0.8 C
United States of America
Thursday, January 9, 2025

Half-wave nanolasers and intracellular plasmonic lasing particles


  • Kogelnik, H. & Shank, C. V. Coupled‐wave idea of distributed suggestions lasers. J. Appl. Phys. 43, 2327–2335 (1972).

    Article 

    Google Scholar
     

  • Akahane, Y., Asano, T., Track, B.-S. & Noda, S. Excessive-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nozaki, Okay., Kita, S. & Baba, T. Room temperature steady wave operation and managed spontaneous emission in ultrasmall photonic crystal nanolaser. Decide. Specific 15, 7506–7514 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Mao, X.-R., Shao, Z.-Okay., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with part synchronization. Nature 624, 282–288 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Decide. Specific 18, 8790–8799 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berini, P. & De Leon, I. Floor plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslov, A. V. & Ning, C.-Z. Dimension discount of a semiconductor nanowire laser through the use of steel coating. In Physics and Simulation of Optoelectronic Gadgets XV Vol. 6468 (eds Osinski, M. et al.) 64680I (SPIE, 2007).

  • Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Gentle Sci. Appl. 9, 90 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R.-M. & Oulton, R. F. Functions of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y.-J. et al. Plasmonic nanolaser utilizing epitaxially grown silver movie. Science 337, 450–453 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C.-Y. et al. Plasmonic inexperienced nanolaser primarily based on a steel–oxide–semiconductor construction. Nano Lett. 11, 4256–4260 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by complete inside reflection. Nat. Mater. 10, 110–113 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidiropoulos, T. P. H. et al. Ultrafast plasmonic nanowire lasers close to the floor plasmon frequency. Nat. Phys. 10, 870–876 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, S.-H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–3683 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496–500 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J., Kim, S.-H. & Scherer, A. Design of a surface-emitting, subwavelength metal-clad disk laser within the seen spectrum. Decide. Specific 18, 19581–19591 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Lasing motion in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergman, D. J. & Stockman, M. I. Floor plasmon amplification by stimulated emission of radiation: quantum technology of coherent floor plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kewes, G. et al. Limitations of particle-based spasers. Phys. Rev. Lett. 118, 237402 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z., Meng, X., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers. Laser Photon. Rev. 11, 1700212 (2017).

    Article 

    Google Scholar
     

  • Wu, H. et al. Plasmonic nanolasers: pursuing excessive lasing situations on nanoscale. Adv. Decide. Mater. 7, 1900334 (2019).

    Article 

    Google Scholar
     

  • Lu, Y.-J. et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett. 14, 4381–4388 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Uncommon scaling legal guidelines for plasmonic nanolasers past the diffraction restrict. Nat. Commun. 8, 1889 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S., Yang, Y., Soljačić, M. & Yun, S. H. Submicrometer perovskite plasmonic lasers at room temperature. Sci. Adv. 7, eabf3362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Galanzha, E. I. et al. Spaser as a organic probe. Nat. Commun. 8, 15528 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña, O. & Pal, U. Scattering of electromagnetic radiation by a multilayered sphere. Comput. Phys. Commun. 180, 2348–2354 (2009).

    Article 

    Google Scholar
     

  • Feigenbaum, E. & Orenstein, M. Ultrasmall quantity plasmons, but with full retardation results. Phys. Rev. Lett. 101, 163902 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Meier, M. & Wokaun, A. Enhanced fields on giant steel particles: dynamic depolarization. Decide. Lett. 8, 581–583 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. & Shen, Y. R. Normal properties of native plasmons in steel nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Rybin, M. V. et al. Excessive-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Olsen, G. & Zamerowski, T. Vapor-phase progress of (In,Ga)(As,P) quaternary alloys. IEEE J. Quantum Electron. 17, 128–138 (1981).

    Article 

    Google Scholar
     

  • Sarkar, D. et al. Ultrasmall InGa(As)P dielectric and plasmonic nanolasers. ACS Nano 17, 16048–16055 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, L. et al. Ultrahigh decision spectral-domain optical coherence tomography utilizing the 1000–1600 nm spectral band. Biomed. Decide. Specific 13, 1939–1947 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martino, N. et al. Wavelength-encoded laser particles for massively-multiplexed cell tagging. Nat. Photon. 13, 720–727 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fikouras, A. H. et al. Non-obstructive intracellular nanolasers. Nat. Commun. 9, 4817 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwok, S. J. J. et al. Excessive-dimensional multi-pass circulation cytometry through spectrally encoded mobile barcoding. Nat. Biomed. Eng. 8, 310–324 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. et al. Monitoring contractility in cardiac tissue with mobile decision utilizing biointegrated microlasers. Nat. Photon. 14, 452–458 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maniyara, R. A. et al. Tunable plasmons in ultrathin steel movies. Nat. Photon. 13, 328–333 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yun, S. H. & Kwok, S. J. J. Gentle in analysis, remedy and surgical procedure. Nat. Biomed. Eng. 1, 0008 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR utilizing chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J. et al. Full-color laser shows primarily based on natural printed microlaser arrays. Nat. Commun. 10, 870 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Deep studying with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Holguín-Lerma, J. A., Vezzoli, M., Guo, Y. & Tang, H. X. Photonic-circuit-integrated titanium: sapphire laser. Nat. Photon. 17, 338–345 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles