-6.3 C
United States of America
Wednesday, January 22, 2025

Hydrogel loaded with cerium-manganese nanoparticles and nerve development issue enhances spinal wire harm restore by modulating immune microenvironment and selling neuronal regeneration | Journal of Nanobiotechnology


  • Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal wire harm. Nat Rev Dis Primers. 2017;3:17018.

    Article 
    PubMed 

    Google Scholar
     

  • Singh PL, Agarwal N, Barrese JC, Heary RF. Present therapeutic methods for irritation following traumatic spinal wire harm. Neural Regen Res. 2012;7(23):1812–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, et al. Traumatic and nontraumatic spinal wire harm: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15(12):718–31.

    Article 
    PubMed 

    Google Scholar
     

  • Prüss H, Tedeschi A, Thiriot A, Lynch L, Loughhead SM, Stutte S, et al. Spinal wire injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat Neurosci. 2017;20(11):1549–59.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Tian F, Cao L, Du R, Tong J, Ding X, et al. Macrophage polarization in spinal wire harm restore and the potential function of microRNAs: a overview. Heliyon. 2023;9(12): e22914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen A. Macrophage phagocytosis after spinal wire harm: when associates turn into foes. Mind. 2021;144(10):2933–45.

    Article 
    PubMed 

    Google Scholar
     

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, getting older, and illnesses. Clin Interv Growing old. 2018;13:757–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasuri Okay, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the stability of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James ND, McMahon SB, Area-Fote EC, Bradbury EJ. Neuromodulation within the restoration of operate after spinal wire harm. Lancet Neurol. 2018;17(10):905–17.

    Article 
    PubMed 

    Google Scholar
     

  • Yin Z, Wan B, Gong G, Yin J. ROS: executioner of regulating cell loss of life in spinal wire harm. Entrance Immunol. 2024;15:1330678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David S, Kroner A. Repertoire of microglial and macrophage responses after spinal wire harm. Nat Rev Neurosci. 2011;12(7):388–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, et al. Customized cerium oxide nanoparticles defend in opposition to a free radical mediated autoimmune degenerative illness within the mind. ACS Nano. 2013;7(12):10582–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, exercise regulation, and purposes. Chem Rev. 2019;119(6):4357–412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, et al. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj. 2017;1861(2):386–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin Okay, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s illness. ACS Nano. 2016;10(2):2860–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Huang G, Liu H, Sang C, Liu X, Chen T. Extremely bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for environment friendly reversal of reperfusion-induced harm in ischemic stroke. Sci Adv. 2020;6(12):eaay9751.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahimi B, Behroozi Z, Motamednezhad A, Jafarpour M, Hamblin MR, Moshiri A, et al. Research of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal wire harm mannequin in rats. J Mater Sci Mater Med. 2023;34(2):9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, et al. Customized-made ceria nanoparticles present a neuroprotective impact by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl. 2018;57(20):5808–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu G, Zhao Q, Wu W, Wei X, Lu Q. A facile and sensible biosensor for choline primarily based on manganese dioxide nanoparticles synthesized in-situ on the floor of electrode by one-step electrodeposition. Talanta. 2016;146:707–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo XL, Xu JJ, Zhao W, Chen HY. A novel glucose ENFET primarily based on the particular reactivity of MnO2 nanoparticles. Biosens Bioelectron. 2004;19(10):1295–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, et al. Multifunctional albumin-MnO₂ nanoparticles modulate strong tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial development issue and improve radiation response. ACS Nano. 2014;8(4):3202–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Xiao B, Mu J, Zhang Y, Zhang C, Cao H, et al. A MnO (2) nanoparticle-dotted hydrogel promotes spinal wire restore through regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano. 2019;13(12):14283–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong CY, Huang QX, Cheng H, Zheng DW, Hong S, Yan Y, et al. Neisseria meningitidis Opca protein/MnO (2) hybrid nanoparticles for overcoming the blood-brain barrier to deal with glioblastoma. Adv Mater. 2022;34(12): e2109213.

    Article 
    PubMed 

    Google Scholar
     

  • Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by lowering oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci (Weinh). 2021;8(20): e2101526.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen TT, Nguyen-Thi PT, Nguyen THA, Ho TT, Tran NM, Van Vo T, et al. Latest developments in nanomaterials: a promising approach to handle neurodegenerative issues. Mol Diagn Ther. 2023;27(4):457–73.

    Article 
    PubMed 

    Google Scholar
     

  • Aloe L, Rocco ML, Bianchi P, Manni L. Nerve development issue: from the early discoveries to the potential scientific use. J Transl Med. 2012;10:239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, et al. Beta hairpin peptide hydrogels as an injectable strong car for neurotrophic development issue supply. Biomacromol. 2015;16(9):2672–83.

    Article 
    CAS 

    Google Scholar
     

  • Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, et al. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to deal with spinal wire harm. J Cell Mol Med. 2020;24(14):8166–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Cheng W, Zhang X, Zhou Z, Ding Z, Zhou X, et al. Nerve development factor-laden anisotropic silk nanofiber hydrogels to control neuronal/astroglial differentiation for scarless spinal wire restore. ACS Appl Mater Interfaces. 2022;14(3):3701–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a look. J Cell Sci. 2010;123(Pt 24):4195–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020684.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, et al. Ceria nanoparticles that may defend in opposition to ischemic stroke. Angew Chem Int Ed Engl. 2012;51(44):11039–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley Okay, et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel illness. J Nanobiotechnology. 2022;20(1):107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande S, Patil S, Kuchibhatla SVNT, Seal S. Dimension dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett. 2005;87(13): 133113.

    Article 

    Google Scholar
     

  • Zhou L, Li X, Yao Z, Chen Z, Hong M, Zhu R, et al. Transition-metal doped ceria microspheres with nanoporous buildings for CO oxidation. Sci Rep. 2016;6:23900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Okay, Wang M, Li G, He Q, Liu J, Li F. Spherical α-MnO₂ supported on N-KB as environment friendly electrocatalyst for oxygen discount in Al-air battery. Supplies (Basel). 2018. https://doi.org/10.3390/ma11040601.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-based therapeutic antioxidants for biomedical purposes. Adv Mater. 2024;36(10): e2210819.

    Article 
    PubMed 

    Google Scholar
     

  • Soh M, Kang DW, Jeong HG, Kim D, Kim DY, Yang W, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis remedy. Angew Chem Int Ed Engl. 2017;56(38):11399–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Garcia S, Perez-Carrero B, Hernandez C, Lopez-Rodriguez R, Santos-Vizcaino E, Goni-de-Cerio F. Enhanced hydroxyl radical scavenging exercise by doping lanthanum in ceria nanocubes. J Mater Chem B. 2016;4(38):6457–68.


    Google Scholar
     

  • Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles on the nano-bio interface: size-dependent mobile uptake. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S956–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauhan D, Sri S, Kumar R, Panda AK, Solanki PR. Analysis of dimension, form, and cost impact on the organic interplay and mobile uptake of cerium oxide nanostructures. Nanotechnology. 2021;32(35).

  • Gessner A, Lieske A, Paulke B, Müller R. Affect of floor cost density on protein adsorption on polymeric nanoparticles: evaluation by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54(2):165–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirsch V, Kinnear C, Moniatte M, Rothen-Rutishauser B, Clift MJ, Fink A. Floor cost of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interplay in vitro. Nanoscale. 2013;5(9):3723–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle-biomolecular corona. Nanoscale Adv. 2022;4(16):3300–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao YZ, Jiang X, Xiao J, Lin Q, Yu WZ, Tian FR, et al. Utilizing NGF heparin-poloxamer thermosensitive hydrogels to boost the nerve regeneration for spinal wire harm. Acta Biomater. 2016;29:71–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative evaluation of mobile irritation after traumatic spinal wire harm: proof for a multiphasic inflammatory response within the acute to continual surroundings. Mind. 2010;133(Pt 2):433–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases forestall the induction of sort I interferons by mitochondrial DNA. Cell. 2014;159(7):1563–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang GL, Yang XL, Zhou HJ, Lengthy J, Liu B, Zhang LM, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Mind Res Bull. 2021;171:183–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal wire harm restore: an replace on latest preclinical and scientific advances. Mind. 2024;147(3):766–93.

    Article 
    PubMed 

    Google Scholar
     

  • Keefe KM, Sheikh IS, Smith GM. Concentrating on neurotrophins to particular populations of neurons: NGF, BDNF, and NT-3 and their relevance for remedy of spinal wire harm. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18030548.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine improvements in spinal wire harm administration: bridging the hole. Environ Res. 2023;235: 116563.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, et al. Engineered exosomes enriched in netrin-1 modRNA promote axonal development in spinal wire harm by attenuating irritation and pyroptosis. Biomater Res. 2023;27(1):3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin C, Qi Z, Pan S, Xia P, Kong W, Solar B, et al. Advances in conductive hydrogel for spinal wire harm restore and regeneration. Int J Nanomed. 2023;18:7305–33.

    Article 
    CAS 

    Google Scholar
     

  • Chen Okay, Li B, Xu H, Wu J, Li J, Solar W, et al. Zeolitic imidazole framework-8 loaded gelatin methacryloyl microneedles: a transdural and controlled-release drug supply system attenuates neuroinflammation after spinal wire harm. Int J Biol Macromol. 2024;256(Pt 1): 128388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing actions and their working rules. Adv Colloid Interface Sci. 2024;327: 103155.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaPlaca MC, Simon CM, Prado GR, Cullen DK. CNS harm biomechanics and experimental fashions. Prog Mind Res. 2007;161:13–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: major hemorrhage and membrane permeability in distinct mechanisms of spinal wire harm. J Neurosurg Backbone. 2007;6(3):255–66.

    Article 
    PubMed 

    Google Scholar
     

  • Barde YA. The nerve development issue household. Prog Progress Issue Res. 1990;2(4):237–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270(5236):593–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levi-Montalcini R, Hamburger V. Selective development stimulating results of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. 1951;116(2):321–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao T, Li N, Chen H, Zhao Z, Fan J, Tao Y, et al. Drug-loaded Zwitterion-based nanomotors for the remedy of spinal wire harm. ACS Appl Mater Interfaces. 2023;15(27):32762–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Y, Solar L, Zhu F, Xia W, Wen T, Xia R, et al. Ectopic expression of Nav1.7 in spinal dorsal horn neurons induced by NGF contributes to neuropathic ache in a mouse spinal wire harm mannequin. Entrance Mol Neurosci. 2023;16:1091096.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, et al. Improvement of BDNF/NGF/IKVAV peptide modified and gold nanoparticle conductive PCL/PLGA nerve steerage conduit for regeneration of the rat spinal wire harm. Macromol Biosci. 2024. https://doi.org/10.1002/mabi.202300453.

    Article 
    PubMed 

    Google Scholar
     

  • Ni J, Suzuki T, Karnup SV, Gu B, Yoshimura N. Nerve development factor-mediated Na (+) channel plasticity of bladder afferent neurons in mice with spinal wire harm. Life Sci. 2022;298: 120524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal wire harm and antioxidant-based intervention. Spinal Twine. 2012;50(4):264–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corridor ED, Springer JE. Neuroprotection and acute spinal wire harm: a reappraisal. NeuroRx. 2004;1(1):80–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu GY, Xu S, Zhang YX, Yu ZY, Zou F, Ma XS, et al. Cell-free extracts from human fats tissue with a hyaluronan-based hydrogel attenuate irritation in a spinal wire harm mannequin by way of M2 microglia/microphage polarization. Small. 2022;18(17): e2107838.

    Article 
    PubMed 

    Google Scholar
     

  • Solar Y, Music X, Geng Z, Xu Y, Xiao L, Chen Y, et al. IL-11 ameliorates oxidative stress injury in neurons after spinal wire harm by activating the JAK/STAT signaling pathway. Int Immunopharmacol. 2024;127: 111367.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaffer H, Andrabi SS, Petro M, Kuang Y, Steinmetz MP, Labhasetwar V. Catalytic antioxidant nanoparticles mitigate secondary harm development and promote practical restoration in spinal wire harm mannequin. J Management Launch. 2023;364:109–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Okay, Li X, Huang G, Yuan Z, Xie B, Chen T, et al. Excessive rapamycin-loaded hole mesoporous Prussian blue nanozyme targets lesion space of spinal wire harm to get well locomotor operate. Biomaterials. 2023;303: 122358.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu D, Lu G, Shi B, Ni H, Wang J, Qiu Y, et al. ROS-scavenging hydrogels synergize with neural stem cells to boost spinal wire harm restore through regulating microenvironment and facilitating nerve regeneration. Adv Healthc Mater. 2023;12(18): e2300123.

    Article 
    PubMed 

    Google Scholar
     

  • Fang X, Music H. Synthesis of cerium oxide nanoparticles loaded on chitosan for enhanced auto-catalytic regenerative capacity and biocompatibility for the spinal wire harm restore. J Photochem Photobiol B. 2019;191:83–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitch MT, Silver J. CNS harm, glial scars, and irritation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnelly DJ, Popovich PG. Irritation and its function in neuroprotection, axonal regeneration and practical restoration after spinal wire harm. Exp Neurol. 2008;209(2):378–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takami T, Oudega M, Bethea JR, Wooden PM, Kleitman N, Bunge MB. Methylprednisolone and interleukin-10 scale back grey matter injury within the contused Fischer rat thoracic spinal wire however don’t enhance practical consequence. J Neurotrauma. 2002;19(5):653–66.

    Article 
    PubMed 

    Google Scholar
     

  • Shen H, Xu B, Yang C, Xue W, You Z, Wu X, et al. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor operate restoration after spinal wire harm. Biomaterials. 2022;280: 121279.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Cao J, Du Y, Zhang X, Hong W, Peng B, et al. Preliminary IL-10 manufacturing dominates the remedy of mesenchymal stem cell scaffold in spinal wire harm. Theranostics. 2024;14(2):879–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith DR, Dumont CM, Park J, Ciciriello AJ, Guo A, Tatineni R, et al. Polycistronic supply of IL-10 and NT-3 promotes oligodendrocyte myelination and practical restoration in a mouse spinal wire harm mannequin. Tissue Eng Half A. 2020;26(11–12):672–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locati M, Curtale G, Mantovani A. Range, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills CD, Kincaid Okay, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Tong Okay, Li S, Huang Z, Liu S, Zhu H, et al. Extracellular vesicles launched by remodeling development factor-beta 1-preconditional mesenchymal stem cells promote restoration in mice with spinal wire harm. Bioact Mater. 2024;35:135–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Tang X, Deng P, Hui H, Chen B, An J, et al. Interleukin-4 from curcumin-activated OECs emerges as a central modulator for rising M2 polarization of microglia/macrophage in OEC anti-inflammatory exercise for practical restore of spinal wire harm. Cell Commun Sign. 2024;22(1):162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D, Peng T, Zhang Z, Guo S, Su Y, Zhang Okay, et al. Mesenchymal stem cells overexpressing XIST induce macrophage M2 polarization and enhance neural stem cell homeostatic microenvironment, assuaging spinal wire harm. J Tissue Eng. 2024;15:20417314231219280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is related to an infection and autoinflammatory illness. Cell Host Microbe. 2015;18(2):157–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, et al. Triggering the interferon response: the function of IRF-3 transcription issue. J Interferon Cytokine Res. 1999;19(1):1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma R, Ji T, Chen D, Dong W, Zhang H, Yin X, et al. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor development. Oncoimmunology. 2016;5(4): e1118599.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene LA, Tischler AS. Institution of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which reply to nerve development issue. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spicer Z, Millhorn DE. Oxygen sensing in neuroendocrine cells and different cell varieties: pheochromocytoma (PC12) cells as an experimental mannequin. Endocr Pathol. 2003;14(4):277–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 1990;27(2–3):229–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M. The suitability of BV2 cells as various mannequin system for major microglia cultures or for animal experiments inspecting mind irritation. Altex. 2009;26(2):83–94.

    Article 
    PubMed 

    Google Scholar
     

  • Plemel JR, Duncan G, Chen KW, Shannon C, Park S, Sparling JS, et al. A graded forceps crush spinal wire harm mannequin in mice. J Neurotrauma. 2008;25(4):350–70.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles