Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).
Trnka, T. M. & Grubbs, R. H. The event of L2X2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).
Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).
Fürstner, A. Olefin metathesis and past. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).
Grubbs, R. H. & Chang, S. Latest advances in olefin metathesis and its utility in natural synthesis. Tetrahedron 54, 4413–4450 (1998).
Nicolaou, Okay. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in whole synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).
Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Latest advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).
Becker, M. R., Watson, R. B. & Schindler, C. S. Past olefins: new metathesis instructions for synthesis. Chem. Soc. Rev. 47, 7867–7881 (2018).
Hilf, S. & Kilbinger, A. F. M. Useful finish teams for polymers ready utilizing ring-opening metathesis polymerization. Nat. Chem. 1, 537–546 (2009).
Mutlu, H., de Espinosa, L. M. & Meier, M. A. R. Acyclic diene metathesis: a flexible device for the development of outlined polymer architectures. Chem. Soc. Rev. 40, 1404–1445 (2011).
Sinclair, F., Alkattan, M., Prunet, J. & Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem. 8, 3385–3398 (2017).
Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A normal system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).
Lee, J. B., Ott, Okay. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanaethylene interconversion. Investigation of a degenerate olefin metathesis response. J. Am. Chem. Soc. 104, 7491–7496 (1982).
Tanaka, Okay., Tanaka, Okay., Takeo, H. & Matsumura, C. Intermediates for the degenerate and productive metathesis of propene elucidated by the metathesis response of (Z)-propene-1–d1. J. Am. Chem. Soc. 109, 2422–2425 (1987).
Stewart, I. C., Keitz, B. Okay., Kuhn, Okay. M., Thomas, R. M. & Grubbs, R. H. Nonproductive occasions in ring-closing metathesis utilizing ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).
Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).
Easter, Q. T. & Blum, S. A. Proof for dynamic chemical kinetics at particular person molecular ruthenium catalysts. Angew. Chem. Int. Ed. 57, 1572–1575 (2018).
Easter, Q. T., Garcia, A. I. V. & Blum, S. A. Single-polymer–particle development kinetics with molecular catalyst speciation and single-turnover imaging. ACS Catal. 9, 3375–3383 (2019).
Liu, C. et al. Single polymer development dynamics. Science 358, 352–355 (2017).
Ibrahem, I., Yu, M., Schrock, R. R. & Hoveyda, A. H. Extremely Z– and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc. 131, 3844–3845 (2009).
Flook, M. M., Jiang, A. J., Schrock, R. R., Müller, P. & Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide advanced. J. Am. Chem. Soc. 131, 7962–7963 (2009).
Jiang, A. J., Zhao, Y., Schrock, R. R. & Hoveyda, A. H. Extremely Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 131, 16630–16631 (2009).
Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides via catalytic cross-metathesis. Nature 531, 459–465 (2016).
Koh, M. J. et al. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature 542, 80–85 (2017).
Torker, S., Müller, A. & Chen, P. Constructing stereoselectivity right into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization. Angew. Chem. Int. Ed. 49, 3762–3766 (2010).
Endo, Okay. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011).
Keitz, B. Okay., Endo, Okay., Herbert, M. B. & Grubbs, R. H. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 133, 9686–9688 (2011).
Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Readily accessible and simply modifiable Ru-based catalysts for environment friendly and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).
Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Reactivity and selectivity variations between catecholate and catechothiolate Ru complexes. Implications concerning design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337–14340 (2014).
Yang, C. et al. Unveiling the complete response path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).
Zhang, A. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 6, 266–275 (2023).
Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).
Yang, C. et al. Actual-time monitoring of response stereochemistry via single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).
Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).
Yang, C. et al. Electrical field-catalyzed single-molecule Diels–Alder response dynamics. Sci. Adv. 7, eabf0689 (2021).
Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).
Guo, Y., Yang, C., Zhang, L. & Guo, X. Tunable interferometric results between single-molecule Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 145, 6577–6584 (2023).
Guo, Y., Yang, C., Zhou, S., Liu, Z. & Guo, X. A single-molecule memristor based mostly on an electric-field-driven dynamical construction reconfiguration. Adv. Mater. 34, 2204827 (2022).
Chen, H. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).
Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as instruments for chemical and biochemical evaluation. Nat. Chem. 15, 600–614 (2023).
Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect digital reactions on the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).
Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).
Anderson, P. W. Extra is completely different. Science 177, 393–396 (1972).
Strogatz, S. et al. Fifty years of ‘Extra is completely different’. Nat. Rev. Phys. 4, 508–510 (2022).
Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Construction and reactivity/selectivity management by oriented-external electrical fields. Chem. Soc. Rev. 47, 5125–5145 (2018).
Shaik, S., Danovich, D., Pleasure, J., Wang, Z. & Stuyver, T. Electrical-field mediated chemistry: uncovering and exploiting the potential of (oriented) electrical fields to exert chemical catalysis and response management. J. Am. Chem. Soc. 142, 12551–12562 (2020).
Shaik, S., Mandal, D. & Ramanan, R. Oriented electrical fields as future good reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).
Dief, E. M. & Darwish, N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 108 V m−1: a floor bonding and a single-protein circuit research. Chem. Sci. 14, 3428–3440 (2023).
Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder response. Nature 531, 88–91 (2016).
Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).
Frisch, M. J. et al. Gaussian 09 (Gaussian, 2013).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and round dichroism spectra utilizing density purposeful pressure fields. J. Phys. Chem. 98, 11623–11627 (1994).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping operate in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).
Barone, V. & Cossi, M. Quantum calculation of molecular energies and vitality gradients in answer by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).