Vandersypen, L. M. Ok. et al. Interfacing spin qubits in quantum dots and donors—scorching, dense, and coherent. npj Quant. Inf. 3, 34 (2017).
Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing utilizing cmos know-how. Nat. Electron. 4, 872–884 (2021).
Chatterjee, A. et al. Semiconductor qubits in observe. Nat. Rev. Phys. 3, 157–177 (2021).
Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).
Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with excessive threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Floor codes: in direction of sensible large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Takeda, Ok. et al. Fast single-shot parity spin readout in a silicon double quantum dot with constancy exceeding 99%. npj Quant. Inf. 10, 22 (2024).
Huang, J. Y. et al. Excessive-fidelity spin qubit operation and algorithmic initialization above 1 Ok. Nature 627, 772–777 (2024).
Yoneda, J. et al. A quantum-dot spin qubit with coherence restricted by cost noise and constancy greater than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits through pulse engineering. Nat. Electron. 2, 151–158 (2019).
Xue, X. et al. Quantum logic with spin qubits crossing the floor code threshold. Nature 601, 343–347 (2022).
Noiri, A. et al. Quick common quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
Mills, A. R. et al. Two-qubit silicon quantum processor with operation constancy exceeding 99%. Sci. Adv. 8, eabn5130 (2022).
Wu, Y.-H. et al. Hamiltonian section error in resonantly pushed CNOT gate above the fault-tolerant threshold. npj Quant. Inf. 10, 8 (2024).
Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
Xue, X. et al. Cmos-based cryogenic management of silicon quantum circuits. Nature 593, 205–210 (2021).
Takeda, Ok. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol.16, 965–969 (2021).
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
Philips, S. G. J. et al. Common management of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
Takeda, Ok., Noiri, A., Nakajima, T., Kobayashi, T. & Tarucha, S. Quantum error correction with silicon spin qubits. Nature 608, 682–686 (2022).
van Riggelen, F. et al. Part flip code with semiconductor spin qubits. npj Quant. Inf. 8, 124 (2022).
Hile, S. J. et al. Addressable electron spin resonance utilizing donors and donor molecules in silicon. Sci. Adv. 4, eaaq1459 (2018).
Mądzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).
Muhonen, J. T. et al. Storing quantum info for 30 seconds in a nanoelectronic machine. Nat. Nanotechnol. 9, 986–991 (2014).
Pla, J. J. et al. Excessive-fidelity readout and management of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).
Muhonen, J. T. et al. Quantifying the quantum gate constancy of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27, 154205 (2015).
Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).
Reiner, J. et al. Excessive-fidelity initialization and management of electron and nuclear spins in a four-qubit register. Nat. Nanotechnol. 19, 605–611 (2024).
Keith, D. et al. Ramped measurement method for sturdy high-fidelity spin qubit readout. Sci. Adv. 8, eabq0455 (2022).
Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).
Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).
Grover, L. Ok. A quick quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Concept of Computing 212–219 (Affiliation for Computing Equipment, 1996).
Boyer, M., Brassard, G., Høyer, P. & Tapp, A. Tight bounds on quantum looking. Fortschr. Phys. 46, 493–505 (1998).
He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).
Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon machine. Nat. Commun. 12, 181 (2021).
Stemp, H. G. et al. Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits. Nat. Commun. 15, 8415 (2024).
Simmons, M. & Keizer, J. A technique for selective incorporation of dopant atoms in a semiconductive floor. Patent WO2019210370A1 (2019).
Ivie, J. A. et al. Impression of incorporation kinetics on machine fabrication with atomic precision. Phys. Rev. Appl. 16, 054037 (2021).
Wyrick, J. et al. Enhanced atomic precision fabrication by adsorption of phosphine into engineered dangling bonds on H–Si utilizing STM and DFT. ACS Nano 16, 19114–19123 (2022).
Kranz, L. et al. Exploiting a single-crystal surroundings to reduce the cost noise on qubits in silicon. Adv. Mater. 32, 2003361 (2020).
Thorvaldson, I. & Moehle, C. Uncooked knowledge and evaluation scripts underlying the publication “Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold”. Zenodo https://doi.org/10.5281/zenodo.14214375 (2024).