9.6 C
United States of America
Monday, March 10, 2025

Extracellular vesicle-mediated bidirectional communication between the liver and different organs: mechanistic exploration and prospects for scientific purposes | Journal of Nanobiotechnology


  • Castillo-Armengol J, Fajas L, Lopez-Mejia IC. Inter-organ communication: a gatekeeper for metabolic well being. EMBO Rep. 2019;20:e47903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular illnesses: from pathophysiology to analysis and remedy. Cytokine Progress Issue Rev. 2023;74:40–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu S, Hu Y, Yan W. Extracellular vesicle-mediated interorgan communication in metabolic illnesses. Traits Endocrinol Metab. 2023;34:571–82.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takahashi Y, Takakura Y. Extracellular vesicle-based therapeutics: extracellular vesicles as therapeutic targets and brokers. Pharmacol Ther. 2023;242:108352.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng ML, Nakib D, Perciani CT, MacParland SA. The immune area of interest of the liver. Clin Sci (Lond). 2021;135:2445–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A, Azimirad M, Alavifard H, Mohsenifar Z, Davari M, et al. The protecting results of dwell and pasteurized Akkermansia muciniphila and its extracellular vesicles in opposition to HFD/CCl4-Induced liver harm. Microbiol Spectr. 2021;9:e0048421.

    Article 
    PubMed 

    Google Scholar
     

  • Raftar SKA, Ashrafian F, Abdollahiyan S, Yadegar A, Moradi HR, Masoumi M, Vaziri F, Moshiri A, Siadat SD, Zali MR. The anti-inflammatory results of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine mannequin of liver harm. Sci Rep. 2022;12:2453.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu J, Dong T, Chen T, Solar J, Luo J, He J, Wei L, Zeng B, Zhang H, Li W, et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance by way of suppressing PHLPP2 gene in adipocyte. Metabolism. 2020;103:154006.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mahmoudi-Aznaveh A, Tavoosidana G, Najmabadi H, Azizi Z, Ardestani A. The liver-derived exosomes stimulate insulin gene expression in pancreatic beta cells below situation of insulin resistance. Entrance Endocrinol (Lausanne). 2023;14:1303930.

    Article 
    PubMed 

    Google Scholar
     

  • Ashour H, Rashed L, Elkordy MA, Abdelwahed OM. Distant liver harm following acute renal ischaemia-reperfusion: involvement of Circulating Exosomal miR-687 and regulation by thymoquinone. Exp Physiol. 2021;106:2262–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P. Hepatocyte-derived extracellular vesicles promote endothelial irritation and atherogenesis by way of microRNA-1. J Hepatol. 2020;72:156–66.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen X, Chen S, Pang J, Huang R, You Y, Zhang H, Xiao J, Xue H, Ling W. Hepatic steatosis aggravates atherosclerosis by way of small extracellular vesicle-mediated Inhibition of mobile ldl cholesterol efflux. J Hepatol. 2023;79:1491–501.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, et al. Minimal data for research of extracellular vesicles (MISEV2023): from fundamental to superior approaches. J Extracell Vesicles. 2024;13:e12404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YJ, Wang C. A assessment of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Sign. 2023;21:77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367:eaau6977.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gurunathan S, Kang MH, Qasim M, Khan Ok, Kim JH, Biogenesis. Membrane trafficking, features, and subsequent era nanotherapeutics drugs of extracellular vesicles. Int J Nanomed. 2021;16:3357–83.

  • Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wei G, Li C, Jia X, Xie J, Tang Z, Jin M, Chen Q, Solar Y, He S, Li X, et al. Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and coronary heart restore by activating TRIM59/STAT3/Cyclin B2 pathway. J Adv Res. 2023;53:199–218.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote most cancers cell proliferation via EphA2. Nat Commun. 2017;8:15729.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stronati E, Conti R, Cacci E, Cardarelli S, Biagioni S, Poiana G. Extracellular Vesicle-Induced differentiation of neural stem progenitor cells. Int J Mol Sci. 2019;20:3691.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takeda YS, Xu Q. Neuronal differentiation of human mesenchymal stem cells utilizing exosomes derived from differentiating neuronal cells. PLoS ONE. 2015;10:e0135111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraz M, Carothers A, Dahal R, Noonan MJ, Songsasen N. Oviductal extracellular vesicles work together with the spermatozoon’s head and mid-piece and improves its motility and fertilizing potential within the home Cat. Sci Rep. 2019;9:9484.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Silva TA, Smuczek B, Valadão IC, Dzik LM, Iglesia RP, Cruz MC, Zelanis A, de Siqueira AS, Serrano SM, Goldberg GS, et al. AHNAK permits mammary carcinoma cells to provide extracellular vesicles that improve neighboring fibroblast cell motility. Oncotarget. 2016;7:49998–50016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: reprogramming a tumor microenvironment conducive with breast most cancers development and metastasis. Transl Oncol. 2022;15:101286.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parayath NN, Padmakumar S, Amiji MM. Extracellular vesicle-mediated nucleic acid switch and reprogramming within the tumor microenvironment. Most cancers Lett. 2020;482:33–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic operate and scientific potential. Cell Biosci. 2019;9:19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi H, Tanaka N, Asao H, Miura S, Kyuuma M, Semura Ok, Ishii N, Sugamura Ok. Hrs, a mammalian grasp molecule in vesicular transport and protein sorting, suppresses the degradation of ESCRT proteins sign transducing adaptor molecule 1 and a couple of. J Biol Chem. 2005;280:10468–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21:77–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McGough IJ, Vincent JP. Exosomes in developmental signalling. Improvement. 2016;143:2482–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III complicated. Nature. 2009;458:172–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Trajkovic Ok, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting throughout melanogenesis. Dev Cell. 2011;21:708–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in most cancers: exosomes, microvesicles and the rising position of huge oncosomes. Semin Cell Dev Biol. 2015;40:41–51.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and scientific implications. Blood Rev. 2007;21:157–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA. Tumor-derived microvesicles modulate the institution of metastatic melanoma in a phosphatidylserine-dependent method. Most cancers Lett. 2009;283:168–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles come up from lipid rafts and fuse with activated platelets to provoke coagulation. Blood. 2005;106:1604–11.

    Article 
    PubMed 

    Google Scholar
     

  • Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles spherical off communication within the nervous system. Nat Rev Neurosci. 2016;17:160–72.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a particular signaling pathway that generates reworking microvesicles in most cancers cells. Oncogene. 2012;31:4740–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane site visitors and past. Nat Rev Mol Cell Biol. 2006;7:347–58.

    Article 
    PubMed 

    Google Scholar
     

  • Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G. D’Souza-Schorey C. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19:1875–85.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and launch of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109:4146–51.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Battistelli M, Falcieri E. Apoptotic our bodies: explicit extracellular vesicles concerned in intercellular communication. Biology (Basel). 2020;9:21.

    PubMed 
    CAS 

    Google Scholar
     

  • Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic our bodies. J Neurooncol. 2013;113:1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, et al. Phosphatidylserine is a worldwide immunosuppressive sign in efferocytosis, infectious illness, and most cancers. Cell Loss of life Differ. 2016;23:962–78.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM. Cell-surface calreticulin initiates clearance of viable or apoptotic cells via trans-activation of LRP on the phagocyte. Cell. 2005;123:321–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin mild chain phosphorylation. J Cell Biol. 1998;140:627–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Santavanond JP, Rutter SF, Atkin-Smith GK, Poon IKH. Apoptotic our bodies: mechanism of formation, isolation and useful relevance. Subcell Biochem. 2021;97:61–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tixeira R, Phan TK, Caruso S, Shi B, Atkin-Smith GK, Nedeva C, Chow JDY, Puthalakath H, Hulett MD, Herold MJ, Poon IKH. ROCK1 however not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Loss of life Differ. 2020;27:102–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol. 2001;3:346–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang N, Higuchi O, Ohashi Ok, Nagata Ok, Wada A, Kangawa Ok, Nishida E, Mizuno Ok. Cofilin phosphorylation by LIM-kinase 1 and its position in Rac-mediated actin reorganization. Nature. 1998;393:809–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P. Regulation of actin dynamics via phosphorylation of Cofilin by LIM-kinase. Nature. 1998;393:805–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Núñez R, Sancho-Martínez SM, Novoa JM, López-Hernández FJ. Apoptotic quantity lower as a geometrical determinant for cell dismantling into apoptotic our bodies. Cell Loss of life Differ. 2010;17:1665–71.

    Article 
    PubMed 

    Google Scholar
     

  • Maeno E, Tsubata T, Okada Y. Apoptotic quantity lower (AVD) is unbiased of mitochondrial dysfunction and initiator caspase activation. Cells. 2012;1:1156–67.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Caruso S, Atkin-Smith GK, Baxter AA, Tixeira R, Jiang L, Ozkocak DC, Santavanond JP, Hulett MD, Lock P, Phan TK, Poon IKH. Defining the position of cytoskeletal parts within the formation of apoptopodia and apoptotic our bodies throughout apoptosis. Apoptosis. 2019;24:862–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Atkin-Smith GK, Tixeira R, Paone S, Mathivanan S, Collins C, Liem M, Goodall KJ, Ravichandran KS, Hulett MD, Poon IK. A novel mechanism of producing extracellular vesicles throughout apoptosis by way of a beads-on-a-string membrane construction. Nat Commun. 2015;6:7439.

    Article 
    PubMed 

    Google Scholar
     

  • Poon IK, Chiu YH, Armstrong AJ, Kinchen JM, Juncadella IJ, Bayliss DA, Ravichandran KS. Surprising hyperlink between an antibiotic, pannexin channels and apoptosis. Nature. 2014;507:329–34.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y. The method of ultrastructural adjustments from nuclei to apoptotic physique. Virchows Arch. 1998;433:443–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, Weng J, Xia J, Li J, Pathak JL. Apoptotic our bodies: bioactive treasure left behind by the dying cells with sturdy diagnostic and therapeutic utility potentials. J Nanobiotechnol. 2023;21:218.

    Article 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, function, and strategies for exosome isolation and evaluation. Cells. 2019;8:727.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Caruso S, Poon IKH. Apoptotic Cell-Derived extracellular vesicles: extra than simply particles. Entrance Immunol. 2018;9:1486.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.

    Article 

    Google Scholar
     

  • Lee Y, Kim JH. The rising roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol. 2022;28:706–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, et al. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Entrance Immunol. 2023;14:1314123.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo choice. Nat Rev Mol Cell Biol. 2023;24:454–76.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao H, Peng X, Li N, Gou L, Xu T, Wang Y, Qin J, Liang H, Ma P, Li S, et al. Rising position of liver-bone axis in osteoporosis. J Orthop Translat. 2024;48:217–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin L, Guo Z, He E, Lengthy X, Wang D, Zhang Y, Guo W, Wei Q, He W, Wu W, et al. SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab. 2023;5:821–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu J, Dou G, Zhao W, Hu J, Jiang Z, Wang W, Wang H, Liu S, Jin Y, Zhao Y, et al. Exosomes derived from impaired liver irritate alveolar bone loss by way of shuttle of Fasn in sort 2 diabetes mellitus. Bioact Mater. 2024;33:85–99.

    PubMed 
    CAS 

    Google Scholar
     

  • Li CH, Lei X, Zheng CX, Jin Y, Sui BD, Ying SQ. [Study on liver tissue derived-extracellular vesicles regulating the osteogenic differentiation ability of mesenchymal stem cells and promoting the healing of jaw bone defects]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2024;59:435–43.

    PubMed 
    CAS 

    Google Scholar
     

  • Zheng L, Li Z, Ling W, Zhu D, Feng Z, Kong L. Exosomes derived from dendritic cells attenuate liver harm by modulating the steadiness of Treg and Th17 cells after ischemia reperfusion. Cell Physiol Biochem. 2018;46:740–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding C, Shen Z, Xu R, Liu Y, Xu M, Fan C, Hu D, Xing T. Exosomes derived from periodontitis induce hepatic steatosis via the SCD-1/AMPK signaling pathway. Biochim Biophys Acta Mol Foundation Dis. 2024;1870:167343.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Møller S, Bernardi M. Interactions of the center and the liver. Eur Coronary heart J. 2013;34:2804–11.

    Article 
    PubMed 

    Google Scholar
     

  • Liu X, Shao Y, Han L, Zhang R, Chen J. Rising proof linking the liver to the cardiovascular system: liver-derived secretory components. J Clin Transl Hepatol. 2023;11:1246–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo R, Ye LF, Huang Y, Track ZQ, Wang L, Zhi H, Zhang MY, Li JY, Zhu L, Xiao WJ, et al. Hepatic small extracellular vesicles promote microvascular endothelial hyperpermeability throughout NAFLD by way of novel-miRNA-7. J Nanobiotechnol. 2021;19:396.

    Article 
    CAS 

    Google Scholar
     

  • Nishi H, Ono Ok, Iwanaga Y, Horie T, Nagao Ok, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa Ok, et al. MicroRNA-15b modulates mobile ATP ranges and degenerates mitochondria by way of Arl2 in neonatal rat cardiac myocytes. J Biol Chem. 2010;285:4920–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Y, Jin P, Liu J, Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy via suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci (Lond). 2019;133:1871–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R. Train as a prescription for sufferers with varied illnesses. J Sport Well being Sci. 2019;8:422–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, et al. Train promotes angiogenesis by enhancing endothelial cell fatty acid utilization by way of liver-derived extracellular vesicle miR-122-5p. J Sport Well being Sci. 2022;11:495–508.

    Article 
    PubMed 

    Google Scholar
     

  • Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A illness perspective. Life Sci. 2024;351:122824.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tilg H, Adolph TE, Trauner M. Intestine-liver axis: pathophysiological ideas and scientific implications. Cell Metab. 2022;34:1700–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver illness: new gamers within the gut-liver axis? Am J Physiol Gastrointest Liver Physiol. 2021;320:G485–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao J, Chen XD, Yan ZZ, Huang WF, Liu KX, Li C. Intestine-Derived Exosomes Induce Liver Harm After Intestinal Ischemia/Reperfusion by Selling Hepatic Macrophage Polarization. Irritation. 2022; 45:2325-38.

  • Luo Z, Ji Y, Gao H, Gomes Dos Reis FC, Bandyopadhyay G, Jin Z, Ly C, Chang YJ, Zhang D, Kumar D, Ying W. CRIg(+) macrophages stop intestine microbial DNA-Containing extracellular Vesicle-Induced tissue irritation and insulin resistance. Gastroenterology. 2021;160:863–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fizanne L, Villard A, Benabbou N, Recoquillon S, Soleti R, Delage E, Wertheimer M, Vidal-Gómez X, Oullier T, Chaffron S, et al. Faeces-derived extracellular vesicles take part within the onset of barrier dysfunction resulting in liver illnesses. J Extracell Vesicles. 2023;12:e12303.

    Article 
    PubMed 

    Google Scholar
     

  • Jain H, Kumar A, Almousa S, Mishra S, Langsten KL, Kim S, Sharma M, Su Y, Singh S, Kerr BA, Deep G. Characterisation of LPS + bacterial extracellular vesicles alongside the gut-hepatic portal vein-liver axis. J Extracell Vesicles. 2024;13:e12474.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen X, Ling Y, Wei Y, Tang J, Ren Y, Zhang B, Jiang F, Li H, Wang R, Wen W, et al. Twin regulation of HMGB1 by mixed JNK1/2-ATF2 axis with miR-200 household in nonalcoholic steatohepatitis in mice. Faseb J. 2018;32:2722–34.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Solar H, Bai Y, Zhi F. Intestine dysbiosis-derived exosomes set off hepatic steatosis by transiting HMGB1 from intestinal to liver in mice. Biochem Biophys Res Commun. 2019;509:767–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang Ok, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in well being and diabetes. Entrance Endocrinol (Lausanne). 2023;14:1170237.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhang Y, Ye Y, Li D, Liu Y, Lee E, Zhang M, Dai X, Zhang X, Wang S, et al. Pancreatic Β cells management glucose homeostasis by way of the secretion of Exosomal miR-29 household. J Extracell Vesicles. 2021;10:e12055.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen Q, Jiang FJ, Gao X, Li XY, Xia P. Steatotic hepatocyte-derived extracellular vesicles promote β-cell apoptosis and diabetes by way of microRNA-126a-3p. Liver Int. 2023;43:2560–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • López-Bermudo L, Luque-Sierra A, Maya-Miles D, Gallego-Durán R, Ampuero J, Romero-Gómez M, Berná G, Martín F. Contribution of liver and pancreatic islet crosstalk to β-Cell operate/dysfunction within the presence of fatty liver. Entrance Endocrinol (Lausanne). 2022;13:892672.

    Article 
    PubMed 

    Google Scholar
     

  • Yang X, Qiu Ok, Jiang Y, Huang Y, Zhang Y, Liao Y. Metabolic crosstalk between liver and mind: from illnesses to mechanisms. Int J Mol Sci 2024; 25.

  • Izquierdo-Altarejos P, Martínez-García M, Felipo V. Extracellular vesicles from hyperammonemic rats induce neuroinflammation in cerebellum of regular rats: position of elevated TNFα content material. Entrance Immunol. 2022;13:921947.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang M, Gong W, Zhang D, Ji M, Chen B, Chen B, Li X, Zhou Y, Dong C, Wen G, et al. Ageing associated thyroid deficiency will increase brain-targeted transport of liver-derived ApoE4-laden exosomes resulting in cognitive impairment. Cell Loss of life Dis. 2022;13:406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Liu Y, Li L, Peng R, Wang C, Liu C, Shi M, Cao Y, Gao Y, Zhang H, et al. Mind-derived extracellular vesicles mediate traumatic mind harm related multi-organ injury. Biochem Biophys Res Commun. 2023;665:141–51.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong JL, Wang YX, Luo JY, Wang SM, Solar JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver restore by its cargo miR-143-3p. Sci Rep. 2024;14:16635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, Vilstrup H, Jalan R. Hepatic encephalopathy: novel insights into classification, pathophysiology and remedy. J Hepatol. 2020;73:1526–47.

    Article 
    PubMed 

    Google Scholar
     

  • Rodríguez-Roisin R, Krowka MJ. Hepatopulmonary syndrome–a liver-induced lung vascular dysfunction. N Engl J Med. 2008;358:2378–87.

    Article 
    PubMed 

    Google Scholar
     

  • Chen L, Han Y, Li Y, Chen B, Bai X, Belguise Ok, Wang X, Chen Y, Yi B, Lu Ok. Hepatocyte-derived Exosomal MiR-194 prompts PMVECs and promotes angiogenesis in hepatopulmonary syndrome. Cell Loss of life Dis. 2019;10:853.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney harm. Cell Loss of life Differ. 2020;27:210–26.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyu J, Sheng M, Cao Y, Jia L, Zhang C, Weng Y, Yu W. Ischemia and reperfusion-injured liver-derived exosomes elicit acute lung harm via miR-122-5p regulated alveolar macrophage polarization. Int Immunopharmacol. 2024;131:111853.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonjoch L, Casas V, Carrascal M, Closa D. Involvement of exosomes in lung irritation related to experimental acute pancreatitis. J Pathol. 2016;240:235–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ginès P, Solà E, Angeli P, Wong F, Nadim MK, Kamath PS. Hepatorenal syndrome. Nat Rev Dis Primers. 2018;4:23.

    Article 
    PubMed 

    Google Scholar
     

  • Noble J, Jouve T, Malvezzi P, Rostaing L. Renal problems of liver illnesses. Professional Rev Gastroenterol Hepatol. 2018;12:1135–42.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling adipose tissue dysfunction: molecular mechanisms, novel biomarkers, and therapeutic targets for liver fats deposition. Cells. 2024;13:380.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Cui L, Wang J, Zheng S, Zhang H, Ke S, Cao X, Shi Y, Li J, Zen Ok, et al. Chilly-activated brown fat-derived extracellular vesicle-miR-378a-3p stimulates hepatic gluconeogenesis in male mice. Nat Commun. 2023;14:5480.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kariba Y, Yoshizawa T, Sato Y, Tsuyama T, Araki E, Yamagata Ok. Brown adipocyte-derived Exosomal miR-132-3p suppress hepatic Srebf1 expression and thereby attenuate expression of lipogenic genes. Biochem Biophys Res Commun. 2020;530:500–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dang SY, Leng Y, Wang ZX, Xiao X, Zhang X, Wen T, Gong HZ, Hong A, Ma Y. Exosomal switch of weight problems adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15:351–68.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, Pietka T, Chang SW, Ghosh S, Myckatyn TM, Klein S. Associations amongst adipose tissue immunology, irritation, exosomes and insulin sensitivity in folks with weight problems and nonalcoholic fatty liver illness. Gastroenterology. 2021; 161:968– 81.e12.

  • Tryggestad JB, Teague AM, Sparling DP, Jiang S, Chernausek SD. Macrophage-Derived microRNA-155 will increase in weight problems and influences adipocyte metabolism by concentrating on peroxisome Proliferator-Activated receptor gamma. Obes (Silver Spring). 2019;27:1856–64.

    Article 
    CAS 

    Google Scholar
     

  • Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Search engine optimization JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W et al. Adipose tissue Macrophage-Derived Exosomal MiRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 2017; 171:372– 84.e12.

  • Yan C, Tian X, Li J, Liu D, Ye D, Xie Z, Han Y, Zou MH. A Excessive-Fats weight loss plan attenuates AMPK Α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver growth in vivo. Diabetes. 2021;70:577–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Evaluation of ESCRT features in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.

    PubMed 
    CAS 

    Google Scholar
     

  • Chen Ok, Lin T, Yao W, Chen X, Xiong X, Huang Z. Adipocytes-derived Exosomal miR-122 promotes non-alcoholic fats liver illness development by way of concentrating on Sirt1. Gastroenterol Hepatol. 2023;46:531–41.

    Article 
    PubMed 

    Google Scholar
     

  • Lu MM, Ren Y, Zhou YW, Xu LL, Zhang MM, Ding LP, Cheng WX, Jin X. Antagonizing adipose tissue-derived exosome miR-103-hepatocyte phosphatase and tensin homolog pathway alleviates autophagy in non-alcoholic steatohepatitis: A trans-cellular crosstalk. World J Gastroenterol. 2023;29:4528–41.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-‘t Hoen EN, de Jager W, Wauben MH, Kalkhoven E. Impact of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obes (Silver Spring). 2014;22:2216–23.

    Article 
    CAS 

    Google Scholar
     

  • Son T, Jeong I, Park J, Jun W, Kim A, Kim OK. Adipose tissue-derived exosomes contribute to obesity-associated liver illnesses in long-term high-fat diet-fed mice, however not in short-term. Entrance Nutr. 2023;10:1162992.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Y, Luo Z, Gao H, Dos Reis FCG, Bandyopadhyay G, Jin Z, Manda KA, Isaac R, Yang M, Fu W, et al. Hepatocyte-derived exosomes from early onset overweight mice promote insulin sensitivity via miR-3075. Nat Metab. 2021;3:1163–74.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jung JW, Kim JE, Kim E, Lee H, Lee H, Shin EA, Lee JW. Liver-originated small extracellular vesicles with TM4SF5 goal brown adipose tissue for homeostatic glucose clearance. J Extracell Vesicles. 2022;11:e12262.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao Y, Zhao MF, Jiang S, Wu J, Liu J, Yuan XW, Shen D, Zhang JZ, Zhou N, He J, et al. Liver governs adipose remodelling by way of extracellular vesicles in response to lipid overload. Nat Commun. 2020;11:719.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee J, Jeong I, Kim OK. Liver-Derived exosomes induce irritation and lipogenesis in mice fed Excessive-Power diets. Vitamins. 2022;14:5124.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu Q, Fu S, Xiao H, Du J, Cheng F, Wan S, Zhu H, Li D, Peng F, Ding X, Wang L. Advances in extracellular vesicle nanotechnology for precision theranostics. Adv Sci (Weinh). 2023;10:e2204814.

    Article 
    PubMed 

    Google Scholar
     

  • Psaraki A, Ntari L, Karakostas C, Korrou-Karava D, Roubelakis MG. Extracellular vesicles derived from mesenchymal stem/stromal cells: the regenerative influence in liver illnesses. Hepatology. 2022;75:1590–603.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu R, Fan X, Wang Y, Shen M, Zheng Y, Zhao S, Yang L. Mesenchymal stem Cell-Derived extracellular vesicles in liver immunity and remedy. Entrance Immunol. 2022;13:833878.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shen M, Zhou L, Fan X, Wu R, Liu S, Deng Q, Zheng Y, Liu J, Yang L. Metabolic reprogramming of CD4(+) T cells by mesenchymal stem Cell-Derived extracellular vesicles attenuates autoimmune hepatitis via mitochondrial protein switch. Int J Nanomed. 2024;19:9799–819.

    Article 

    Google Scholar
     

  • Xuan J, Xu H, Li H, Chen D, Qiu Y, Chen X, Shao M, Xia X. Extracellular vesicles from miR-148a-5p-Enriched bone marrow mesenchymal stem cells relieve hepatic fibrosis by concentrating on Smad4. Mol Biotechnol. 2022;64:535–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Zhangdi H, Nie X, Wang L, Wan Z, Jin H, Pu R, Liang M, Chang Y, Gao Y et al. Exosomes Derived from BMMSCs Mitigate the Hepatic Fibrosis by way of Anti-Pyroptosis Pathway in a Cirrhosis Mannequin. Cells. 2022; 11:4004.

  • Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis via the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10:98.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tan J, Chen M, Liu M, Chen A, Huang M, Chen X, Tian X, Chen W. Exosomal miR-192-5p secreted by bone marrow mesenchymal stem cells inhibits hepatic stellate cell activation and targets PPP2R3A. J Histotechnol. 2023;46:158–69.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther. 2019;13:2887–97.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang X, Liu Z, You H, Tang Z, Ma Y, Nie R, Yang Z, Che N, Liu W. Extracellular vesicles derived from bone marrow mesenchymal stem cells ameliorate persistent liver injury by way of microRNA-136-5p. Mol Cell Biochem. 2024:1–19.

  • Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, Suzuki H, Mitaka T. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther. 2021;12:312.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, Zheng MH, Li H, Huang Y, Jin XY, et al. BMSCs-derived miR-223-containing exosomes contribute to liver safety in experimental autoimmune hepatitis. Mol Immunol. 2018;93:38–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li H, Lin W, Zhang G, Liu R, Qu M, Zhang J, Xing X. BMSC-exosomes miR-25-3p regulates the p53 signaling pathway via PTEN to inhibit cell apoptosis and ameliorate liver Ischemia–reperfusion harm. Stem Cell Rev Rep. 2023;19:2820–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Solar L, et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and transforming choline metabolism. J Nanobiotechnol. 2023;21:29.

    Article 
    CAS 

    Google Scholar
     

  • Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, Fang N. Exosomes from adipose-derived mesenchymal stem cells enhance liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to have an effect on the p38 MAPK/NF-κB pathway. Cytokine. 2023;172:156386.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Du Z, Wu T, Liu L, Luo B, Wei C. Extracellular vesicles-derived miR-150-5p secreted by adipose-derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis. J Cell Mol Med. 2021;25:701–15.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu X, Jiao Z, Wang H. Results of exosomes derived from Adipose-Derived mesenchymal stem cells on pyroptosis and regeneration of injured liver. Int J Mol Sci. 2022;23:12065.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Y, Liu T, Jiao G, Lv Y, Piao C, Lu X, Ma H, Wang H. Exosomes from adipose-derived mesenchymal stem cells can attenuate liver harm attributable to minimally invasive hemihepatectomy mixed with ischemia-reperfusion in minipigs by modulating the Endoplasmic reticulum stress response. Life Sci. 2023;321:121618.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Q, Piao C, Ma H, Xu J, Wang Y, Liu T, Liu G, Wang H. Exosomes from adipose-derived mesenchymal stem cells alleviate liver ischaemia reperfusion harm subsequent to hepatectomy in rats by regulating mitochondrial dynamics and biogenesis. J Cell Mol Med. 2021;25:10152–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiao Z, Ma Y, Wang Y, Liu T, Zhang Q, Liu X, Piao C, Liu B, Wang H. Protecting Impact of Adipose-Derived Mesenchymal Stem Cell Secretome in opposition to Hepatocyte Apoptosis Induced by Liver Ischemia-Reperfusion with Partial Hepatectomy Harm. Stem Cells Int. 2021; 2021:9969372.

  • Niu Q, Wang T, Wang Z, Wang F, Huang D, Solar H, Liu H. Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver illness by way of delivering miR-223-3p. Adipocyte. 2022;11:572–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hao Y, Track H, Zhou Z, Chen X, Li H, Zhang Y, Wang J, Ren X, Wang X. Promotion or Inhibition of extracellular vesicle launch: rising therapeutic alternatives. J Management Launch. 2021;340:136–48.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Debbi L, Guo S, Safina D, Levenberg S. Boosting extracellular vesicle secretion. Biotechnol Adv. 2022;59:107983.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Y, Lou P, Xie Y, Liu S, Li L, Wang C, Du D, Chen Y, Lu Y, Cheng J, Liu J. Nutrient availability regulates the secretion and performance of immune cell-derived extracellular vesicles via metabolic rewiring. Sci Adv. 2024;10:eadj1290.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang X, Liu Z, You H, Tang Z, Ma Y, Nie R, Yang Z, Che N, Liu W. Quercetin-primed BMSC-derived extracellular vesicles ameliorate persistent liver injury via miR-136-5p and GNAS/STAT3 signaling pathways. Int Immunopharmacol. 2024;142:113162.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu J, Tang M, Li Q, Li Q, Dai Y, Zhou H. ATG2B upregulated in LPS-stimulated BMSCs-derived exosomes attenuates septic liver harm by inhibiting macrophage STING signaling. Int Immunopharmacol. 2023;117:109931.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ziegler JN, Tian C. Engineered extracellular vesicles: rising therapeutic methods for translational purposes. Int J Mol Sci. 2023;24:15206.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li B, Qi C, Zhang Y, Shi L, Zhang J, Qian H, Ji C. Frontier position of extracellular vesicles in kidney illness. J Nanobiotechnol. 2024;22:583.

    Article 

    Google Scholar
     

  • Yu L, Xue J, Wu Y, Zhou H. Therapeutic impact of exosomes derived from hepatocyte-growth-factor-overexpressing adipose mesenchymal stem cells on liver harm. Folia Histochem Cytobiol. 2023;61:160–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fang J, Liang W. ASCs -derived exosomes loaded with vitamin A and Quercetin inhibit speedy senescence-like response after acute liver harm. Biochem Biophys Res Commun. 2021;572:125–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park JH. Regulation of in vivo destiny of exosomes for therapeutic purposes: new frontier in nanomedicines. J Management Launch. 2022;348:483–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Aoyama T, Inokuchi S, Brenner DA, Seki E. CX3CL1-CX3CR1 interplay prevents carbon tetrachloride-induced liver irritation and fibrosis in mice. Hepatology. 2010;52:1390–400.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han C, Zhai Y, Wang Y, Peng X, Zhang X, Dai B, Leng Y, Zhang Z, Qi S. Intravital imaging of Splenic classical monocytes modifying the hepatic CX3CR1(+) cells motility to exacerbate liver fibrosis by way of spleen-liver axis. Theranostics. 2024;14:2210–31.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Wan D, Zhu M, Wang G, Zhang X, Huang N, Zhang J, Zhang C, Shang Q, Zhang C, et al. CD11b + CD43 Hello Ly6C lo splenocyte-derived macrophages exacerbate liver fibrosis by way of spleen-liver axis. Hepatology. 2023;77:1612–29.

    Article 
    PubMed 

    Google Scholar
     

  • Perdices L, Fuentes-Broto L, Segura F, Ben Gdara N, Sánchez-Cano AI, Insa G, Orduna E, Pinilla I. Hepatic oxidative stress in pigmented P23H rhodopsin Transgenic rats with progressive retinal degeneration. Free Radic Biol Med. 2018;124:550–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dogra S, Jindal R. Cutaneous manifestations of frequent liver illnesses. J Clin Exp Hepatol. 2011;1:177–84.

    Article 
    PubMed 

    Google Scholar
     

  • Miele L, Vallone S, Cefalo C, La Torre G, Di Stasi C, Vecchio FM, D’Agostino M, Gabrieli ML, Vero V, Biolato M, et al. Prevalence, traits and severity of non-alcoholic fatty liver illness in sufferers with persistent plaque psoriasis. J Hepatol. 2009;51:778–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Terziroli Beretta-Piccoli B, Invernizzi P, Gershwin ME, Mainetti C. Pores and skin manifestations related to autoimmune liver illnesses: a scientific assessment. Clin Rev Allergy Immunol. 2017;53:394–412.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo S, Feng Y, Zhu X, Zhang X, Wang H, Wang R, Zhang Q, Li Y, Ren Y, Gao X, et al. Metabolic crosstalk between skeletal muscle cells and liver via IRF4-FSTL1 in nonalcoholic steatohepatitis. Nat Commun. 2023;14:6047.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou D, Shi Y, Zhang D, Zuo J, Zeng C, Mamtawla G, Huang L, Gao X, Zhang L, Wang X. Liver-secreted FGF21 induces sarcopenia by inhibiting satellite tv for pc cell myogenesis by way of Klotho beta in decompensated cirrhosis. Redox Biol. 2024;76:103333.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Konaka H, Kato Y, Hirano T, Tsujimoto Ok, Park J, Koba T, Aoki W, Matsuzaki Y, Taki M, Koyama S, et al. Secretion of mitochondrial DNA by way of exosomes promotes irritation in Behçet’s syndrome. Embo J. 2023;42:e112573.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ali S, Vidal-Gómez X, Piquet M, Vergori L, Simard G, Dubois S, Ducluzeau PH, Pomiès P, Kamli-Salino S, Delibégovic M et al. Circulating extracellular vesicle-carried PTP1B and PP2A phosphatases as regulators of insulin resistance. Diabetologia. 2024:1–12.

  • Zhao J, Zhu W, Mao Y, Li X, Ling G, Luo C, Zhang P. Unignored intracellular journey and biomedical purposes of extracellular vesicles. Adv Drug Deliv Rev. 2024;212:115388.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miceli RT, Chen TY, Nostril Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, et al. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: challenges, options, and proposals. J Extracell Vesicles. 2024;13:e70005.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mizenko RR, Feaver M, Bozkurt BT, Lowe N, Nguyen B, Huang KW, Wang A, Carney RP. A crucial systematic assessment of extracellular vesicle scientific trials. J Extracell Vesicles. 2024;13:e12510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Superior nanotechnologies for extracellular Vesicle-Primarily based liquid biopsy. Adv Sci (Weinh). 2021;8:e2102789.

    Article 
    PubMed 

    Google Scholar
     

  • Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, Wang HQ, Bu LL, Liu B, Chen G. Tissue-derived extracellular vesicles in cancers and non-cancer illnesses: current and future. J Extracell Vesicles. 2021;10:e12175.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, Pegtel DM, Follain G, Allio G, Goetz JG, Zimmermann P et al. Reside monitoring of inter-organ communication by endogenous exosomes in vivo. Dev Cell. 2019; 48:573– 89.e4.

  • van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular vesicle heterogeneity and its influence for regenerative drugs purposes. Pharmacol Rev. 2023;75:1043–61.

    Article 
    PubMed 

    Google Scholar
     

  • Willms E, Cabañas C, Mäger I, Wooden MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation methods, and various features in Most cancers development. Entrance Immunol. 2018;9:738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Yan J, Shen X, Solar Y, Thulin M, Cai Y, Wik L, Shen Q, Oelrich J, Qian X, et al. Profiling floor proteins on particular person exosomes utilizing a proximity barcoding assay. Nat Commun. 2019;10:3854.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banijamali M, Höjer P, Nagy A, Hååg P, Gomero EP, Stiller C, Kaminskyy VO, Ekman S, Lewensohn R, Karlström AE, et al. Characterizing single extracellular vesicles by droplet barcode sequencing for protein evaluation. J Extracell Vesicles. 2022;11:e12277.

    Article 
    PubMed 

    Google Scholar
     

  • Solar N, Zhang C, Lee YT, Tran BV, Wang J, Kim H, Lee J, Zhang RY, Wang JJ, Hu J, et al. HCC EV ECG rating: an extracellular vesicle-based protein assay for detection of early-stage hepatocellular carcinoma. Hepatology. 2023;77:774–88.

    Article 
    PubMed 

    Google Scholar
     

  • Guo W, Cai Y, Liu X, Ji Y, Zhang C, Wang L, Liao W, Liu Y, Cui N, Xiang J et al. Single-Exosome profiling identifies ITGB3 + and ITGAM + Exosome subpopulations as promising early diagnostic biomarkers and therapeutic targets for colorectal most cancers. Analysis (Wash D C). 2023; 6:0041.

  • Wiklander OPB, Brennan M, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic purposes of extracellular vesicles. Sci Transl Med. 2019;11:eaav8521.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Al-Madhagi H. The panorama of exosomes biogenesis to scientific purposes. Int J Nanomed. 2024;19:3657–75.

    Article 

    Google Scholar
     

  • Zeng H, Guo S, Ren X, Wu Z, Liu S, Yao X. Present methods for exosome cargo loading and concentrating on supply. Cells 2023; 12.

  • Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug supply system: contemplating cell supply. Drug Deliv. 2020;27:585–98.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang L, Wang D, Ye Z, Xu J. Engineering extracellular vesicles as supply methods in therapeutic purposes. Adv Sci (Weinh). 2023;10:e2300552.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles