the composition of the fungal endophyte group in rice (Oryza sativa L.). Environ Sci Nano. 2020;7:2047–60.

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated micro organism rescue a plant from a sudden-wilt illness that emerged throughout steady cropping. Proc Natl Acad Sci U S A. 2015;112:E5013–120.

  • Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, et al. Bio-fertilizer software induces soil suppressiveness towards Fusarium wilt illness by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.

    Article 

    Google Scholar
     

  • Sinong GF, Yasuda M, Nara Y, Lee CG, Dastogeer KMG, Tabuchi H, et al. Distinct Root Microbial communities in Nature Farming Rice Harbor bacterial strains with Plant Development-promoting traits. Entrance Maintain Meals Syst. 2021;4:629942.

    Article 

    Google Scholar
     

  • Wang J, Chapman SJ, Ye Q, Yao H. Restricted impact of planting transgenic rice on the soil microbiome studied by steady 13CO2 labeling mixed with high-throughput sequencing. Appl Microbiol Biotechnol. 2019;103:4217–27.

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles