Giorgio, M., Trinei, M., Migliaccio, E. & Pelicci, P. G. Hydrogen peroxide: a metabolic by-product or a typical mediator of ageing indicators? Nat. Rev. Mol. Cell Biol. 8, 722–728 (2007).
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling brokers. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
Forman, H. J., Maiorino, M. & Ursini, F. Signaling capabilities of reactive oxygen species. Biochemistry 49, 835–842 (2010).
Patel, A. et al. A liquid-to-solid section transition of the ALS protein FUS accelerated by illness mutation. Cell 162, 1066–1077 (2015).
Protter, D. S. & Parker, R. Ideas and properties of stress granules. Traits Cell Biol. 26, 668–679 (2016).
Fujikawa, D. et al. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr. Biol. 33, 1967–1981.e1968 (2023).
Goulev, Y. et al. Nonlinear suggestions drives homeostatic plasticity in H2O2 stress response. eLife 6, e23971 (2017).
Davies, Okay. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).
Heusch, G. Myocardial ischaemia–reperfusion harm and cardioprotection in perspective. Nat. Rev. Cardiol. 17, 773–789 (2020).
Hausenloy, D. J. & Yellon, D. M. Ischaemic conditioning and reperfusion harm. Nat. Rev. Cardiol. 13, 193–209 (2016).
Carreau, A., Hafny-Rahbi, B. E., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen stress of human tissues a vital parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).
Tang, J. et al. Selective hydrogen peroxide conversion tailor-made by floor, interface, and system engineering. Joule 5, 1432–1461 (2021).
Shi, X., Again, S., Gill, T. M., Siahrostami, S. & Zheng, X. Electrochemical synthesis of H2O2 by two-electron water oxidation response. Chem 7, 38–63 (2021).
Shi, X. et al. Understanding exercise developments in electrochemical water oxidation to kind hydrogen peroxide. Nat. Commun. 8, 701 (2017).
Siahrostami, S., Li, G.-L., Viswanathan, V. & Nørskov, J. Okay. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017).
Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Cost separation in photosystem II: a comparative and evolutionary overview. BBA Bioenerg. 1817, 26–43 (2012).
McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).
Biswal, B., Joshi, P., Raval, M. & Biswal, U. Photosynthesis, a world sensor of environmental stress in inexperienced vegetation: stress signalling and adaptation. Curr. Sci. 101, 47–56 (2011).
Younger, I. D. et al. Construction of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).
Wu, X. et al. Modular α-tertiary amino ester synthesis by way of cobalt-catalysed uneven aza-Barbier response. Nat. Chem. 16, 398–407 (2024).
Li, Y. et al. Ammonia formation by a thiolate-bridged diiron amide advanced as a nitrogenase mimic. Nat. Chem. 5, 320–326 (2013).
Wang, Z. et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative injury in opposition to hypoxic tumors. Nat. Commun. 9, 3334 (2018).
Wang, F., Zhang, Y., Du, Z., Ren, J. & Qu, X. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in dwelling cells. Nat. Commun. 9, 1209 (2018).
Proppe, A. H. et al. Bioinspiration in mild harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020).
Kaasalainen, M. et al. Lithiated porous silicon nanowires stimulate periodontal regeneration. Nat. Commun. 15, 487 (2024).
Prominski, A. et al. Porosity-based heterojunctions allow leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).
Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).
Parameswaran, R. et al. Photoelectrochemical modulation of neuronal exercise with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266 (2018).
Zhang, H., Chen, G. & Bahnemann, D. W. Photoelectrocatalytic supplies for environmental functions. J. Mater. Chem. A 19, 5089–5121 (2009).
Ali, M. et al. Nanostructured photoelectrochemical photo voltaic cell for nitrogen discount utilizing plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016).
Han, Y., Tretiak, S. & Kilin, D. Dynamics of cost switch at Au/Si metal-semiconductor nano-interface. Mol. Phys. 112, 474–484 (2014).
Wang, Z., Liu, J., Wu, L., Yu, Z. & Yang, H. Focus-dependent wrestling between detrimental and protecting results of H2O2 throughout myocardial ischemia/reperfusion. Cell Demise Dis. 5, e1297 (2014).
Siahrostami, S. et al. Enabling direct H2O2 manufacturing by way of rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).
Phillips, A. W. et al. Gold-decorated silicon nanowire photocatalysts for intracellular manufacturing of hydrogen peroxide. ACS Appl. Mater. Interfaces 13, 15490–15500 (2021).
Kwon, S. H., Pimentel, D. R., Remondino, A., Sawyer, D. B. & Colucci, W. S. H2O2 regulates cardiac myocyte phenotype through concentration-dependent activation of distinct kinase pathways. J. Mol. Cell. Cardiol. 35, 615–621 (2003).
Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the results of eIF2α phosphorylation on translation and stress granule meeting. eLife 4, e05033 (2015).
Worldwide Fee on Non-Ionizing Radiation Safety (ICNIRP). ICNIRP pointers on limits of publicity to laser radiation of wavelengths between 180 nm and 1,000 μm. Well being Phys. 105, 271–295 (2013).
Sengupta, A., Molkentin, J. D., Paik, J.-H., DePinho, R. A. & Yutzey, Okay. E. FoxO transcription components promote cardiomyocyte survival upon induction of oxidative stress. J. Biol. Chem. 286, 7468–7478 (2011).
Wang, X.-X. et al. SIRT6 protects cardiomyocytes in opposition to ischemia/reperfusion harm by augmenting FoxO3α-dependent antioxidant protection mechanisms. Primary Res. Cardiol. 111, 13 (2016).
Zou, N. et al. Important function of extracellular warmth shock cognate protein 70 within the myocardial inflammatory response and cardiac dysfunction after international ischemia-reperfusion. Am. J. Physiol. Coronary heart Circ. Physiol. 294, H2805–H2813 (2008).
Track, Y. J., Zhong, C. B. & Wang, X. B. Warmth shock protein 70: a promising therapeutic goal for myocardial ischemia–reperfusion harm. J. Cell. Physiol. 234, 1190–1207 (2019).
Pendergrass, Okay. D. et al. Acute preconditioning of cardiac progenitor cells with hydrogen peroxide enhances angiogenic pathways following ischemia-reperfusion harm. Stem Cells Dev. 22, 2414–2424 (2013).
Yaguchi, Y. et al. Protecting results of hydrogen peroxide in opposition to ischemia/reperfusion harm in perfused rat hearts. Circ. J. 67, 253–258 (2003).
Herr, D. J., Aune, S. E. & Menick, D. R. Induction and evaluation of ischemia-reperfusion harm in Langendorff-perfused rat hearts. JoVE 101, e52908 (2015).
Zhang, J. Created in BioRender. https://BioRender.com/a52d094 (2025).
Zhang, J. Created in BioRender. https://BioRender.com/m67v928 (2025).
Zhang, J. Created in BioRender. https://BioRender.com/o11i493 (2025).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953 (1994).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).
Methfessel, M. & Paxton, A. Excessive-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).
Pack, J. D. & Monkhorst, H. J. ‘Particular factors for Brillouin-zone integrations’—a reply. Phys. Rev. B 16, 1748 (1977).
Grimme, S. Semiempirical GGA-type density useful constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Nørskov, J. Okay. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
Fang, Y. et al. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal progress research. Nat. Commun. 8, 2014 (2017).
Li, P. et al. Monolithic silicon for top spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).