0 C
United States of America
Saturday, February 22, 2025

Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold


  • Vandersypen, L. M. Ok. et al. Interfacing spin qubits in quantum dots and donors—scorching, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

    Article 

    Google Scholar
     

  • Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing utilizing cmos know-how. Nat. Electron. 4, 872–884 (2021).

    Article 

    Google Scholar
     

  • Chatterjee, A. et al. Semiconductor qubits in observe. Nat. Rev. Phys. 3, 157–177 (2021).

    Article 

    Google Scholar
     

  • Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with excessive threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Floor codes: in direction of sensible large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article 

    Google Scholar
     

  • Takeda, Ok. et al. Fast single-shot parity spin readout in a silicon double quantum dot with constancy exceeding 99%. npj Quant. Inf. 10, 22 (2024).

    Article 

    Google Scholar
     

  • Huang, J. Y. et al. Excessive-fidelity spin qubit operation and algorithmic initialization above 1 Ok. Nature 627, 772–777 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoneda, J. et al. A quantum-dot spin qubit with coherence restricted by cost noise and constancy greater than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits through pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Article 

    Google Scholar
     

  • Xue, X. et al. Quantum logic with spin qubits crossing the floor code threshold. Nature 601, 343–347 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noiri, A. et al. Quick common quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, A. R. et al. Two-qubit silicon quantum processor with operation constancy exceeding 99%. Sci. Adv. 8, eabn5130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y.-H. et al. Hamiltonian section error in resonantly pushed CNOT gate above the fault-tolerant threshold. npj Quant. Inf. 10, 8 (2024).

    Article 

    Google Scholar
     

  • Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, X. et al. Cmos-based cryogenic management of silicon quantum circuits. Nature 593, 205–210 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeda, Ok. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol.16, 965–969 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philips, S. G. J. et al. Common management of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, Ok., Noiri, A., Nakajima, T., Kobayashi, T. & Tarucha, S. Quantum error correction with silicon spin qubits. Nature 608, 682–686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Riggelen, F. et al. Part flip code with semiconductor spin qubits. npj Quant. Inf. 8, 124 (2022).

    Article 

    Google Scholar
     

  • Hile, S. J. et al. Addressable electron spin resonance utilizing donors and donor molecules in silicon. Sci. Adv. 4, eaaq1459 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mądzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Muhonen, J. T. et al. Storing quantum info for 30 seconds in a nanoelectronic machine. Nat. Nanotechnol. 9, 986–991 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pla, J. J. et al. Excessive-fidelity readout and management of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muhonen, J. T. et al. Quantifying the quantum gate constancy of single-atom spin qubits in silicon by randomized benchmarking. J. Phys. Condens. Matter 27, 154205 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiner, J. et al. Excessive-fidelity initialization and management of electron and nuclear spins in a four-qubit register. Nat. Nanotechnol. 19, 605–611 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keith, D. et al. Ramped measurement method for sturdy high-fidelity spin qubit readout. Sci. Adv. 8, eabq0455 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dehollain, J. P. et al. Bell’s inequality violation with spins in silicon. Nat. Nanotechnol. 11, 242–246 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grover, L. Ok. A quick quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Concept of Computing 212–219 (Affiliation for Computing Equipment, 1996).

  • Boyer, M., Brassard, G., Høyer, P. & Tapp, A. Tight bounds on quantum looking. Fortschr. Phys. 46, 493–505 (1998).

    Article 

    Google Scholar
     

  • He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mądzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon machine. Nat. Commun. 12, 181 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Stemp, H. G. et al. Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits. Nat. Commun. 15, 8415 (2024).

  • Simmons, M. & Keizer, J. A technique for selective incorporation of dopant atoms in a semiconductive floor. Patent WO2019210370A1 (2019).

  • Ivie, J. A. et al. Impression of incorporation kinetics on machine fabrication with atomic precision. Phys. Rev. Appl. 16, 054037 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wyrick, J. et al. Enhanced atomic precision fabrication by adsorption of phosphine into engineered dangling bonds on H–Si utilizing STM and DFT. ACS Nano 16, 19114–19123 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kranz, L. et al. Exploiting a single-crystal surroundings to reduce the cost noise on qubits in silicon. Adv. Mater. 32, 2003361 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldson, I. & Moehle, C. Uncooked knowledge and evaluation scripts underlying the publication “Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold”. Zenodo https://doi.org/10.5281/zenodo.14214375 (2024).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles