1.7 C
United States of America
Friday, January 31, 2025

From micro to macro, nanotechnology demystifies acute pancreatitis: a brand new technology of remedy choices emerges | Journal of Nanobiotechnology


  • Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Toth M, Genetics. Cell Biology, and pathophysiology of pancreatitis. Gastroenterology. 2019;156(7):1951–68. e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenner S, Vege SS, Sheth SG, Sauer B, Yang A, Conwell DL, et al. American Faculty of Gastroenterology Tips: administration of Acute Pancreatitis. Am J Gastroenterol. 2024;119(3):419–37.

    Article 
    PubMed 

    Google Scholar
     

  • Boxhoorn L, Voermans RP, Bouwense SA, Bruno MJ, Verdonk RC, Boermeester MA, et al. Acute pancreatitis. Lancet. 2020;396(10252):726–34.

    Article 
    PubMed 

    Google Scholar
     

  • Petrov MS, Yadav D. International epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):175–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic most cancers. Gastroenterology. 2013;144(6):1252–61.

    Article 
    PubMed 

    Google Scholar
     

  • Iannuzzi JP, King JA, Leong JH, Quan J, Windsor JW, Tanyingoh D, et al. International incidence of Acute Pancreatitis is rising over time: a scientific overview and Meta-analysis. Gastroenterology. 2022;162(1):122–34.

    Article 
    PubMed 

    Google Scholar
     

  • Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(8):479–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mederos MA, Reber HA, Girgis MD. Acute Pancreatitis: a overview. JAMA. 2021;325(4):382–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faghih M, Singh VK. Do elevated triglycerides actually set off Acute Pancreatitis? Dig Dis Sci. 2019;64(3):616–8.

    Article 
    PubMed 

    Google Scholar
     

  • Jia W, Xu L, Xu W, Yang M, Zhang Y. Utility of nanotechnology within the prognosis and remedy of acute pancreatitis. Nanoscale Adv. 2022;4(8):1949–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386(9988):85–96.

    Article 
    PubMed 

    Google Scholar
     

  • Greenberg JA, Hsu J, Bawazeer M, Marshall J, Friedrich JO, Nathens A, et al. Medical follow guideline: administration of acute pancreatitis. Can J Surg. 2016;59(2):128–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schepers NJ, Bakker OJ, Besselink MG, Ahmed Ali U, Bollen TL, Gooszen HG, et al. Impression of traits of organ failure and contaminated necrosis on mortality in necrotising pancreatitis. Intestine. 2019;68(6):1044–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dijk SM, Hallensleben NDL, van Santvoort HC, Fockens P, van Goor H, Bruno MJ, et al. Acute pancreatitis: current advances via randomised trials. Intestine. 2017;66(11):2024–32.

    Article 
    PubMed 

    Google Scholar
     

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The historical past of Nanoscience and Nanotechnology: from chemical-physical functions to Nanomedicine. Molecules. 2019;25(1).

  • Xie M, Liu X, Wang S. Degradation of methylene blue via Fenton-like response catalyzed by MoS(2)-doped sodium alginate/Fe hydrogel. Colloids Surf B Biointerfaces. 2022;214:112443.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil-Sen Y. Advances in nano-biomaterials and their functions in biomedicine. Emerg Prime Life Sci. 2021;5(1):169–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Various functions of Nanomedicine. ACS Nano. 2017;11(3):2313–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim BY, Rutka JT, Chan WC, Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Q, Jiang X, Zhai YY, Luo LZ, Xu HL, Xiao J, et al. Protecting results and mechanisms of bilirubin nanomedicine towards acute pancreatitis. J Management Launch. 2020;322:312–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, et al. Nanomedicine as potential most cancers remedy through concentrating on dysregulated transcription components. Semin Most cancers Biol. 2023;89:38–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mujahid MH, Upadhyay TK, Khan F, Pandey P, Park MN, Sharangi AB, et al. Metallic and metallic oxide-derived nanohybrid as a instrument for biomedical functions. Biomed Pharmacother. 2022;155:113791.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44(10):1029–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi Kumar MN. Nano and microparticles as managed drug supply gadgets. J Pharm Pharm Sci. 2000;3(2):234–58.

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6(12):1078–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-review of Diagnostic and Therapeutic Nano-Instruments for Pancreatitis. Int J Nanomed. 2022;17:4367–81.

    Article 
    CAS 

    Google Scholar
     

  • Qiang H, Li J, Wang S, Feng T, Cai H, Liu Z, et al. Distribution of systemically administered nanoparticles throughout acute pancreatitis: results of particle dimension and illness severity. Pharmazie. 2021;76(5):180–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, An H, Zhang D, Tao H, Dou Y, Li X, et al. A self-illuminating nanoparticle for irritation imaging and most cancers remedy. Sci Adv. 2019;5(1):eaat2953.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi TA, Tabrez S, et al. Development of most cancers immunotherapy utilizing nanoparticles-based nanomedicine. Semin Most cancers Biol. 2022;86(Pt 2):624–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama Okay, Ida S, et al. Involvement of autophagy in trypsinogen activation throughout the pancreatic acinar cells. J Cell Biol. 2008;181(7):1065–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, et al. Mitochondrial dysfunction, via impaired autophagy, results in endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal fashions. Gastroenterology. 2018;154(3):689–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorelick FS, Thrower E. The acinar cell and early pancreatitis responses. Clin Gastroenterol Hepatol. 2009;7(11 Suppl):S10–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witt H, Apte MV, Keim V, Wilson JS. Persistent pancreatitis: challenges and advances in pathogenesis, genetics, prognosis, and remedy. Gastroenterology. 2007;132(4):1557–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin S, Orabi AI, Le T, Javed TA, Sah S, Eisses JF, et al. Publicity to Radiocontrast brokers induces pancreatic irritation by activation of Nuclear Issue-kappaB, Calcium Signaling, and Calcineurin. Gastroenterology. 2015;149(3):753–64. e11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Sternfeld L, Yang F, Rodriguez JA, Ross C, Hayden MR, et al. Enhanced susceptibility to pancreatitis in extreme hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like operate of pancreatic lipase in pancreatic cells. Intestine. 2009;58(3):422–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zierke L, John D, Gischke M, Tran QT, Sendler M, Weiss FU, et al. Initiation of acute pancreatitis in mice is impartial of fusion between lysosomes and zymogen granules. Cell Mol Life Sci. 2024;81(1):207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren J, Jia X, Zhao Y, Shi W, Lu J, Zhang Y, et al. The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8(+) T cells. Cell Mol Immunol. 2017;14(7):639–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang QQ, Shi ZJ, Yuan T, Chen SY, Li YP, Zhang HR, et al. Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers safety towards acute pancreatitis in mice. Int Immunopharmacol. 2023;117:109974.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boonchan M, Arimochi H, Otsuka Okay, Kobayashi T, Uehara H, Jaroonwitchawan T, et al. Necroptosis protects towards exacerbation of acute pancreatitis. Cell Demise Dis. 2021;12(6):601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan PY, Ma Y, Li XN, Qu FZ, Ji L, Guo XY, et al. Inhibition of RIPK1-dependent regulated acinar cell necrosis supplies safety towards acute pancreatitis through the RIPK1/NF-kappaB/AQP8 pathway. Exp Mol Med. 2019;51(8):1–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen L, Javed TA, Yimlamai D, Mukherjee A, Xiao X, Husain SZ. Transient excessive strain in pancreatic ducts promotes irritation and alters tight junctions through Calcineurin Signaling in mice. Gastroenterology. 2018;155(4):1250–63. e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husain SZ, Orabi AI, Muili KA, Luo Y, Sarwar S, Mahmood SM, et al. Ryanodine receptors contribute to bile acid-induced pathological calcium signaling and pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302(12):G1423–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, et al. Deletion of the WD40 area of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy. 2025;21(1):210–22.

  • Huang W, Cane MC, Mukherjee R, Szatmary P, Zhang X, Elliott V, et al. Caffeine protects towards experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2 + launch. Intestine. 2017;66(2):301–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Zhong R, Hu B. Mitochondrial dysfunction within the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2023.S1499-3872(23)00246-1.

  • Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, et al. A microRNA checkpoint for ca(2+) signaling and overload in acute pancreatitis. Mol Ther. 2022;30(4):1754–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP within the physiology and pathology of the exocrine pancreas. Physiol Rev. 2021;101(4):1691–744.

    Article 
    PubMed 

    Google Scholar
     

  • Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, et al. MSCs ship hypoxia-treated Mitochondria Reprogramming Acinar metabolism to alleviate extreme Acute Pancreatitis Harm. Adv Sci (Weinh). 2023;10(25):e2207691.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong JA, Money NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell loss of life independently of cyclophilin D, leading to an apoptosis-to-necrosis shift. J Biol Chem. 2018;293(21):8032–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q, et al. Dihydrodiosgenin protects towards experimental acute pancreatitis and related lung harm via mitochondrial safety and PI3Kgamma/Akt inhibition. Br J Pharmacol. 2018;175(10):1621–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Wen L, Shen Y, Shi N, Xing Z, Xia Q, et al. One compound of saponins from Disocorea zingiberensis protected towards experimental acute pancreatitis by stopping mitochondria-mediated necrosis. Sci Rep. 2016;6:35965.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mareninova OA, Hermann Okay, French SW, O’Konski MS, Pandol SJ, Webster P, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent fashions of acute pancreatitis. J Clin Make investments. 2009;119(11):3340–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Wang X, Zhang X, Zhang B, Meng X, Qian D, et al. Irritation and Acinar Cell Twin-Focusing on nanomedicines for Synergistic Therapy of Acute Pancreatitis through ca(2+) homeostasis regulation and pancreas autodigestion inhibition. ACS Nano. 2024;18(18):11778–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Blazquez C, Lacalle-Gonzalez C, Sanz-Criado L, Ochieng’ Otieno M, Garcia-Foncillas J, Martinez-Useros J. Iron-dependent cell loss of life: a New Therapy Method towards Pancreatic Ductal Adenocarcinoma. Int J Mol Sci. 2023;24:19.

    Article 

    Google Scholar
     

  • Mareninova OA, Sendler M, Malla SR, Yakubov I, French SW, Tokhtaeva E, et al. Lysosome related membrane proteins preserve pancreatic acinar cell homeostasis: LAMP-2 poor mice develop pancreatitis. Cell Mol Gastroenterol Hepatol. 2015;1(6):678–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang MJ, Wang YC, Masson E, Wang YH, Yu D, Qian YY, et al. SEC16A variants predispose to power pancreatitis by impairing ER-to-Golgi transport and inducing ER stress. Adv Sci (Weinh). 2024;11(38):e2402550.

  • Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of mobile homeostasis with implications in illness pathology. Entrance Cell Dev Biol. 2024;12:1436420.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis S, Evans DL, Tsugorka TT, Peng S, Stauderman Okay, Gerasimenko O et al. Mixture of the CRAC Channel Inhibitor CM4620 and galactose as a possible remedy for Acute Pancreatitis. Operate (Oxf). 2024;5(4).

  • Waldron RT, Chen Y, Pham H, Go A, Su HY, Hu C, et al. The Orai ca(2+) channel inhibitor CM4620 targets each parenchymal and immune cells to cut back irritation in experimental acute pancreatitis. J Physiol. 2019;597(12):3085–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruen C, Miller J, Wilburn J, Mackey C, Bollen TL, Stauderman Okay, et al. Auxora for the remedy of sufferers with Acute Pancreatitis and Accompanying systemic inflammatory response syndrome: Medical Growth of a calcium release-activated Calcium Channel inhibitor. Pancreas. 2021;50(4):537–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi H, Shan W, Li M, Wang Z, Li Y. Trehalose attenuates testicular getting older by activating autophagy and enhancing mitochondrial high quality. Andrology. 2024.

  • Zhao M, Li C, Shen F, Wang M, Jia N, Wang C. Naringenin ameliorates LPS-induced acute lung harm via its anti-oxidative and anti inflammatory exercise and by inhibition of the PI3K/AKT pathway. Exp Ther Med. 2017;14(3):2228–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou W, Zhang J, Solar A, Zhang E, Ding L, Mukherjee S, et al. Protecting impact of naringenin towards experimental colitis through suppression of toll-like receptor 4/NF-kappaB signalling. Br J Nutr. 2013;110(4):599–608.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li WS, Lin SC, Chu CH, Chang YK, Zhang X, Lin CC et al. The gastroprotective impact of naringenin towards ethanol-Induced gastric ulcers in mice via inhibiting oxidative and inflammatory responses. Int J Mol Sci. 2021;22(21).

  • Li Y, Pan Y, Gao L, Zhang J, Xie X, Tong Z, et al. Naringenin protects towards Acute Pancreatitis in two experimental fashions in mice by NLRP3 and Nrf2/HO-1 pathways. Mediators Inflamm. 2018;2018:3232491.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X, Lin T, Zhu Q, Zhang Y, Track Z, Pan X. Naringenin protects towards acute pancreatitis-associated intestinal harm by inhibiting NLRP3 inflammasome activation through AhR signaling. Entrance Pharmacol. 2023;14:1090261.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, et al. Emodin ameliorates Acute Pancreatitis-Related Lung Harm via inhibiting the alveolar macrophages pyroptosis. Entrance Pharmacol. 2022;13:873053.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo F, Zhou Q, Wu Y, Chen M, Zhao L, Xiang H. Emodin alleviates Sodium Taurocholate-Induced pancreatic ductal cell harm by inhibiting the S100A9/VNN1 signaling pathway. Pancreas. 2022;51(7):739–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Duan L, Wu N, Xu X, Xin J, Jiang S, et al. Baicalin ameliorates pancreatic fibrosis by inhibiting the activation of pancreatic stellate cells in mice with power pancreatitis. Entrance Pharmacol. 2020;11:607133.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao ZF, Zhang Y, Solar Y, Zhang CH, Liu MW. Protecting results of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress via mir-136-5p downregulation. Sci Prog. 2021;104(2):368504211026118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Y, Chen Y, Wang L, Tou J. Results of baicalin on inflammatory response, oxidative stress and PKDl and NF-kB protein expressions in rats with extreme acute pancreatitis1. Acta Cir Bras. 2018;33(7):556–64.

    Article 
    PubMed 

    Google Scholar
     

  • Sheu SS, Nauduri D, Anders MW. Focusing on antioxidants to mitochondria: a brand new therapeutic route. Biochim Biophys Acta. 2006;1762(2):256–65.

  • Dong X, Fu J, Yin X, Cao S, Li X, Lin L, et al. Emodin: a overview of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res. 2016;30(8):1207–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Vitamins. 2019;11(10).

  • Lodge JK, Corridor WL, Jeanes YM, Proteggente AR. Physiological components influencing vitamin E biokinetics. Ann N Y Acad Sci. 2004;1031:60–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ancuceanu R, Dinu M, Dinu-Pirvu C, Anuta V, Negulescu V. Pharmacokinetics of B-Ring Unsubstituted flavones. Pharmaceutics. 2019;11(8).

  • Garcia-Rayado G, Cardenas-Jaen Okay, de-Madaria E. In direction of evidence-based and personalised care of acute pancreatitis. United Eur Gastroenterol J. 2020;8(4):403–9.

    Article 

    Google Scholar
     

  • Cao X, Hu Y, Luo S, Wang Y, Gong T, Solar X, et al. Neutrophil-mimicking therapeutic nanoparticles for focused chemotherapy of pancreatic carcinoma. Acta Pharm Sin B. 2019;9(3):575–89.

    Article 
    PubMed 

    Google Scholar
     

  • Brandl T, Simic O, Skaanderup PR, Namoto Okay, Berst F, Ehrhardt C, et al. Trypsin inhibitors for the remedy of pancreatitis. Bioorg Med Chem Lett. 2016;26(17):4340–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Present developments and challenges in most cancers administration and remedy utilizing designer nanomaterials. Nano Converg. 2019;6(1):23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demirturk N, Bilensoy E. Nanocarriers concentrating on the illnesses of the pancreas. Eur J Pharm Biopharm. 2022;170:10–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan Z, Mao H, Guo M, Li Y, Zhu A, Yang H, et al. Extremely environment friendly hierarchical micelles integrating photothermal remedy and singlet oxygen-synergized chemotherapy for most cancers eradication. Theranostics. 2014;4(4):399–411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, et al. Photosensitizer Micelles along with IDO inhibitor improve Most cancers Photothermal Remedy and Immunotherapy. Adv Sci (Weinh). 2018;5(5):1700891.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou X, Cao X, Tu H, Zhang ZR, Deng L. Irritation-targeted supply of Celastrol through Neutrophil membrane-coated nanoparticles within the administration of Acute Pancreatitis. Mol Pharm. 2019;16(3):1397–405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan W, Li Z, Qiu S, Dai C, Wu S, Zheng X, et al. Octahedral Pt-MOF with au deposition for plasmonic impact and Schottky junction enhanced hydrogenothermal remedy of rheumatoid arthritis. Mater At this time Bio. 2022;13:100214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou L, Solar R, Jiang X, Lin X, Huang H, Bao S, et al. Tumor Microenvironment-Responsive, Multistaged Liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced Most cancers Remedy. ACS Appl Mater Interfaces. 2020;12(27):30031–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao Q, Kou L, Tu Y, Zhu L. MMP-Responsive ‘Good’ drug supply and Tumor Focusing on. Traits Pharmacol Sci. 2018;39(8):766–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taguchi Okay, Nagao S, Maeda H, Yanagisawa H, Sakai H, Yamasaki Okay, et al. Biomimetic carbon monoxide supply based mostly on hemoglobin vesicles ameliorates acute pancreatitis in mice through the regulation of macrophage and neutrophil exercise. Drug Deliv. 2018;25(1):1266–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassanzadeh P, Arbabi E, Rostami F. Coating of ferulic acid-loaded silk fibroin nanoparticles with neutrophil membranes: a promising technique towards the acute pancreatitis. Life Sci. 2021;270:119128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kou L, Solar R, Xiao S, Zheng Y, Chen Z, Cai A, et al. Ambidextrous Method to disrupt Redox Stability in Tumor cells with elevated ROS manufacturing and decreased GSH synthesis for Most cancers Remedy. ACS Appl Mater Interfaces. 2019;11(30):26722–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz MEM, Corvo ML, Martins MB, Simoes S, Gaspar MM. Liposomes as instruments to enhance therapeutic enzyme efficiency. Pharmaceutics. 2022;14(3).

  • Allen TM, Cullis PR. Liposomal drug supply techniques: from idea to medical functions. Adv Drug Deliv Rev. 2013;65(1):36–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren Y, Liu W, Zhang L, Zhang J, Bi J, Wang T, et al. Milk fats globule EGF issue 8 restores mitochondrial operate through integrin-medicated activation of the FAK-STAT3 signaling pathway in acute pancreatitis. Clin Transl Med. 2021;11(2):e295.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell loss of life through IRE1-JNK-CHOP pathway and inhibition of G9a in gastric most cancers cells. Cell Demise Dis. 2018;9(9):875.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y et al. Kaempferol alleviates murine experimental colitis by restoring intestine microbiota and inhibiting the LPS-TLR4-NF-κB Axis. Entrance Immunol. 2021;12.

  • Crocetto F, di Zazzo E, Buonerba C, Aveta A, Pandolfo SD, Barone B et al. Kaempferol, Myricetin and fisetin in prostate and bladder Most cancers: a scientific overview of the literature. Vitamins. 2021;13(11).

  • Wen E, Cao Y, He S, Zhang Y, You L, Wang T, et al. The mitochondria-targeted Kaempferol nanoparticle ameliorates extreme acute pancreatitis. J Nanobiotechnol. 2024;22(1):148.

    Article 
    CAS 

    Google Scholar
     

  • Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, et al. Utility of the Nano-Drug Supply System in Therapy of Cardiovascular illnesses. Entrance Bioeng Biotechnol. 2019;7:489.

    Article 
    PubMed 

    Google Scholar
     

  • Ren T, Mi Y, Wei J, Han X, Zhang X, Zhu Q et al. Advances in Nano-Useful supplies in focused thrombolytic drug supply. Molecules. 2024;29(10).

  • Yildirim AB, Gol M, Yigin A, Cimen L, Dinc H, Yildiz H et al. Therapeutic use of fisetin and pirfenidone mixture in bleomycin-induced pulmonary fibrosis in grownup male albino rats. Naunyn Schmiedebergs Arch Pharmacol. 2024.

  • Zamanian MY, Taheri N, Ramadan MF, Mustafa YF, Alkhayyat S, Sergeevna KN, et al. A complete view on the fisetin impression on colorectal most cancers in animal fashions: specializing in mobile and molecular mechanisms. Animal Mannequin Exp Med. 2024;7(5):591–605.

  • Elsallabi O, Patruno A, Pesce M, Cataldi A, Carradori S, Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules. 2022;27(3).

  • Solar Y, Shen X, Yang J, Tan C. Hyaluronic Acid-Coated nanoliposomes as Supply techniques for Fisetin: Stability, membrane fluidity, and Bioavailability. Meals. 2024;13:15.


    Google Scholar
     

  • Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu H, Meshali II. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo evaluation towards extreme acute pancreatitis. Sci Rep. 2023;13(1):19110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Solar T, Jiang C. Biomacromolecules as carriers in drug supply and tissue engineering. Acta Pharm Sin B. 2018;8(1):34–50.

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Z, Wang D, Zheng C, Xie M, Chen Y, Zhou Y et al. Elimination of intracellular ca(2+) overload by BAPTA–AM liposome nanoparticles: a promising remedy for acute pancreatitis. Int J Mol Med. 2024;53(4).

  • Wang Y, Pu M, Yan J, Zhang J, Wei H, Yu L, et al. 1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid Acetoxymethyl Ester Loaded reactive oxygen species responsive hyaluronic acid-bilirubin nanoparticles for acute kidney Harm Remedy through assuaging calcium overload mediated endoplasmic reticulum stress. ACS Nano. 2023;17(1):472–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quarato G, Llambi F, Man CS, Min J, Actis M, Solar H, et al. Ca(2+)-mediated mitochondrial internal membrane permeabilization induces cell loss of life independently of Bax and Bak. Cell Demise Differ. 2022;29(7):1318–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, et al. Calcium-dependent enzyme activation and vacuole formation within the apical granular area of pancreatic acinar cells. Proc Natl Acad Sci U S A. 2000;97(24):13126–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, Xu RH, Dai Y. Nanoghosts: harnessing mesenchymal stem cell membrane for building of Drug Supply platforms Through Optimized Biomimetics. Small. 2024;20(1):e2304824.

    Article 
    PubMed 

    Google Scholar
     

  • Fan L, Wei A, Gao Z, Mu X. Present progress of mesenchymal stem cell membrane-camouflaged nanoparticles for focused remedy. Biomed Pharmacother. 2023;161:114451.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Qian D, Wang X, Zhang X, Li Z, Meng X, et al. Biomimetic trypsin-responsive structure-bridged Mesoporous Organosilica Nanomedicine for Exact Therapy of Acute Pancreatitis. ACS Nano. 2024;18(29):19283–302.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Wu S, Ding Q, Fan Q, Dai Y, Guo S, et al. Current advances in cell membrane-camouflaged nanoparticles for irritation remedy. Drug Deliv. 2021;28(1):1109–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug supply. J Management Launch. 2015;220(Pt B):600–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, et al. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of most cancers: improved pharmacokinetics, cell internalization and anticancer efficacy. J Management Launch. 2021;335:130–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8(1):61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Liu X, Yang J, Wang Okay, Ai Z, Shang J, et al. Biomimetic supply of emodin through macrophage membrane-coated UiO-66-NH(2) nanoparticles for acute pancreatitis remedy. Biochem Biophys Res Commun. 2024;702:149649.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayerle J, Dummer A, Sendler M, Malla SR, van den Brandt C, Teller S, et al. Differential roles of inflammatory cells in pancreatitis. J Gastroenterol Hepatol. 2012;27(Suppl 2):47–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug supply system for focused glioma remedy. Biomaterials. 2021;273:120784.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye B, Zhao B, Wang Okay, Guo Y, Lu Q, Zheng L, et al. Neutrophils mediated multistage nanoparticle supply for prompting tumor photothermal remedy. J Nanobiotechnol. 2020;18(1):138.

    Article 
    CAS 

    Google Scholar
     

  • Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug supply. Bioact Mater. 2024;35:150–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen KH, Nguyen N, Huang TY, Lin YJ, Yu YT, Track HL, et al. Macrophage-hitchhiked orally administered beta-glucans-Functionalized nanoparticles as Precision-guided Stealth Missiles for focused pancreatic Most cancers remedy. Adv Mater. 2023;35(40):e2304735.

    Article 
    PubMed 

    Google Scholar
     

  • Shi Y, Yang J, Gao F, Zhang Q. Covalent Natural frameworks: current progress in Biomedical Functions. ACS Nano. 2023;17(3):1879–905.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Fang F, Li L, Zhang J. Self-assembled Natural nanomaterials for Drug Supply, Bioimaging, and Most cancers Remedy. ACS Biomater Sci Eng. 2020;6(9):4816–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, et al. Natural and inorganic nanomaterials: fabrication, properties and functions. RSC Adv. 2023;13(20):13735–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natesan V, Kim SJ. The Development of Natural Primarily based nanoparticles within the remedy of diabetes and its views. Biomol Ther (Seoul). 2023;31(1):16–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with fast clearance for biomedical functions. Chem Soc Rev. 2021;50(15):8669–742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological functions: ongoing analysis and medical trials. Nanoscale Adv. 2020;2(11):5046–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, et al. Nanotechnology in healthcare, and its security and environmental dangers. J Nanobiotechnol. 2024;22(1):715.

    Article 

    Google Scholar
     

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic functions of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, et al. Nano-Selenium and its nanomedicine functions: a crucial overview. Int J Nanomed. 2018;13:2107–28.

    Article 
    CAS 

    Google Scholar
     

  • El-Ghazaly MA, Fadel N, Rashed E, El-Batal A, Kenawy SA. Anti-inflammatory impact of selenium nanoparticles on the irritation induced in irradiated rats. Can J Physiol Pharmacol. 2017;95(2):101–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, Packirisamy G, et al. Yttrium oxide nanoparticles scale back the severity of acute pancreatitis attributable to cerulein hyperstimulation. Nanomedicine. 2019;18:54–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Jia F, Wang P, Zhang Okay. Nucleic acid-based drug supply methods. J Management Launch. 2020;323:240–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buddolla AL, Kim S. Current insights into the event of nucleic acid-based nanoparticles for tumor-targeted drug supply. Colloids Surf B Biointerfaces. 2018;172:315–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-based nanostructures for Biomedical Utility. Adv Mater. 2022;34(46):e2107820.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou M, Gao S, Zhang X, Zhang T, Zhang T, Tian T, et al. The protecting impact of tetrahedral framework nucleic acids on periodontium underneath inflammatory circumstances. Bioact Mater. 2021;6(6):1676–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao S, Wang Y, Li Y, Xiao D, Lin Y, Chen Y, et al. Tetrahedral Framework nucleic acids reestablish Immune Tolerance and restore saliva secretion in a Sjogren’s Syndrome Mouse Mannequin. ACS Appl Mater Interfaces. 2021;13(36):42543–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao S, Zhou M, Li Y, Xiao D, Wang Y, Yao Y, et al. Tetrahedral Framework nucleic acids reverse new-onset kind 1 diabetes. ACS Appl Mater Interfaces. 2021;13(43):50802–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Li Y, Gao S, Yu X, Chen Y, Lin Y. Tetrahedral Framework nucleic acids can alleviate Taurocholate-Induced extreme Acute Pancreatitis and its subsequent Multiorgan Harm in mice. Nano Lett. 2022;22(4):1759–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue S, Schlosburg JE, Janda KD. A New Technique for Smoking Cessation: characterization of a bacterial enzyme for the degradation of Nicotine. J Am Chem Soc. 2015;137(32):10136–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Ren J, Qu X, Nanozymes. Classification, Catalytic mechanisms, Exercise Regulation, and functions. Chem Rev. 2019;119(6):4357–412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Jana D, Zhao Y. Steel-Natural Framework Derived nanozymes in Biomedicine. Acc Chem Res. 2020;53(7):1389–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou HC, Lengthy JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev. 2012;112(2):673–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Gao J, Cao Y, Tan H. Colorimetric logic gate for alkaline phosphatase based mostly on copper (II)-based metal-organic frameworks with peroxidase-like exercise. Anal Chim Acta. 2018;1004:74–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Guo M, He Q, Zhang Z, Wu B, Wu H, et al. Exact Management of Steel Energetic Websites of Steel-Natural Framework Nanozymes for attaining glorious enzyme-like exercise and environment friendly pancreatitis remedy. Small. 2024;20(32):e2310675.

    Article 
    PubMed 

    Google Scholar
     

  • Charkiewicz AE. Is copper nonetheless secure for us? What do we all know and what are the most recent literature statements? Curr Points Mol Biol. 2024;46(8):8441–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu SJ, Yuk H, Wu J, Nabzdyk CS, Zhao X. A multifunctional Origami Patch for minimally invasive tissue sealing. Adv Mater. 2021;33(11):e2007667.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SR, Yi HJ, Lee YN, Park JY, Hoffman RM, Okano T, et al. Engineered mesenchymal stem-cell-sheets patches prevents postoperative pancreatic leakage in a rat mannequin. Sci Rep. 2018;8(1):360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Moeinzadeh S, Kim C, Pan CC, Weale G, Kim S, et al. Growth and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials. 2023;293:121969.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibne Mahbub MS, Bae SH, Gwon JG, Lee BT. Decellularized liver extracellular matrix and thrombin loaded biodegradable TOCN/Chitosan nanocomposite for hemostasis and wound therapeutic in rat liver hemorrhage mannequin. Int J Biol Macromol. 2023;225:1529–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li H, Shu XZ, Grey SD, Prestwich GD. Crosslinked hyaluronan hydrogels containing mitomycin C scale back postoperative stomach adhesions. Fertil Steril. 2005;83(Suppl 1):1275–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wang S, Solar Y, Wang J. Mitomycin C induces fibroblast apoptosis and reduces intra-articular scar adhesion by regulating miR-21 and its goal programmed cell loss of life 4. Fitoterapia. 2020;142:104392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanto PC, Fahad MAA, Jung HI, Park M, Kim H, Bae SH, et al. Multi-functional dual-layer nanofibrous membrane for prevention of postoperative pancreatic leakage. Biomaterials. 2024;307:122508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles